Как составить таблицу частот упорядоченного ряда данных

План урока:

Понятие выборки и генеральной совокупности

Среднее арифметическое выборки

Упорядоченный ряд и таблица частот

Размах выборки

Мода выборки

Медиана выборки

Ошибки в статистике

Понятие выборки и генеральной совокупности

Слово статистика, образованное от латинского status(состояние дел), появилось только в 1746 году, когда его употребил немец Готфрид Ахенвалль. Однако ещё в Древнем Китае проводились переписи населения, в ходе которых правители собирали информацию о своих владениях и жителях, проживающих в них.

В основе любого статистического исследования лежит массив информации, который называют выборкой данных. Покажем это на примере. Пусть в классе, где учится 20 учеников, проводился тест по математике, содержавший 25 вопросов. В результате учащиеся показали следующие результаты:

1 massiv informacii

Ряд чисел, приведенный во второй строке таблицы (12, 19, 19, 14, 17, 16, 18, 20, 15, 25, 13, 20, 25, 16, 17, 12, 24, 13, 21, 13), будет выборкой. Также ее могут называть рядом данных или выборочной совокупностью.

2 vyborka nabor dannyh

В примере с классом выборка состоит из 20 чисел. Эту величину (количество чисел в ряду) называют объемом выборки. Каждое отдельное число в ряду именуют вариантой выборки.

В примере со школьным классом в выборку попали все его ученики. Это позволяет точно определить, насколько хорошо учащиеся написали математический тест. Однако иногда необходимо проанализировать очень большие группы населения, состоящие из десятков и даже сотен миллионов человек. Например, необходимо узнать, какая часть населения страны курит. Опросить каждого жителя государства невозможно, поэтому в ходе исследования опрашивают лишь его малую часть. В этом случае статистики выделяют понятие генеральная совокупность.

3 generalnaja sovokupnost

Так, если с помощью опроса 10 тысяч человек ученые делают выводы о распространении курения в России, то все российское население будет составлять генеральную совокупность исследования, а опрошенные 10 тысяч людей вместе образуют выборку.

Среднее арифметическое выборки

Сбор информации о выборке является лишь первой стадией статистического исследования. Далее ее необходимо обобщить, то есть получить некоторые цифры, характеризующие выборку. Самой часто используемой статистической характеристикой является среднее арифметическое.

4 srednee arifmeticheskoe vyborki

Другими словами, для подсчета среднего арифметического необходимо просто сложить все числа в ряде данных, а потом поделить получившееся значение на количество чисел в ряде. Так, в примере с тестом по математике (таблица 1) средний балл учащихся составит: (12+19+19+14+17+16+18+20+15+25+13+20+25+16+17+12+24+13+21+13):20=

= 349:20 = 17,45.

Среднее арифметическое позволяет одним числом характеризовать какое-либо качество всех объектов группы. Чем больше средний балл учащихся в классе, тем выше их успеваемость. Чем меньше среднее количество голов, пропускаемых футбольной командой за один матч, тем лучше она играет в обороне. Если средняя зарплата программистов в городе составляет 90 тысяч рублей, а дворников – 25 тысяч рублей, то это значит, что программисты значительно более востребованы на рынке труда, а потому при выборе будущей профессии лучше предпочесть именно эту специальность.

Упорядоченный ряд и таблица частот

В ряде данных в таблице 1 числа приведены в произвольном порядке. Перепишем ряд так, чтобы все числа шли в неубывающем порядке, то есть от самого маленького к самому большому:

12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 24, 25, 25.

Такую запись называют упорядоченным рядом данных.

5 uporjadochennyj rjad dannyh

Его характеристики ничем не отличаются от изначальной выборки, однако с ним удобнее работать. С его помощью можно видеть, что ни одному ученику не удалось набрать 22 или 23 балла на тесте, но сразу двое учащихся дали 25 правильных ответов. На основе упорядоченного ряда данных несложно составить таблицу частот, в которой будет указано, как часто та или иная варианта выборки встречается в ряде. Выглядеть она будет так:

6 kolichestvo balov

При составлении этой таблицы мы исключили из нее те варианты количества набранных баллов, частота которых равна нулю (от 0 до 12, 22 и 23).Заметим, что сумма чисел в нижней строке таблицы частот должна равняться объему выборки. Действительно,

2+3+1+1+2+2+1+2+2+1+1+2 = 20.

С помощью таблицы частот можно быстрее посчитать среднее арифметическое выборки. Для этого каждую варианту надо умножить на ее частоту, после чего сложить полученные результаты и поделить их на объем выборки:

(12•2+13•3+14•1+15•1+16•2+17•2+18•1+19•2+20•2+21•1+24•1+25•2):20 =

(24+39+14+15+32+34+18+38+40+42+24+50):20 = 349:20 = 17,45.

