Как составить таблицу для графика функции парабола

Функция вида

y=ax2+bx+c

,  где (a), (b), (c) — реальные числа, (a)

 (0), называется квадратичной функцией.

Графиком квадратичной функции является парабола.

  Область определения функции (D(f)) — все действительные числа.

Рассмотрим для примера две квадратичные функции.

Пример 1.

y=x2−2x−1

 (рис. (1)).

Пример 2.

y=−2×2+4x

 (рис. (2)).

Область значений функции (E(f)) считывается с графика, она зависит от координаты (y), вершины параболы и направления ветвей параболы.
    (1) пример —

E(f)=[−2;+∞)

;
    (2) пример —

E(f)=(−∞;2]

.
 

Параметр (a) определяет направление ветвей параболы:
   если (a > 0), то ветви направлены вверх (см. пример (1));
   если (a < 0), то ветви направлены вниз (см. пример (2)).

Параметр (c) указывает, в какой точке парабола пересекает ось (Oy).

Чтобы построить график квадратичной функции, необходимо:

1) вычислить координаты вершины параболы:

x0=−b2aиy0

 — которую находят, подставив значение

x0

  в формулу функции;

2) отметить вершину параболы на координатной плоскости, провести ось симметрии параболы;

3) определить направление ветвей параболы;

4) отметить точку пересечения параболы с осью (Oy);

5) составить таблицу значений, выбрав необходимые значения аргумента (x).

Решив квадратное уравнение

ax2+bx+c=0

, получаем точки пересечения параболы с осью (Ox), или корни функции (если дискриминант (D > 0));

если (D < 0), то точек пересечения параболы с осью (Ox) не существует;

если (D = 0), то вершина параболы находится на оси (Ox).

Но не всегда точки пересечения с осью (Ox) являются рациональными числами; если невозможно точно вычислить корень из (D), то такие точки не используют для построения графика.

1.  Построй график функции

y=x2−2x−1

.

 x0=−b2a=22=1;y0=12−2⋅1−1=−2.

 Ветви параболы направлены вверх, т. к.

 (a = 1 > 0).

 Парабола пересекает ось (Oy) в точке ((0; -1)).

(x) (2) (3) (4)
(y) (-1) (2) (7)

Симметрично строим левую сторону параболы

teo2.bmp

Рис. (1). График функции

y=x2−2x−1

2.  Построй график функции

y=−2×2+4x

.

В данном случае легко вычислить корни:

−2×2+4x=0;x(−2x+4)=0;x=0,или−2x+4=0;x=2;x1=0;x2=2.

Координаты вершины параболы:

x0=−42⋅−2=1;y0=−2⋅12+4⋅1=2.

В таблице достаточно одного значения:

если (x = 3), то

Симметрично, если (x = -1),

то (y = -6)

teo.bmp

Рис. (2). График  функции

y=−2×2+4x

Функция вида y=ax^2+bx+c , где aneq 0 называется квадратичной функцией

График квадратичной функции – парабола

парабола, построение параболы, график парабола

Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА 

y=x^2, то есть a=1, b=0, c=0

Для построения заполняем таблицу, подставляя значения x в формулу:

parabola2

Отмечаем  точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х ( в данном случае шаг 1 ), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:

классическая парабола, парабола, построение параболы

Нетрудно заметить, что если мы возьмем случай a=-1, b=0, c=0, то есть y=-x^2, то мы получим параболу, симметричную y=x^2 относительно оси (ох). Убедиться  в этом несложно, заполнив аналогичную таблицу:

парабола, построение параболы

II СЛУЧАЙ,  «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать a=2, a=-3, a=0.5? Как изменится поведение параболы? При |a|>1 парабола  y=ax^2 изменит форму, она “похудеет” по сравнению с параболой y=x^2 (не верите – заполните соответствующую таблицу – и убедитесь сами):

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы y=x^2 (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях x  ордината  y  каждой точки умножилась на 4.  Это произойдет со всеми ключевыми точками исходной  таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при |a|<1 парабола y=ax^2  «станет шире»  параболы y=x^2:

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант, ветви вниз

Давайте подитожим:

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ  «С»

 Теперь давайте введем в игру c (то есть рассматриваем случай, когда cneq 0), будем рассматривать параболы вида y=ax^2+c. Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы y=ax^2 вдоль оси (oy) вверх или вниз в зависимости от знака c:

парабола, построение параболы, сдвиг параболы, ветви параболы, коэффициенты параболы, дискриминант

IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси (oy) и будет, наконец, “гулять” по всей координатной плоскости? Когда b перестанет быть равным 0.

