Как составить таблицу истинности для сднф

Автор статьи

Диана Загировна Филиппенкова

Эксперт по предмету «Информатика»

Задать вопрос автору статьи

Нормальная форма логической формулы не содержит знаков импликации, эквивалентности и отрицания неэлементарных формул.

Нормальная форма существует в двух видах:

  1. конъюнктивная нормальная форма (КНФ) — конъюнкция нескольких дизъюнкций, например, $left(Avee overline{B}vee Cright)wedge left(Avee Cright)$;

  2. дизъюнктивная нормальная форма (ДНФ) — дизъюнкция нескольких конъюнкций, например, $left(Awedge overline{B}wedge Cright)vee left(Bwedge Cright)$.

СКНФ

Совершенная конъюнктивная нормальная форма (СКНФ) — это КНФ, удовлетворяющая трем условиям:

  • не содержит одинаковых элементарных дизъюнкций;

  • ни одна из дизъюнкций не содержит одинаковых переменных;

  • каждая элементарная дизъюнкция содержит каждую переменную из входящих в данную КНФ.

Любая булева формула, которая не является тождественно истинной, может быть представлена в СКНФ.

Правила построения СКНФ по таблице истинности

Для каждого набора переменных, при котором функция равна 0, записывается сумма, причем переменные, которые имеют значение 1, берутся с отрицанием.

СДНФ

Совершенная дизъюнктивная нормальная форма (СДНФ) — это ДНФ, удовлетворяющая трем условиям:

  • не содержит одинаковых элементарных конъюнкций;

  • ни одна из конъюнкций не содержит одинаковых переменных;

  • каждая элементарная конъюнкция содержит каждую переменную из входящих в данную ДНФ, к тому же в одинаковом порядке.

Любая булева формула, которая не является тождественно ложной, может быть представлена в СДНФ, к тому же единственным образом.

Правила построения СДНФ по таблице истинности

Для каждого набора переменных, при котором функция равна 1, записывается произведение, причем переменные, которые имеют значение 0 берут с отрицанием.

Примеры нахождения СКНФ и СДНФ

Пример 1

Записать логическую функцию по ее таблице истинности:

Рисунок 1.

Решение:

Воспользуемся правилом построения СДНФ:

Рисунок 2.

Получим СДНФ:

[Fleft(x_1, x_2, x_3right)=left(overline{x_1}wedge overline{x_2}wedge overline{x_3}right)vee left(overline{x_1}wedge overline{x_2}wedge x_3right)vee left(x_1wedge overline{x_2}wedge overline{x_3}right)vee left(x_1wedge overline{x_2}wedge x_3right)vee left(x_1wedge x_2wedge x_3right)]

Воспользуемся правилом построения СКНФ:

Рисунок 3.

Получим СКНФ:

[Fleft(x_1, x_2, x_3right)=left(x_1vee overline{x_2}vee x_3right)wedge left(x_1vee overline{x_2}vee overline{x_3}right)wedge left(overline{x_1}vee overline{x_2}vee x_3right)]

«Построение СКНФ и СДНФ по таблице истинности» 👇

Пример 2

Функция задана таблицей истинности:

Рисунок 4.

Представить эту функцию в виде СДНФ и СКНФ.

Решение:

  1. Запишем логическую функцию в СДНФ. Для удобства решения добавим к таблице вспомогательный столбец.

    Используя правило составления СДНФ не забываем вводить знак отрицания для переменных со значением 0. Инвертировать нулевые значения переменных обязательно, т.к. иначе они превратят значения конъюнкций в нули основной функции.

    Рисунок 5.

    Полученные во вспомогательном столбце конъюнкции соединим знаком дизъюнкции и получим искомую логическую функцию в виде СДНФ:

    [Fleft(x_1,x_2,x_3,x_4right)=left(overline{x}wedge overline{y}wedge zwedge fright)vee left(overline{x_1}wedge x_2wedge overline{x_3}wedge overline{x_4}right)vee left(overline{x_1}wedge x_2wedge x_3wedge x_4right)vee left(x_1wedge overline{x_2}wedge overline{x_3}wedge overline{x_4}right).]

  2. Запишем логическую функцию в СКНФ.