Размах выборки

Следующий важная характеристика ряда данных – это размах выборки.

7 razmah vyborki

Если выборка представлена в виде упорядоченного ряда данных, то достаточно вычесть из последнего числа ряда первое число. Так, размах выборки результатов теста в классе равен:

25 – 12 = 13,

так как самые лучшие ученики смогли решить все 25 заданий, а наихудший учащийся ответил правильно только на 13 вопросов.

Размах выборки характеризует стабильность, однородность исследуемых свойств. Например, пусть два спортсмена-стрелка в ходе соревнований производят по 5 выстрелов по круговой мишени, где за попадание начисляют от 0 до 10 очков. Первый стрелок показал результаты 8, 9, 9, 8, 9 очков. Второй же спортсмен в своих попытках показал результаты 7, 10, 10, 6, 10. Средние арифметические этих рядов равны:

(8+9+9+8+9):5 = 43:5 = 8,6;

(7+10+10+6+10):5 = 43:5 = 8,6.

Получается, что в среднем оба стрелка стреляют одинаково точно, однако первый спортсмен демонстрирует более стабильные результаты. У его выборки размах равен

9 – 8 = 1,

в то время как размах выборки второго спортсмена равен

10 – 6 = 4.

Размах выборки может быть очень важен в метеорологии. Например, в Алма-Ате и Амстердаме средняя температура в течение года почти одинакова и составляет 10°С. Однако в Алма-Ате в январе и феврале иногда фиксируются температуры ниже -30°С, в то время как в Амстердаме за всю историю наблюдений она никогда не падала ниже -20°С.

Мода выборки

Иногда важно знать не среднее арифметическое выборки, а то, какая из ее вариант встречается наиболее часто. Так, при управлении магазином одежды менеджеру не важен средний размер продаваемых футболок, а необходима информация о том, какие размеры наиболее популярны. Для этого используется такой показатель, как мода выборки.

8 moda vyborki

В примере с математическим тестом сразу 3 ученика набрали по 13 баллов, а частота всех других вариант не превысила 2, поэтому мода выборки равна 13. Возможна ситуация, когда в ряде есть сразу две или более вариант, которые встречаются одинаково часто и чаще остальных вариант. Например, в ряде

1, 2, 3, 3, 3, 4, 5, 5, 5

варианты 3 и 5 встречаются по три раза. В таком случае ряд имеет сразу две моды – 3 и 5, а всю выборку именуют мультимодальной. Особо выделяется случай, когда в выборке все варианты встречаются с одинаковой частотой:

6, 6, 7, 7, 8, 8.

Здесь числа 6, 7 и 8 встречаются одинаково часто (по два раза), а другие варианты отсутствуют. В таких случаях говорят, что ряд не имеет моды.

Медиана выборки

Иногда, например, при расчете средней зарплаты, среднее арифметическое не вполне адекватно отражает ситуацию. Это происходит из-за наличия в выборке чисел, очень сильно отличающихся от среднего. Так, из-за огромных зарплат некоторых начальников большинство рядовых сотрудников компаний обнаруживают, что их зарплата ниже средней. В таких случаях целесообразно использовать такую характеристику, как медиану ряда. Это такое значение, которое делит ряд данных пополам. В упорядоченном ряде 2, 3, 6, 8, 8, 12, 15, 15, 18, 19, 25 медианой будет равна 12, так как именно она находится в середине ряда:

9 obem vyborki

Однако таким образом можно найти только медиану ряда, в котором находится нечетное количество чисел. Если же их количество четное, то за медиану условно принимают среднее арифметическое двух средних чисел. Так, для ряда 2, 3, 6, 8, 8, 12, 15, 15, 18, 19, 25, 30, содержащего 12 чисел, медиана будет равна среднему значению 12 и 15, которые занимают 6-ое и 7-ое место в ряду:

10 mediana

11 nechetnoe kolichestvo

Вернемся к примеру с математическим тестом в школе. Так как его сдавали 20 учеников, а 20 – четное число, то для расчета медианы следует найти среднее арифметическое 10-ого и 11-ого числа в упорядоченном ряде

12, 12, 13, 13, 13, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 24, 25, 25.

Эти места занимают числа 17 и 17 (выделены жирным шрифтом). Медиана ряда будет равна

(17+17):2 = 34:2 = 17.

Три приведенные основные статистические характеристики выборки, а именно среднее арифметическое, мода и медиана, называются мерами центральной тенденции. Они позволяют одним числом указать значение, относительно которого группируются все числа ряда.