Здесь для построения параболы y=ax^2+bx+c нам понадобится формула для вычисления вершины: x_o=frac{-b}{2a},   y_o=y(x_o).

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу y=ax^2, что уже нам по силам. Если  имеем дело со случаем a=1, то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с a=2, например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы y=x^2-4x-2:

x_o=frac{4}{2}=2,  y_o=(2)^2-4cdot 2 -2=-6. Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы y=x^2,  ведь a=1 в нашем случае.

парабола, построение параболы, ветви параболы, дискриминант

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку (0;c).  Действительно, подставив в формулу y=ax^2+bx+c x=0, получим, что y=c. То есть ордината точки пересечения параболы  с осью (оу), это c.   В нашем примере (выше), парабола пересекает ось ординат в точке -2, так как c=-2.

2) осью симметрии параболы является прямая x=frac{-b}{2a}, поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая y к 0, мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение ax^2+bx+c=0. В зависимости от дискриминанта, будем получать одну (D=0,  x=-frac{b}{2a}), две (D>0, x_{1,2}=frac{-bpmsqrt{b^2-4ac}}{2a}) или нИсколько (D<0) точек пересечения с осью (ох). В предыдущем примере у нас  корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения  с осью (ох) у нас будут (так как D>0), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана  в виде y=ax^2+bx+c

1) определяем направление ветвей ( а>0 – вверх, a<0 – вниз)

2) находим координаты вершины (x_o;y_o) параболы по формуле x_o=frac{-b}{2a},   y_o=y(x_o).

3) находим точку пересечения параболы с осью (оу) по свободному члену c, строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение c велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу y=ax^2. Если |a|>1, то парабола y=ax^2 становится у’же по сравнению с y=x^2, если |a|<1, то парабола расширяется по сравнению с y=x^2

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение ax^2+bx+c=0

Пример 1

алгоритм построения параболы, парабола

Пример  2

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

Замечание 1. Если же парабола изначально нам задана в виде y=a(x-m)^2+n, где m, n – некоторые числа (например, y=(x-5)^2-1), то построить ее будет еще легче, потому что нам уже заданы координаты вершины (m, n). Почему?

Возьмем квадратный трехчлен ax^2+bx+c и выделим в нем полный квадрат: ax^2+bx+c=a(x^2+frac{b}{a}x+frac{c}{a})=a((x^2+2frac{b}{2a}x+frac{b^2}{4a^2})-frac{b^2}{4a^2}+frac{c}{a})=a(x+frac{b}{2a})^2-frac{b^2}{4a}+c. Посмотрите, вот мы и получили, что m=frac{-b}{2a}, n=-frac{b^2}{4a}+c=y(frac{-b}{2a}). Мы с вами ранее называли   вершину параболы (x_o; y_o), то есть теперь x_o=m, y_o=n.

Например,  y=-frac{1}{3}{(x+2)}^2+6. Отмечаем на плоскости вершину параболы (-2; 6), понимаем, что ветви направлены вниз, парабола расширена (относительно y=x^2). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

парабола с ветвями вниз

Замечание 2. Если парабола задана в виде, подобном этому y=x(x-4) (то есть y представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае  – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют
функцией в математике.

Если вы прочно закрепите общие знания о функции (способы задания, понятие графика)
дальнейшее изучение других
видов функций будет даваться значительно легче.

Что называют квадратичной функцией

Запомните!
!

Квадратичная функция — это функция вида

y = ax2 + bx + c,

где a,
b и с — заданные числа.

Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень,
в которой стоит «x» — это «2»,
то перед нами квадратичная функция.

Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты «a»,
«b» и «с».

Квадратичная функция Коэффициенты
y = 2x2 − 7x + 9

  • a = 2
  • b = −7
  • с = 9
y = 3x2 − 1

  • a = 3
  • b = 0
  • с = −1
y = −3x2 + 2x

  • a = −3
  • b = 2
  • с = 0

Как построить график квадратичной функции

Запомните!
!