    Используя правило составления СКНФ не забываем вводить знак отрицания для переменных со значением 1. Инвертировать единичные значения переменных обязательно, т.к. иначе они превратят значения дизъюнкций в единицы основной функции.

    Рисунок 6.

    Полученные во вспомогательном столбце дизъюнкции соединим знаком конъюнкции и получим искомую логическую функцию в виде СКНФ:

    [Fleft(x_1,x_2,x_3,x_4right)=left(x_1vee x_2vee x_3vee x_4right)wedge left(x_1vee x_2vee x_3vee overline{x_4}right)wedge left(x_1vee x_2vee overline{x_3}vee x_4right)wedge left(x_1vee overline{x_2}vee x_3vee overline{x_4}right)wedge left(x_1vee overline{x_2}vee overline{x_3}vee x_4right)wedge left(overline{x_1}vee x_2vee x_3vee overline{x_4}right)wedge left(overline{x_1}vee x_2vee overline{x_3}vee x_4right)wedge left(overline{x_1}vee x_2vee overline{x_3}vee overline{x_4}right)wedge left(overline{x_1}vee overline{x_2}vee x_3vee x_4right)wedge left(overline{x_1}vee overline{x_2}vee x_3vee overline{x_4}right)wedge left(overline{x_1}vee overline{x_2}vee overline{x_3}vee x_4right)wedge left(overline{x_1}vee overline{x_2}vee overline{x_3}vee overline{x_4}right).]

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Для любой логической формулы можно построить бесконечное количество равносильных ей формул. Для этого потребуется произвести некоторое количество тождественных преобразований. Одной из главных задач в алгебре логики является нахождение канонических форм формул. Проще говоря таких, которые построены по одному канону (правилу).

Форма представления какой-либо логической функции будет считаться нормальной, если она выражена через конъюнкцию, дизъюнкцию, а также отрицание переменных. Среди всех нормальных форм можно выделить совершенно нормальные. Это тот случай, когда функция может быть записана только одним единственным способом.

Классы СКНФ и СДНФ

В при решении задач в алгебре логики особая роль отводится классам конъюнктивных и дизъюнктивных совершенно нормальных форм. Они основаны на стандартных понятиях элементарной конъюнкции и дизъюнкции.

Определение 1 — 2

Элементарной конъюнкцией принято называть формулу в том случае, когда она представляет собой конъюнкцию любого количества переменных, которые берутся без отрицания либо с отрицанием. При этом одночленной элементарной конъюнкцией считается только одна единственная переменная либо ее отрицание.

Элементарной дизъюнкцией называют формулу при условии, что она будет являться дизъюнкцией некоторого любого количества переменных и отрицаний, при этом она может быть и одночленной.

СКНФ

Форма любой логической формулы нормального типа не может содержать знаки эквивалентности, импликации, а также отрицания неэлементарных формул. Она может существовать только в двух видах:

  • КНФ – конъюнктивная нормальная форма, представляющая собой конъюнкцию нескольких дизъюнкций. К примеру, [(A vee bar{B} vee C) wedge(A vee C)];
  • ДНФ – дизъюнктивная нормальная форма, которая является дизъюнкцией нескольких конъюнкций. К примеру, [(A wedge bar{B} wedge C) vee(A wedge C)].

Определение 3

Совершенной конъюнктивной нормальной формой (СКНФ) называют КНФ, удовлетворяющую нескольким условиям:

  1. В ней не содержится двух и более элементарных дизъюнкций;
  2. Во всех дизъюнкциях отсутствуют одинаковые переменные;
  3. Каждая ДНФ содержит в себе все переменные из входящих в нее КНФ.

Любую булеву формулу, не являющуюся тождественной истиной, можно представить в виде СКНФ.

Правила построения СКНФ

В алгебре логики для любого набора переменных, при котором конечное значение функции становится нулевым, можно записать сумму. При этом переменные, имеющие числовые значение больше единицы, должны браться с отрицательным знаком.

Построение должно осуществляться по следующему алгоритму:

  1. В таблице нужно отметить такие наборы переменных, при которых [f=1].
  2. Для каждого выбранного набора переменных записываем КНФ, при этом если значение какой-либо из них равно 1, то она включается в неизменном виде, иначе – ее отрицание.
  3. На последнем этапе все полученные конъюнкции следует связать операциями дизъюнкции.