Рассмотрим для наглядности ещё один пример. Врач в ходе диспансеризации измерил вес мальчиков в классе. В результате он получил 10 значений (в кг):

39, 41, 67, 36, 60, 58, 46, 44, 39, 69.

Найдем среднее арифметическое, размах, моду и медиану для этого ряда.

Решение. Сначала перепишем ряд в упорядоченном виде:

36, 39, 39, 41, 44, 46, 58, 60, 67, 69.

Так как в ряде 10 чисел, то объем выборки равен 10. Найдем среднее арифметическое. Для этого сложим все числа в ряде и поделим их на объем выборки (то есть на 10):

(36+39+39+41+44+46+58+60+67+69):10 =

= 499:10 = 49,9 кг.

Размах выборки равен разнице между наибольшей и наименьшей вариантой в ней. Самый тяжелый мальчик весит 69 кг, а самый легкий – 36 кг, а потому размах ряда равен

69 – 36 = 33 кг.

В упорядоченном ряде только одно число, 39, встречается дважды, а все остальные числа встречаются по одному разу. Поэтому мода ряда будет равна 39 кг.

В выборке 10 чисел, а это четное число. Поэтому для нахождения медианы надо найти два средних по счету значение найти их среднее. На 5-ом и 6-ом месте в ряде находятся числа 44 и 46. Их среднее арифметическое равно

(44+46):2 = 90:2 = 45 кг.

Поэтому и медиана ряда будет равна 45 кг.

Ошибки в статистике

Статистика является очень мощным инструментом для исследований во всех областях человеческой деятельности. Однако иногда ее иронично называют самой точной из лженаук. Известно и ещё одно высказывание, приписываемое политику Дизраэли, согласно которому существует просто ложь, наглая ложь и статистика. С чем же связана такая репутация этой дисциплины?

Дело в том, что некоторые люди и организации часто манипулируют данными статистики, чтобы убедить других в своей правоте или преимуществах товара, которые они продают. Требуются определенные навыки, чтобы правильно пользоваться статистикой. Одна из самых распространенных ошибок – это неправильный выбор выборки.

В 1936 году перед президентскими выборами в США был проведен телефонный опрос, который показал, что с большим преимуществом победу должен одержать Альфред Лендон. Однако на выборах Франклин Рузвельт набрал почти вдвое больше голосов. Ошибка была связана с тем, что в те годы телефон могли позволить себе только богатые люди, которые в большинстве своем поддерживали Лендона. Однако бедные люди (а их, конечно же, больше, чем богатых) голосовали за Рузвельта.

Ещё один пример – это агитация в конце XIX века в США к службе на флоте. Пропагандисты в своей рекламе указывали, что, согласно статистике, смертность на флоте во время войны (испано-американской) составляет 0,09%, в то время как среди населения Нью-Йорка она равнялась 0,16%. Получалось, что служить на флоте в военное время безопаснее, чем жить мирной жизнью. Однако на самом деле причина таких цифр заключается в том, что во флот всегда отбирали молодых мужчин с хорошим здоровьем, которые не могли умереть от «старческих» болезней, в то время как в население Нью-Йорка входят больные и старые люди.

При указании среднего значения исследователь может использовать разные характеристики – среднее арифметическое, медиана, мода. При этом почти всегда среднее арифметическое несколько больше медианы. Именно поэтому большинство людей, узнающих о средней зарплате в стране, удивляются, так как они столько не зарабатывают. Правильнее ориентироваться на медианную зарплату.

Ну и наконец, нельзя забывать, что любая статистика может показать только корреляцию между двумя величинами, но это не всегда означает причинно-следственную связь. Так, известно, что чем больше в городе продается мороженого, тем больше в это же время людей тонет на пляжах. Означает ли это, что поедание мороженого увеличивает риск во время плавания? Нет. Дело в том, что оба этих показателя, продажи мороженого и количество утонувших, зависят от третьей величины – температуры в городе. Чем жарче на улице, тем большее количество людей ходят на пляж и тем больше мороженого продается в магазинах.


Элементы статистики  Таблицы, полигон, гистограмма частот

Видео: Элементы статистики Таблицы, полигон, гистограмма частот

Содержание

  • Типы частот
  • Шаги по составлению таблицы распределения частот
  • Шаг 1
  • Шаг 2
  • Шаг 3
  • Шаг 4
  • Шаг 5
  • Шаг 6
  • Шаг 7
  • Шаг 8
  • Шаг 9
  • Шаг 10
  • Пример построения стола
  • Упражнение решено
  • Ссылки

А Распределение частоты В статистике это относится к тенденции, за которой следуют данные, организованные в группы, категории или классы, когда каждому присваивается номер, называемый частотой, который указывает, сколько данных находится в каждой группе.