График квадратичной функции называют параболой.

Парабола выглядит следующим образом.

парабола - график квадратичной функции

Также парабола может быть перевернутой.

перевернутая парабола

Существует четкий алгоритм действий при построении графика квадратичной функции.
Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.

Чтобы было проще понять этот алгоритм, сразу разберем его на примере.

Построим график квадратичной функции «y = x2 −7x + 10».

  1. Направление ветвей параболы

    Запомните!
    !

    Если «a > 0», то ветви направлены вверх.
    парабола маленькая

    Если «a < 0», то ветви направлены вниз.
    перевернутая парабола маленькая

    В нашей функции «a = 1», это означает, что ветви параболы направлены вверх.
    перевернутая парабола мальнькая

  2. Координаты вершины параболы

    Запомните!
    !

    Чтобы найти «x0»
    (координата вершины по оси «Ox»)
    нужно использовать формулу:

    Найдем «x0» для нашей функции «y = x2 −7x + 10».

    Теперь нам нужно найти «y0»
    (координату вершины по оси «Oy»).
    Для этого нужно подставить найденное значение «x0» в исходную функцию.
    Вспомнить, как найти значение функции можно в уроке
    «Как решать задачи на функцию» в подразделе
    «Как получить значение функции».

    y0(3,5) =
    (3,5)2 − 7 ·3,5 + 10 = 12,25 − 24,5 + 10 =

    −12,25 + 10 = −2,25

    Выпишем полученные координаты вершины параболы.

    (·) A (3,5; −2,25) — вершина параболы.

    Отметим вершину параболы на системе координат.
    Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график
    относительно оси «Oy».

    вершина параболы

  3. Нули функции

    Для начала давайте разберемся, что называют нулями функции.

    Запомните!
    !

    Нули функции — это точки пересечения графика функции с осью «Ox»
    (осью абсцисс).

    Наглядно нули функции на графике выглядят так:

    нули функции

    Свое название нули функции получили из-за того, что у этих точек координата
    по оси «Oy» равна нулю.

    Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.

    Запомните!
    !

    Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо
    «y = 0».

    Подставим в заданную функцию «y = x2 −7x + 10»
    вместо «y = 0» и решим полученное
    квадратное уравнение
    относительно
    «x» .

    0 = x2 −7x + 10
    x2 −7x + 10 = 0

    x1;2 =

    7 ±
    49 − 4 · 1 · 10
    2 · 1

    x1;2 =

    x1;2 =

    x1 =

    x2 =

    x1 =

    x2 =

    x1 = 5

    x2 = 2

    Мы получили два корня в уравнении, значит, у нас две точки пересечения
    с осью «Ox».
    Назовем эти точки и выпишем их координаты.

    • (·) B (5; 0)
    • (·) C (2; 0)

    Отметим полученные точки («нули функции») на системе координат.

    отмечаем нули функции на системе координат

  4. Дополнительные точки для построения графика

    Возьмем четыре произвольные числовые значения для «x».
    Целесообразно брать целые числовые значения на оси «Ox»,
    которые наиболее близки к оси
    симметрии. Числа запишем в таблицу в порядке возрастания.

    x 1 3 4 6
    y

    Для каждого выбранного значения «x»
    рассчитаем «y».

    • y(1) = 12 − 7 · 1 + 10 = 1 − 7 + 10 =
      4
    • y(3) = 32 − 7 · 3 + 10 = 9 − 21 + 10 =
      −2

    • y(4) = 42 − 7 · 4 + 10 = 16 − 28 + 10 =
      −2
    • y(6) = 62 − 7 · 6 + 10 = 36 − 42 + 10 =
      4

    Запишем полученные результаты в таблицу.

    x 1 3 4 6
    y 4 −2 −2 4

    Отметим полученные точки графика на системе координат (зеленые точки).

    дополнительные точки для построения

    Теперь мы готовы построить график.
    На забудьте после построения подписать график функции.

    график параболы

Краткий пример построения параболы

Рассмотрим другой пример построения графика квадратичной функции.
Только теперь запишем алгоритм построения коротко без подробностей.