СНДФ

Определение 4

Совершенной дизъюнктивной нормальной формой (СНДФ) называют удовлетворяющую нескольким условиям ДНФ. Всего должно выполняться три условия:

  1. В ДНФ не должно содержаться двух и более одинаковых СКНФ.
  2. Ни в одной из конъюнкций не должно содержаться одинаковых переменных.
  3. В каждой элементарной КНФ должны содержаться все переменные, входящих в нее ДНФ, при этом их порядок должен полностью совпадать.

Любую булеву формулу в алгебре логики, не являющуюся тождественно ложной, можно представить в виде СНДФ, но только в одном единственном виде.

Правила построения СДНФ

Если существует определённый набор переменных, при котором значение функции равно единице, то можно записать произведения, учитывая, что переменные, значение которых больше нуля, нужно брать с отрицанием.

Алгоритм построения будет следующим:

  1. В таблице отмечаются все те наборы переменных, при которых [f=0]
  2. Для каждого отмеченного набора всех переменных записывается ДНФ, при этом если значение какой-либо из них равно нулю, то включается сама переменная, в любом другом случае ее нужно инвертировать.
  3. В конце все полученные дизъюнкции связываются друг с другом операциями конъюнкции.

Нет времени решать самому?

Наши эксперты помогут!

Примеры нахождения СКНФ и СДНФ

Рассмотрим несколько примеров нахождения СКНФ и СДНФ с помощью данных таблицы истинности.

Примеры 1 — 2

Необходимо по таблице истинности записать логическую функцию.

Примеры нахождения СКНФ и СДНФ 1

Решение. Для того чтобы выполнить задачу будем использовать правило построения СДНФ.

Примеры нахождения СКНФ и СДНФ 2

Получим СДНФ, которая имеет следующий вид:

[Fleft(x_{1}, x_{2}, x_{3}right)=left(overline{x_{1}} wedge overline{x_{2}} wedge overline{x_{3}}right) veeleft(overline{x_{1}} wedge overline{x_{2}} wedge x_{3}right) veeleft(x_{1} wedge overline{x_{2}} wedge overline{x_{3}}right) veeleft(x_{1} wedgeright.left.overline{x_{2}} wedge x_{3}right) veeleft(x_{1} wedge x_{2} wedge x_{3}right)]
Далее будем действовать согласно правилу построения СКНФ:

Примеры нахождения СКНФ и СДНФ 3

В результате получим:

[Fleft(x_{1}, x_{2}, x_{3}right)=left(x_{1} wedge overline{x_{2}} wedge x_{3}right) wedgeleft(x_{1} wedge overline{x_{2}} wedge overline{x_{3}}right) wedgeleft(overline{x_{1}} wedge overline{x_{2}} wedge x_{3}right)]


Требуется представить функцию, которая задана в таблице в виде СДНФ и СКНФ.

Примеры нахождения СКНФ и СДНФ 4

Решение: Для начала запишем в СНДФ заданную логическую функцию. Чтобы было проще, добавим еще один вспомогательный столбец. Руководствуемся правилом составления СДНФ и учитываем, что требуется ввести знак отрицания, если значение переменной будет нулевым. Это нужно для того, чтобы они не превратили в нули основной функции значение конъюнкции.

Примеры нахождения СКНФ и СДНФ 5

Значения, которые получились во вспомогательном столбце соединяем знаком дизъюнкции, в результате чего получаем искомую логическую функцию, которая примет следующий вид:

[Fleft(x_{1}, x_{2}, x_{3}, x_{4}right)=(bar{x} wedge bar{y} wedge z wedge f) veeleft(overline{x_{1}} wedge overline{x_{2}} wedge overline{x_{3}} wedge overline{x_{4}}right) veeleft(overline{x_{1}} wedge x_{2} wedge x_{3} wedgeright.left.x_{4}right) veeleft(x_{1} wedge overline{x_{2}} wedge overline{x_{3}} wedge overline{x_{4}}right)]

После этого потребуется записать логическую функцию в СКНФ. Для этого используем правило ее составления и вводим знаки отрицания для тех переменных, значение которых равно 1. Если пренебречь инвертированием единичных значений, то они могут превратить ДНФ в единицы основных функций.