Как правило, наблюдается, что эти частоты распределяются вокруг центральной группы: группы с наибольшим количеством данных.

Группы, которые находятся выше или ниже этой центральной категории, постепенно уменьшают свою частоту, становясь очень маленькими или незначительными для категорий, наиболее удаленных от категории с более высокой частотой.

Чтобы узнать частотное распределение набора данных, сначала создайте категории, а затем составьте таблицу частот. Визуальное представление частотной таблицы называется гистограммой.

Типы частот

Есть несколько типов частот:

1.- Абсолютная частота: он самый простой, и из него строятся остальные. Он просто состоит из общего количества данных, соответствующих категории.

2.- Относительная частота: абсолютная частота каждой категории, деленная на общее количество данных.

3.- Частота в процентах: это та же относительная частота, но умноженная на сто, указывающая процент появления значений в каждой категории.

4.- Накопленная частота: это сумма абсолютных частот категорий ниже или равных рассматриваемой категории.

5.- Кумулятивная частота в процентах: это сумма процентных частот категорий ниже или равных наблюдаемой категории.

Шаги по составлению таблицы распределения частот

Чтобы построить таблицу частотного распределения, необходимо выполнить несколько шагов.

Прежде всего, должны быть доступны данные, которые могут быть разного типа: возраст детей в школе, количество правильных ответов в тесте, рост сотрудников компании, длина листов. дерева и др.

Шаг 1

Определите минимальное значение xmin и максимальное значение xmax в наборе данных Икс.

Шаг 2

Рассчитайте диапазон R, который определяется как разница между максимальным значением минус минимальное значение: R = xmax — xmin.

Шаг 3

Определить количество k интервалов или классов, которые можно задать заранее. Номер k определит количество строк в частотной таблице.

Шаг 4

Если количество интервалов k ранее не указывалось, то оно должно быть установлено в соответствии со следующими руководящими принципами: наименьшее количество рекомендуемых категорий — 5, но оно может быть больше, и в этом случае предпочтительнее выбрать нечетное число.

Шаг 5

Есть формула, которая называется правило осетров что дает нам количество интервалов k рекомендуется для набора, состоящего из N данные:

k = [1 + 3,322⋅Log N]

Поскольку результат внутри скобки обязательно будет действительным числом, скобка говорит нам, что его необходимо округлить до ближайшего нечетного целого числа, чтобы получить целое значение k.

Шаг 6

Амплитуда рассчитывается К каждого интервала (классов или категорий), беря частное между диапазоном р и количество интервалов k: А = R / k. Если исходные данные являются целыми числами, то A округляется до ближайшего целого числа, в противном случае его реальное значение остается.

Шаг 7

Определите нижние пределы Li и верхние пределы Ls для каждого интервала или класса. Первый интервал или самый низкий класс имеет нижний предел Li наименьшего из исходных данных, то есть Li = xmin, а верхний предел — минимальное значение плюс ширина интервала, то есть Ls = xmin + A.

Шаг 8

Последовательные интервалы:

[xmin, xmin + A), [ xmin + A, xmin + 2⋅A), …, [ xmin + (k-1) A, xmin + k⋅A).

Шаг 9

Оценка класса Xc определяется для каждого интервала по следующей формуле: Xc = (Ls — Li) / 2 + Li.

Шаг 10

Размещается заголовок таблицы частот, который состоит из строки со следующими метками: классы, метка класса Xc, частота f, относительная частота fr (или процентная частота f%) и накопленная частота F (или накопленная частота в процентах). F%).

У нас будет следующее:

Первый столбец частотной таблицы— Содержит интервалы или классы, на которые были разделены данные.

Второй столбец: содержит метку класса (или среднюю точку) каждого подынтервала.

Третий столбец: содержит абсолютную частоту f каждого класса или категории.

Четвертая и пятая колонки: помещаются значения, соответствующие относительной частоте (или проценту) и накопленной частоте F (или накопленному проценту).

Пример построения стола

Следующие данные соответствуют правильным ответам анкеты из 100 вопросов, примененной к группе из 52 студентов:

65, 70, 70, 74, 61, 77, 85, 36, 70, 62, 62, 77, 80, 89, 39, 43, 70, 77, 79, 77, 88, 52, 85, 1, 55, 47, 73, 63, 59, 51, 56, 65, 85, 79, 53, 79, 3, 71, 7, 54, 8, 61, 61, 77, 67, 58, 61, 45, 48, 64, 15, 50.

Мы будем следовать шагам, чтобы построить таблицу частот:

1.- Минимальное и максимальное значения Xmin = 1, Xmax = 89.