Пусть требуется построить график функции
«y = −3x2 − 6x − 4».

  1. Направление ветвей параболы
  2. «a = −3» — ветви параболы направлены вниз.
    перевернутая парабола маленькая

  3. Координаты вершины параболы

    x0 =
    x0 = =

    = −1

    y0(−1) = (−3) · (−1)2 − 6 · (−1) − 4 =
    −3 · 1 + 6 − 4 = −1

    (·) A (−1; −1)

    — вершина параболы.

    вершина параболы -3x^2 - 6x - 4

  4. Нули функции

    Точки пересечения с осью «Ox» (y = 0).

    0 = −3x2 − 6x − 4

    −3x2 − 6x − 4 = 0 |·(−1)

    3x2 + 6x + 4 = 0

    x1;2 =

    −6 ±
    62 − 4 · 3 · 4
    2 · 1

    x1;2 =

    x1;2 =


    Ответ: нет действительных корней.

    Так как корней нет, значит, график функции не пересекает ось
    «Ox».

  5. Вспомогательные точки для: «x = −3»;
    «x = −2»;
    «x = 0»;
    «x = 1». Подставим в исходную функцию
    «y = −3x2 − 6x − 4».

    • y(−3) = −3 · (−3)2 − 6 · (−3) − 4
      = −3 · 9 + 18 − 4 = −27 + 14 = −13
    • y(−2) = −3 · (−2)2 − 6 · (−2) − 4
      = −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4

    • y(0) = −3 · 02 − 6 · 0 − 4
      = −4
    • y(1) = −3 · 12 − 6 · 1 − 4
      = −3 −6 − 4 = −13
    x −3 −2 0 1
    y −13 −4 −4 −13

Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые
не выходят за масштаб нашей системы координат, то есть точки
«(−2; −4)» и «(0; −4)».
Построим и подпишем график функции.

график функции -3x^2 - 6x - 4


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Тема 5.

Построение графика квадратичной функции с помощью преобразований.

Рассмотрим частные случаи

y = ax2 + n и y = a(xm)2.

В одной системе координат построим графики функцийy=12×2 и y=12×2+5.

Составим таблицу значений функции: y=12×2

x

-3

-2

-1

0

1

2

3

y

4,5

2

0,5

0

0,5

2

4,5

Чтобы получить таблицу значений для функции y=12×2+5 для тех же значений аргумента, необходимо к найденным значениям функции y=12×2 прибавить 5.

x

-3

-2

-1

0

1

2

3

y

9,5

7

5,5

5

5,5

7

9,5

Получается, что каждую точку второго графика можно получить из некоторой точки первого графика с помощью параллельного переноса на 5 единиц вверх вдоль оси y.

График функции y=12×2+5 – парабола, полученная в результате сдвига вверх графика функции y=12×2.

График функции y = ax2 + n – парабола, которую можно получить из графика функции y = ax2 с помощью параллельного переноса вдоль оси y на n единиц вверх, если n > 0 или на – n единиц вниз, если n < 0.

В одной системе координат построим графики функций y=12×2 и y=12x-52. Составим таблицы значений для этих функций.

y=12×2

x

-3

-2

-1

0

1

2

3

y

4,5

2

0,5

0

0,5

2

4,5

y=12x-52

x

2

3

4

5

6

7

8

y

4,5

2

0,5

0

0,5

2

4,5

Значит, если переместить каждую точку графика y=12×2 вправо на 5 единиц, то получим соответствующую точку графика функции y=12x-52. Иначе говоря, каждую точку второго графика можно получить из соответствующей точки первого графика с помощью параллельного переноса на 5 единиц вправо вдоль оси x.

График функции y=12x-52 – парабола, полученная y=12x-52 в результате сдвига вправо графика функции y=12×2.

График функции y = a(xm)2 – парабола, которую можно получить из графика функции y = ax2 с помощью параллельного переноса вдоль оси x на на m единиц вправо, если m > 0 или на – m единиц влево, если m < 0.

Полученные выводы позволяют понять, что представляет собой график функции y = a(xm)2. Например, график функции y=12x-52+3 можно получить из графика функции y=12×2 с помощью двух параллельных переносов – сдвига вдоль оси x на 5 единиц вправо и вдоль оси y на 3 единицы вверх.