Примеры нахождения СКНФ и СДНФ 6

Все полученные нами значения во вспомогательном столбце соединяем знаком конъюнкции и в итоге получаем логическую функцию в следующем виде.
[Fleft(x_{1}, x_{2}, x_{3}, x_{4}right)=left(x_{1} vee x_{2} vee x_{3} vee x_{4}right) wedgeleft(x_{1} vee x_{2} vee x_{3} vee overline{x_{4}}right) wedgeleft(x_{1} vee x_{2} veeright.\left.overline{x_{3}} vee x_{4}right) wedgeleft(x_{1} vee overline{x_{2}} vee x_{3} vee overline{x_{4}}right) wedgeleft(x_{1} vee overline{x_{2}} vee overline{x_{3}} vee x_{4}right) wedgeleft(overline{x_{1}} vee x_{2} vee x_{3} veeright.\left.overline{x_{4}}right) wedgeleft(overline{x_{1}} vee x_{2} vee overline{x_{3}} vee x_{4}right) wedgeleft(overline{x_{1}} vee x_{2} vee overline{x_{3}} vee overline{x_{4}}right) wedgeleft(overline{x_{1}} vee overline{x_{2}} vee x_{3} vee x_{4}right) wedge\left(overline{x_{1}} vee overline{x_{2}} vee x_{3} vee overline{x_{4}}right) wedgeleft(overline{x_{1}} vee overline{x_{2}} vee overline{x_{3}} vee x_{4}right) wedgeleft(overline{x_{1}} wedge overline{x_{2}} wedge overline{x_{3}} wedge overline{x_{4}}right)]
После рассмотрения примеров построения СДНФ и СКНФ с использованием таблицы истинности, стал понятен принцип построения логических функций.

Что такое СДНФ 

Нормальная форма логической формулы характеризуется тем, что для нее не свойственны эквивалентность, отрицание формул неэлементарного типа и знаки импликации.

Существует две формы нормального типа: КНФ (конъюнктивная нормальная форма) и ДНФ (дизъюнктивная нормальная форма).

Определение

СДНФ — совершенная дизъюнктивная нормальная форма формулы. СДНФ — способ написания функции алгебры логики в качестве логического выражения.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

СДНФ формулы — это равнозначная ей формула, которая представляет собой дизъюнкцию элементарных конъюнкций, при которых функция достигает показателя «1».

ДНФ выглядит следующим образом:

((A;wedge;overline B;wedge;C);vee;(B;wedge;C))

СДНФ обладает некоторыми определенными свойствами:

  • включает различные элементарные конъюнкции;
  • все логические слагаемые формулы содержат все переменные, которые входят в функцию F;
  • ни в одном логическом слагаемом не содержится переменная и её отрицание.

К СДНФ возможно привести любую формулу алгебры логики. Исключение составляет только тождественно ложная формула. СДНФ можно получить как используя таблицы истинности, так и через равносильные преобразования.

Примечание

При построении таблицы истинности важно помнить, что логические переменные со значением «0» необходимо брать с отрицанием.

Что такое СКНФ

Определение

СКНФ — совершенная конъюнктивная нормальная форма. Формулу можно назвать таковой, когда она — конъюнкция неповторяющихся элементарных дизъюнкций.

КНФ имеет вид:

((A;vee;overline B;vee;C);wedge;(A;vee;C))

Формула должна соответствовать нескольким условиям, чтобы называться СКНФ:

  • в ней отсутствуют одинаковые элементарные дизъюнкции;
  • дизъюнкции не содержат одинаковые переменные;
  • все дизъюнкции содержат каждую переменную из входящих в конъюнктивную нормальную функцию такого типа.

Правила построения по таблице истинности

Дизъюнктивная форма

Если функция равна 1, то для всех наборов переменных, при которых это происходит, записывается произведение. Однако переменные, которые имеют значение 0, берутся с отрицанием.

Конъюнктивная форма

Когда функция равна 0, то для всех наборов переменных, при которых это происходит, записывается сумма. Однако переменные, которые имеют значение 1, берутся с отрицанием.

Алгоритм приведения к СДНФ и СКНФ

Рассмотрим логическую функцию в виде таблицы истинности.