2.- Диапазон: R = 89 — 1 = 88

3.- Определение количества интервалов по правило осетров: k = [1 + 3,322⋅Журнал 52] = [6,70] = 7.

4.- Расчет ширины интервалов: A = R / k = 88/7 = 12,57 ≈ 13.

5.- Интервалы: [1,14), [14, 27), [27, 40), [40, 53), [53, 66), [66, 79), [79, 92 ».

6.- Определяются оценки классов каждого интервала: 8, 21, 34, 47, 60, 73 и 86.

7.- Таблица сделана:

График частот для различных интервалов или категорий показан на рисунке 1.

Упражнение решено

Учитель записывает процент достижений целей по курсу физики для каждого студента. Однако оценка для каждого студента, хотя и зависит от процента достигнутых целей, ограничена определенными категориями, ранее установленными в правилах обучения университета.

Давайте рассмотрим конкретный случай: в разделе физики у нас есть процент достижений целей для каждого из 52 студентов:

15, 50, 62, 58, 51, 61, 62, 74, 65, 79, 59, 56, 77, 8, 55, 70, 7, 36, 79, 61, 77, 52, 35, 43, 61, 65, 70, 89, 64, 54, 85, 61, 39, 63, 70, 85, 70, 79, 48, 77, 73, 67, 45, 77, 71, 53, 88, 85, 47, 73, 77, 80.

В этом примере категории или классы соответствуют итоговой оценке, которая выставляется в соответствии с процентной долей x достигнутых целей:

1.- Очень плохо: 1 ≤ x <30

2.- Недостаточно: 30 ≤ x <50

3.- Достаточно: 50 ≤ x <70

4.- Хорошо: 70 ≤ x <85

5.- Отлично: 85 ≤ x ≤ 100

Чтобы составить частотную таблицу, данные упорядочиваются от наименьшего к наибольшему, и подсчитывается количество данных, соответствующих каждой категории, что и будет оценкой, которую студент получит за курс физики:

1.- Очень плохо: 4 ученика.

2.- Плохо: 6 учеников.

3.- Достаточно: 20 учеников.

4.- Хорошо: 17 учеников.

5.- Отлично: 5 учеников.

Ниже представлена ​​гистограмма оценок, построенная на основе приведенной выше таблицы:

Ссылки

  1. Беренсон, М. 1985. Статистика для управления и экономики. Interamericana S.A.
  2. Канавос, Г. 1988. Вероятность и статистика: приложения и методы. Макгроу Хилл.
  3. Деворе, Дж. 2012. Вероятность и статистика для техники и науки. 8-е. Издание. Cengage.
  4. Левин, Р. 1988. Статистика для администраторов. 2-й. Издание. Прентис Холл.
  5. Шпигель, М. 2009. Статистика. Серия Шаум. 4-й Издание. Макгроу Хилл.
  6. Уолпол, Р. 2007. Вероятность и статистика для инженерии и науки. Пирсон.

Мода и медиана

Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду.

Обратимся снова к нашему примеру со сборной по футболу:

Чему в данном примере равна мода? Какое число наиболее часто встречается в этой выборке?

Все верно, это число ( displaystyle 181), так как два игрока имеют рост ( displaystyle 181) см; рост же остальных игроков не повторяется.

Тут все должно быть ясно и понятно, да и слово знакомое, правда?

Перейдем к медиане, ты ее должен знать из курса геометрии. Но мне не сложно напомнить, что в геометрии медиана (в переводе с латинского- «средняя») — отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны.

Ключевое слово – СЕРЕДИНА. Если ты знал это определение, то тебе легко будет запомнить, что такое медиана в статистике.

Медианой ряда чисел с нечетным числом членов называется число, которое окажется посередине, если этот ряд упорядочить (проранжировать, т.е. расположить значения в порядке убывания или возрастания).

Медианой ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине, если этот ряд упорядочить.

Ну что, вернемся к нашей выборке футболистов?

Ты заметил в определении медианы важный момент, который нам еще здесь не встречался? Конечно, «если этот ряд упорядочить»!

Для того, чтобы в ряду чисел был порядок, можно расположить значения роста футболистов как в порядке убывания, так и в порядке возрастания. Мне удобней выстроить этот ряд в порядке возрастания (от самого маленького к самому большому).

Вот, что у меня получилось:

Так, ряд упорядочили, какой еще есть важный момент в определении медианы? Правильно, четное и нечетное количество членов в выборке.

Заметил, что для четного и нечетного количества даже определения отличаются? Да, ты прав, не заметить – сложно. А раз так, то нам надо определиться, четное у нас количество игроков в нашей выборке или нечетное?