Таким образом, график функции y = a(xm)2 можно получить из параболы y = ax2 с помощью двух параллельных переносов: сдвига вдоль x на m единиц вправо, если m > 0 или на – m единиц влево, если m < 0, сдвига вдоль оси y на n единиц вверх, если n > 0 или на – n единиц вниз, если n < 0.

Заметим, что данные преобразования можно производить в любом порядке: сначала выполнить параллельный перенос вдоль оси x, а затем вдоль оси y или наоборот.

Преобразования, которые мы рассмотрели применимы для любых функций.

Рассмотрим пример.

Построим график функции y = x2 — 4x двумя способами: с помощью преобразований, которые мы сегодня рассмотрели и с помощью таблицы значений функции.

Для того, чтобы построить график функции с помощью преобразований, необходимо его представить в виде y = a(xm)2. Для этого надо выделить полный квадрат. Итак, в нашу функцию y = x2 — 4x добавим 4 и вычтем 4. Получим:

y=x2-4x+4-4=x-22-4

График данной функции можно получить из графика функции y = x2 с помощью двух параллельных переносов: сдвига вдоль оси x на 2 единицы вправо, и сдвига вдоль оси y на 4 единицы вниз.

Чтобы построить график функции вторым способом, составим таблицу ее значений. Возьми нечетное количество точек, например, пять и семь. В центре поставь координаты вершины параболы.

xв=-b2a=—42∙1=2

yв=22-4∙2=-4

График квадратичной функции симметричен относительно прямой, параллельной оси y, проходящей через вершину параболы. В данном случае прямая x = 2 является осью симметрии.

x

-1

0

1

2

3

4

5

y

5

0

-3

-4

-3

0

5

Три способа
построения графика квадратичной функции

I способ

Построение
графика с помощью таблицы значений
x и y.

Пример.
Построить график функции

1.
Составим таблицу значений
x и y.

х

-4

-3

-2

-1

0

1

2

3

у

-8

-2

2

4

4

2

-2

-8

   

   

   

   

  

      

     

      

      

     

2.
Построим соответствующие точки по заданным координатам на координатной
плоскости

3.
Соединим последовательно полученные точки линией.

4.
Полученный график – порабола.

II способ

Построим
график функции

1. 
Найдем координаты вершины пораболы

              

Вершиной
пораболы является т.

2.
Определим ось симметрии пораболы

прямая
      

3.
Найдем точки пересечения пораболы с осью ох. На оси ох значения у равны
0

  

   два корня

             

График
пересекает ось ох в двух точках (1;0) и (0,5;0)

4.
Найдем точки пересечения пораболы с осью оу. На оси оу значения х
равны 0

     

График
пересекает ось в одной точке (0:1)

5.
Определим направление ветвей пораболы а=2 ,  2>0  ветви направлены
вверх.

Построим
график по найденным точкам

Дополнительные
точки

а)
Найти точку, симметричную т.(0;1) относительно оси симметрии пораболы

б) 
           (-1;6) 
и симметричную ей относительно оси симметрии пораболы.

III способ

Построить
график функции

Воспользуемся
теорией. Выделив квадрат двучлена из трехчлена, можно представить функцию вида  в виде , где
m
и n – координаты вершины пораболы.

1.
Выделим квадрат двучлена в функции  и заменим

Координаты
вершины пораболы (1; 2)

2.
Через полученную точку проведем прямую, параллельную оси ординат – ось
симметрии пораболы.

3.
Найдем координаты точек пересечения пораболы с осями

а)
с осью ох , у=0,  график ось х не пересекает

б)
с осью оу, х=0, у=3, (0; 3)

4.
а=1, 1>0 ветви направлены вверх

Дополнительные
точки: точка симметричная точке (0; 3) относительно оси симметрии пароболы (2;
3)

График
функции  можно получить из графика функции параллельным пересечением на  единиц вдоль оси ох и на  единиц вдоль оси оу

Понравилась статья? Поделить с друзьями:
  • Как найти различия в двух текстах
  • Как составить генеалогическое дерево предков
  • Как найти бромид калия
  • Как найти недорогую дачу в подмосковье
  • Как составить программу развития муниципального образования