Таблица 1

 

Алгоритм построения СДНФ по таблице истинности выглядит следующим образом:

  1. Отметить наборы переменных, значение функции F на которых равно 1.
  2. Записать для всех отмеченных наборов конъюнкцию всех переменных так: если значение некоторой переменной в этом наборе равняется 1, в конъюнкцию включается сама переменная. В случае противного результата, в конъюнкцию включается ее отрицание.
  3. Связать полученные конъюнкции операциями дизъюнкции.

Построим совершенную ДНФ:

Таблица 2

 

И как результат получим следующую СДНФ:

(F(x_1,;x_2,;x_3);=;(overline{x_1}wedgeoverline{x_2}wedgeoverline{x_3});vee(overline{x_1};wedge;overline{x_2};wedge;x_3);vee(x_1;wedge;overline{x_2};wedge;overline{x_3});vee;(x_1;wedge;overline{x_2};wedge;x_3);vee;(x_1;wedge;x_2;wedge;x_3))

Алгоритм построения СКНФ по таблице истинности выглядит следующим образом:

  1. Отметить в таблице истинности наборы переменных, значение функции F на которых равно 0.
  2. Записать для всех отмеченных наборов дизъюнкцию всех переменных — в том случае, когда значение некоторой переменной в этом наборе равняется 0, в дизъюнкцию включается сама переменная, если происходит наоборот, то в дизъюнкцию включается ее отрицание.
  3. Связать полученные дизъюнкции операциями конъюнкции.

Построим совершенную КНФ:

Таблица 3

 

И как результат получим следующую СКНФ:

(F(x_1,;x_2,;x_3);=;(x_1;vee;overline{x_2};vee;x_3);wedge;(x_1;vee;overline{x_2};vee;overline{x_3});wedge;(overline{x_1};vee;overline{x_2};vee;x_3))

Рассмотрев алгоритмы построения СДНФ и СКНФ ясно, что в случае подавляющей части наборов значений переменных функция равна 0, то значительно легче построить и СДНФ для получения ее формулы, а в обратном случае — СКНФ.

Доказательство эквивалентности

Эквивалентность — понятие, означающее, что две и более формул представляют одну и ту же функцию. Для обозначения эквивалентности могут использоваться следующие знаки: ( equiv , = , Leftrightarrow .)

Доказать эквивалентность формул можно двумя способами.

  1. Первый заключается в построении и сравнении таблиц истинности обеих функций. В этом случае результат будет истинным только в том случае, когда оба высказывания либо ложны, либо истинны.
  2. Второй вариант — метод эквивалентных преобразований. Суть этого метода —  построение цепи эквивалентных формул на основе ранее доказанных эквивалентностей. 

Далее следуют примеры с некоторыми эквивалентными преобразованием в булевой алгебре и новыми эквивалентностями, которые возможно получить с их помощью. 

Поглощение

(x;vee;xy;=;x)

(x(x;vee;y);=;x;)

Доказательство эквивалентности:

(x;vee;xy;=;x;cdot;l;vee;xy;=;x(l;vee;y);=;x)

(x(x;vee;y);=;xx;vee;xy;=;x;vee;xy;=;x)

Склеивание

(xy;vee;xoverline y;=;x)

Доказательство эквивалентности:

(xy;vee;xoverline y;=;x(y;vee;overline y);=;x;cdot;l;=;x)

Обобщенное склеивание

(xz;vee;yoverline z;vee;xy;=;xz;vee yoverline z)

Доказательство эквивалентности

(xz;vee;yoverline z;vee;xy;=;xz;vee yoverline z;vee;xyz;vee;xyoverline z;=;xz;vee;yoverline z)

Расщепление

(x;vee;overline xy;=;x;vee;y)

Доказательство эквивалентности

(x;vee;overline xy;=;xy;vee;xoverline y;vee;overline xy;=;xy;vee;xoverline y;vee;xy;vee;overline xy;=;x;cdot;l;;vee;y;cdot;l;=;x;vee;y)

Примеры с решением

Задача №1

Приведите к СКНФ (((((Arightarrow B)rightarrowoverline A)rightarrowoverline B)rightarrowoverline C)).