Все верно – игроков ( displaystyle 11), значит, количество нечетное! Теперь можем применять к нашей выборке менее заковыристое определение медианы для нечетного количества членов в выборке.

Ищем число, которое оказалось посередине в нашем упорядоченном ряду:

Ну вот, чисел у нас ( displaystyle 11), значит, по краям остается по пять чисел, а рост ( displaystyle 183) см будет медианой в нашей выборке.

Не так уж и сложно, правда?

Частота и относительная частота

Частота представляет собой число повторений, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.

То есть частота определяет то, как часто повторяется та или иная величина в выборке.

Разберемся на нашем примере с футболистами. Перед нами вот такой вот упорядоченный ряд:

Частота – это число повторений какой-либо величины параметра. В нашем случае, это можно считать вот так. Сколько игроков имеет рост ( 176)?

Все верно, один игрок. Таким образом, частота встречи игрока с ростом ( 176) в нашей выборке равна ( 1).

Сколько игроков имеет рост ( 178)? Да, опять же один игрок. Частота встречи игрока с ростом ( 178) в нашей выборке равна ( 1).

Задавая такие вопросы и отвечая на них, можно составить вот такую табличку:

Ну вот, все довольно просто. Помни, что сумма частот должна равняться количеству элементов в выборке (объему выборки).

То есть в нашем примере: ( 1+1+1+2+1+1+1+1+1+1=11)

Перейдем к следующей характеристике – относительная частота.

Относительная частота – это отношение частоты к общему числу данных в ряду. Как правило, относительная частота выражается в процентах.

Обратимся опять к нашему примеру с футболистами. Частоты для каждого значения мы рассчитали, общее количество данных в ряду мы тоже знаем ( left( n=11 right)) .

Рассчитываем относительную частоту для каждого значения роста и получаем вот такую табличку:

А теперь сам составь таблицы частот и относительных частот для примера с 9-классниками, решающими задачи.

Рядом данных называют результаты измерения, перечисленные в порядке их получения. Каждый из результатов называется вариантой измерения.
Например, результаты написания контрольной работы по математике для класса из 20 человек можно представить в виде следующего ряда данных: 3, 4, 4, 5, 3, 4, 3, 3, 3, 5, 5, 4, 5, 4, 5, 3, 3, 3, 4, 3. Эту же информацию можно представить в
виде таблицы:
text_zad_014
Кратность варианты — количество её повторений в ряду данных. В нашем ряду оценка «3» появилась 9 раз, поэтому её кратность равна 9.
Понятно, что таблица распределения отображает данные более наглядно и компактно.
Числовые характеристики данных
Объём измерения — количество всех данных этого измерения. Одна из наиболее важных характеристик варианты — это её частота. Частота варианты показывает долю этой
варианты в ряду распределения. Она вычисляется по формуле:

частота =кратность варианты/объём измерения

В нашем примере частота варианты «4» равна displaystyle frac{6}{20}=0,3.
Это означает, что оценка 4 составляет 0,3 всех полученных оценок.
Размах измерения — разность между максимальной и минимальной вариантами этого измерения. В нашем примере максимальная варианта равна 5, минимальная — 3, значит, размах равен 5-3=2.
Мода измерения — варианта, которая в измерении встретилась чаще других. В приведённом выше примере чаще всех встретилась оценка 3, значит, она и будет модой этого распределения.
Медиана распределения — это центральное число в упорядоченном ряду данных, если в ряду нечётное количество чисел, или полусумма двух центральных, если в ряду чётное количество чисел.
Например, для ряда распределения 1, 2, 3, 6, 9, объём измерения которого равен 5, медианой распределения будет третье число этого ряда, то есть 3.
Для ряда распределения 7, 3, 2, 1 с объёмом измерения, равным 4, медианой будет полусумма двух центральных чисел данного ряда, то есть число, равное displaystyle frac{2+3}{2}=2,5.
Для нахождения медианы распределения необходимо
1. Упорядочить ряд распределения по возрастанию или по убыванию: a_{1},a_{2},... .
2. Если объём измерения нечётный, то есть 2n+1, то получим следующую ситуацию:
text_zad_016
В этом случае медианой является число a_{n+1}.
3. Если объём измерения чётный, то есть 2n, то имеем
text_zad_018
В этом случае медианой является число — displaystyle frac{a_{n}+a_{n+1}}{2}.
Среднее ряда (среднее арифметическое) — сумма всех чисел ряда, делённая на их количество. Если имеется таблица распределения, то можно
1) умножить каждую варианту на её кратность;
2) просуммировать полученные значения;
3) разделить результат на объём измерения. Например, для ряда распределения 2, 4, б, 8, у которого объём измерения равен 4, среднее значение равно displaystyle frac{2+4+6+8}{4}=frac{20}{4}=5.
Задача 1. Даны результаты измерения веса школьников 9 класса: 55, 53, 56, 48, 45, 56, 49, 52, 53, 49, 50, 56, 45, 52, 56, 45, 45, 48, 55, 52, 43, 48, 52, 49, 50, 45, 48, 45, 50, 53.
а) Постройте таблицу распределения данных.
б) Найдите объём измерения.
в) Найдите размах ряда.
г) Найдите частоту появления каждого веса в указанном ряду.
д) Найдите медиану, моду и среднее указанного ряда.
Решение.
а) Наименьшее число в ряду — 43, оно встречается в ряду один раз, значит, его кратность равна 1. Следующее по величине — число 45, оно встречается шесть раз, значит, его кратность равна 6. Далее 48, оно встречалось 4 раза, значит, его кратность равна 4.
Продолжая аналогично, заполним таблицу:
text_zad_020
б) Найти объём измерения можем несколькими способами.
1- й способ.
Посчитаем количество чисел в ряду, получим 30.
2- й способ.
Сложим кратности всех вариант: 1+6+4+3+3+4+3+2+4=30.
Ответ: 30.
в) Наибольшее значение в ряду 56, наименьшее — 43, значит, размах равен 56-43=13.
Ответ: 13.
г) Для каждой варианты делим её кратность на объём измерения (на 30), результаты пишем в таблицу.
text_zad_022
д) В данном ряду 30 чисел, значит, медиана равна полусумме 15-го и 16-го чисел в упорядоченном ряду.
text_zad_024
Как видно из такой записи чисел, от 43 до 49 — 14 чисел, значит, 15-ое и 16-ое числа равны 50, и значит, медиана равна displaystyle frac{50+50}{2}=50.
Мода — то значение, которое встречается чаще всех, то есть то, у которого больше кратность. Из таблицы распределения находим, что наибольшую кратность имеет число 45, значит, мода равна 45.
Для нахождения среднего необходимо найти сумму всех чисел ряда и разделить ее на количество этих чисел. Сумму можно найти просто складывая подряд все числа ряда. А можно поступить иначе: каждую варианту умножить на её кратность и сложить полученные результаты. Имеем:
3cdot 1+45cdot 6+48cdot 4+49cdot 3+50cdot 3+52cdot 4+53cdot 3+55cdot 2+56cdot 4=1503.
Осталось разделить полученную сумму на количество всех чисел: displaystyle frac{1503}{30}=50,1.
Ответ: медиана: 50; мода: 45; среднее: 50,1.
Задача 2. Пятерых учеников попросили подсчитать, сколько времени (в минутах) они тратят на дорогу от дома до школы. Получили следующие результаты: 5,15,10,15,20.
1) На сколько среднее значение этого ряда меньше его размаха?
2) На сколько мода этого ряда больше медианы?
3) Найдите процентную частоту значения 10.
Решение.
1) Среднее ряда: displaystyle frac{5+15+10+15+20}{5}=13, размах: 20-5=15. Искомое значение равно 15-13=2.
Ответ: 2.
2) Найдём медиану. Расположим числа в порядке возрастания: 5, 10, 15, 15, 20. Медианой этого набора будет третье число в упорядоченном ряду, то есть 15.
В данном ряду число 15 встретилось 2 раза, остальные — по одному разу. Мода ряда равна 15. Мода и медиана этого ряда равны, значит, ответ 0.
Ответ: 0.
3) Кратность значения 10 равна 1, объём измерения равен 5 (всего 5 чисел). Частота значения 10 равна displaystyle frac{1}{5}=0,2, процентная частота равна displaystyle 0,2cdot 100%=20%.
Ответ: 20.
Задача 3. Имеется 4 группы породистых котов. Для некоторого соревнования отбирают котов с длиной шерсти не менее 8 см.
Известно следующее:
1) в первой группе наибольшая длина шерсти равна 10 см;
2) во второй группе средняя длина шерсти равна 8 см;
3) в третьей группе мода длины шерсти равна 8 см;
4) в четвёртой группе медиана длины шерсти равна 9 см.
В какой из групп хотя бы половина котов гарантированно подходит по длине шерсти?
Решение.
1) Из того, что наибольшая длина шерсти равна 10 см, не следует никакой другой информации, то есть ничего не можем сказать про остальных котов этой группы.
2) Рассмотрим для примера группу котов с длиной шерсти 7 см, 7 см и 10 см. Среднее равно displaystyle frac{7+7+10}{3}=8, но в этой группе нет половины котов, удовлетворяющих требованиям.
3) Рассмотрим для примера группу котов с шерстью длиной 8 см, 8 см, 7 см, б см, 5 см. Мода равна 8, но опять же нет половины котов, удовлетворяющих требованиям.
4) Если медиана равна 9 см, то есть половина котов с шерстью меньшей или равной длины и половина — с большей или равной длины. Значит, в этой группе найдётся половина котов с шерстью длиной не менее 8 см.
Ответ: 4.
Задача 4. По статистике автозавода из 1000 машин в среднем 20 бракованных. Сколько бракованных машин следует ожидать, если завод собирается выпустить 300 500 машин?
Решение.
Если из 1000 машин 20 бракованных, то частота появления бракованной машины равна displaystyle frac{20}{1000}=0,02. То есть доля бракованных машин будет равна 0,02, тогда из 300 500 машин будет displaystyle 300500cdot 0,02=6010 бракованных.
Ответ: 6010.

Как
правило, анализ данных начинается с
изучения того, как часто встречаются
те или иные значения интересующего
исследователя признака (переменной) в
имеющемся множестве наблюдений. Для
этого строятся таблицы
и графики распределения частот. Нередко
они являются основой для получения
ценных содержательных выводов
исследования.

Если
признак принимает всего лишь несколько
возможных значений (до 10-15), то таблица
распределения частот показывает частоту
встречаемости каждого значения признака.
Если указывается, сколько раз встречается
каждое значение признака, то это –
таблица абсолютных
частот
распределения, если указывается доля
наблюдений, приходящихся на то или иное
значение признака, то говорят об
относительных
частотах
распределения.

Пример.
Предположим,
исследователя в нашем примере (табл.
4.1) интересует, как распределяются ответы
всех учеников до проведения тренинга.
Для этого он подсчитает частоту
встречаемости каждого из ответов и
составит таблицу распределения частот
(табл. 4.2). Таблица показывает, что чаще
встречаются средние значения выраженности
признака и реже – крайние значения.

Таблица
4.2

Таблица
распределения частот

Значение

fa

(абсолютная

частота)

fo

(относительная
частота)

fcum

(накопленная

частота)

5

3

0,05

1,00

4

12

0,20

0,95

3

21

0,35

0,75

2

15

0,25

0,40

1

9

0,15

0,15

∑ (сумма):

60

1

Абсолютная
и относительная частоты связаны
соотношением:

где
fa

абсолютная частота некоторого значения
признака, N

число
наблюдений, fо

относительная частота этого значения
признака. Очевидно, что сумма всех
абсолютных частот равна числу наблюдений
– N,
а
сумма всех относительных частот равна
1. Нередко относительная частота
применяется для оценки вероятности
встречаемости значения.

Во
многих случаях признак может принимать
множество различных значений, например,
если мы измеряем время решения тестовой
задачи. В этом случае о распределении
признака позволяет судить таблица
сгруппированных частот, в
которых частоты группируются по разрядам
или интервалам значений признака.

Пример.
Предположим,
в группе испытуемых численностью 40
человек измерено время решения тестовой
задачи. Максимальное время составило
67 секунд, минимальное – 32 секунды.
Построение таблицы распределения частот
в этом случае производится поэтапно.

Построение
таблицы сгруппированных частот

  1. Определение
    размаха: 67 — 32 = 35.

  2. Выбор
    желаемого числа разрядов и интервала
    разрядов. Определяется произвольно.
    Обычное число разрядов – от 6 до 15.
    Удобным интервалом разрядов в нашем
    случае может быть 5. 35 делим на 5, получаем
    число разрядов – 7. Учитывая, что начинать
    лучше с 30 или с 31 и заканчивать на 69 или
    70, уточняем размах (70 – 30 = 40) и число
    разрядов (40 : 5 = 8).

  3. Определение
    границ разрядов. Если мы начнем с 30, то
    первый разряд будете 30 до 34, второй –
    с 35 до 49 и т. д., до восьмого – с 65 до 69.
    Границы соседних
    разрядов
    не должны совпадать!

  1. Подсчет
    частот встречаемости значений признака
    для каждого интервала.

Таблица
4.3 содержит результат подсчета
сгруппированных таким образом частот
по разрядам (интервалам) значений
признака – времени решения тестовой
задачи.

Таблица
4.3

Таблица
частот, сгруппированных по интервалам
времени

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти товар по коду почты
  • Разболтались ручки на межкомнатных дверях как исправить
  • Как найти товар по артикулу на озоне
  • Как найти владельца машины зная номер
  • Прожженный ламинат от кальяна как исправить