Через применение закона де Моргана и правила( x;rightarrow;y;=;overline x;vee;y) упростим выражения:

(F;=;((((A;rightarrow;B);rightarrow;overline A);rightarrowoverline B);rightarrow;overline C);=;(((overline A;vee;B);rightarrow;overline A);rightarrow;overline B);rightarrowoverline C;);=)

(=;((((overline A;vee;B);rightarrowoverline A);rightarrowoverline B);rightarrow;overline C);=;((overline{((overline A;vee;B)};vee;overline A);rightarrowoverline B);rightarrowoverline C);=)

(=(((overline A;vee;B);vee;overline A);rightarrow;overline B);rightarrow;overline C);=((overline{(overline{(overline Avee B)};vee;overline A;)};vee;overline B);rightarrow;overline C);=)

(=;(overline{(overline{(overline{(overline A;vee;B)};vee;overline A)};vee;overline B)};vee;overline C);=;(((A;vee;B);vee;overline A);vee;overline B);vee;overline C;=)

(=;((overline{(overline A;vee;B)};vee;overline A);wedge;B);vee;overline C;=;(((A;wedge;overline B);vee;overline A);wedge B);vee;overline C;=)

(=((Aoverline B;vee;overline A);vee;overline A);wedge;B);vee;overline C;=(((A;wedge;overline B);vee;overline A);wedge;B);vee;overline C;=)

(=;((Aoverline B;vee;overline A);wedge;B);vee;overline C;=;(Aoverline BB;vee;overline AB);vee;overline C;=;(0;vee;overline AB);vee;overline C;=;overline AB;vee;overline C)

Далее приведем выражение к КНФ:

(F;=;overline AB;vee;overline C;;=;(overline A;vee;overline C);wedge;(B;vee;overline C))

Далее приведем выражение к СКНФ:

(F;=;(overline A;vee;overline C);wedge;(B;vee;overline C);=;(overline A;vee:overline C;vee;Boverline B);wedge;(Aoverline A;vee;B;v;overline C);=)

(=;(overline A;vee;overline C;vee;B);wedge;(A;vee;B;vee;overline C);wedge;(overline A;vee;overline C;vee;overline B);wedge;(overline A;vee;B;;overline C))

Задача №2

Используя эквивалентные преобразования, постройте ДНФ функции (f(widetilde x^n))

(f(widetilde x^3) = (overline{x_1}x_2;oplus;x_3);cdot;(x_1x_3;rightarrow;x_2))

Преобразуем функцию:

(f(widetilde x^3) = (overline{x_1}x_2;oplus;x_3);cdot;(x_1x_3;rightarrow;x_2) = ((overline{x_1}x_2;cdot;overline{x_3};);vee;(overline{overline{x_1}x_2};cdot;x_3));cdot;(overline{x_1x_3};vee;x_2);=)

(=;((overline{x_1}x_2overline{x_3});vee;((overline{overline{x_1}};vee;overline{x_2});x_3);cdot;(overline{x_1};vee;overline{x_3};vee;x_2);=;((overline{x_1}x_{2;}overline{x_3});vee;((x_1;vee;overline{x_2});x_3);cdot;(overline{x_1};vee;overline{x_3};vee;x_2);=)

(=;(overline{x_1}x_2overline{x_3};vee;x_1x_3;vee;overline{x_2}x_3);cdot;(overline{x_1};vee;overline{x_3};vee;x_2);=)

(=(overline{x_1}x_2overline{x_3};cdot(x_1vee x_3vee x_2);vee;x_1x_3;cdot;(overline{x_1};vee;overline{x_3};vee;x_2);vee;overline{x_2}x_3;cdot;(overline{x_1};vee;overline{x_3};vee;x_2));=)

(=;(overline{x_1}x_2overline{x_3};vee;(x_1;x_3overline{x_1};vee;x_1x_3overline{x_3};vee;x_1x_3x_2);vee;(overline{x_2}x_3overline{x_1};vee;overline{x_2}x_3overline{x_3};vee;overline{x_2}x_3x_2);=)

(=;(overline{x_1}x_2overline{x_3};vee;0;vee;0;vee;x_1x_2x_3;vee;overline{x_1}overline{x_2}x_3;vee;0;vee;0);=)

(=;overline{x_1}x_2overline{x_3};vee;x_1x_2x_3;vee;overline{x_1}overline{x_2}x_3)

Построение СКНФ и СДНФ по таблице истинности

  1. СКНФ
  2. СДНФ

Нормальной форме логической формулы не свойственна эквивалентность, отрицание формул неэлементарного типа и знаки импликации.

Выделяют такие виды формы нормального типа:

СКНФ

Совершенная КНФ является разновидностью конъюнктивной нормальной формы, удовлетворяющей такие условия:

  • отсутствие одинаковых элементарных дизъюнкций;
  • дизъюнкции не содержат одинаковые переменные;
  • все дизъюнкции содержат каждую переменную из входящих в конъюнктивную НФ такого типа.

Так и не нашли ответ на вопрос?

Просто напишите,с чем нужна помощь

Мне нужна помощь

Построение СКНФ согласно таблице истинности

Если функция равна нулю, то в случае каждого набора записывают сумму, причем с отрицанием берутся те переменные, которые равны единице.

СДНФ

Совершенная ДНФ является разновидностью дизъюнктивной нормальной формы, удовлетворяющей следующие условия:

  • отсутствие одинаковых элементарных конъюнкций;
  • конъюнкции не свойственно обладать одинаковыми переменными;

в случае любой конъюнкции элементарного типа имеет место быть переменная, входящая в такую нормальную дизъюнктивную форму. При этом в одинаковом порядке.

Все формулы булевого типа, которые не относятся к тождественно ложным, могут быть представлены в совершенной разновидности ДНФ, при этом в единственном возможном варианте.

Построение СДНФ согласно таблице истинности

Если функция соответствует единице, то в случае каждого набора записывается произведение, причем с отрицанием берутся те переменные, которые равны нулю.

Нахождение СКНФ и СДНФ: примеры

Пример

Согласно таблице истинности записать логическую функцию:

Рисунок 1.

Решение:

Прибегнем к правилу построения совершенной ДНФ

Рисунок 2.

Получаем такую СДНФ

Задействовав правило её построения:

Рисунок 3.

Получаем СКНФ:

Пример

Представить функцию как СДНФ и СКНФ, при том, что она задаётся таблицей истинности.

Рисунок 4.

Решение

Для начала нужно записать логическую функцию в СДНФ. Чтобы упростить решение, добавляем к таблице столбец. Прибегнув к правилу составления СДНФ, вводим знак отрицания для переменных с нулевым значением. Инвертирование нулевых значений переменных имеет большое значение, поскольку без этого значения конъюнкций будут преобразованы в нули ключевой функции.

Рисунок 5.

Вычисленные конъюнкции из вспомогательного столбца необходимо объединить знаком дизъюнкции и получим необходимую логическую функцию, имеющую вид совершенной конъюнктивной формы нормального типа:

Запишем логическую функцию в СКНФ.

Прибегнув к правилу, по которому составляется СКНФ, нужно помнить о введения знака отрицания для переменных с единицей. Инвертирование единичных значений имеет большое значение, поскольку без этого значения дизъюнкций будут преобразованы в единицы ключевой функции.

Рисунок 6.

Вычисленные дизъюнкции из вспомогательного столбца необходимо объединить знаком конъюнкции, так как таким образом и можно получить необходимую логическую функцию, имеющую вид совершенной нормальной формы конъюнктивного типа.

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Скрыть клавиатуру

¬

0

1

a

b

c

x

y

z

(

)

X1

X2

X3

X4

X5

X6

Показать настройки

Таблица истинности

СКНФ

СДНФ

Полином Жегалкина

Классификация Поста

Минимизация, карта Карно

Фиктивные переменные

С решением

Построить

Построено таблиц, форм:

Как пользоваться калькулятором

  1. Введите в поле логическую функцию (например, x1 ∨ x2) или её вектор (например, 10110101)
  2. Укажите действия, которые необходимо выполнить с помощью переключателей
  3. Укажите, требуется ли вывод решения переключателем «С решением»
  4. Нажмите на кнопку «Построить»

Видеоинструкция к калькулятору

Используемые символы

В качестве переменных используются буквы латинского и русского алфавитов (большие и маленькие), а также цифры, написанные после буквы (индекс переменной). Таким образом, именами переменных будут: a, x, a1, B, X, X1, Y1, A123 и так далее.

Для записи логических операций можно использовать
как обычные символы клавиатуры (*, +, !, ^, ->, =), так и символы, устоявшиеся в литературе (, , ¬, , , ). Если на вашей клавиатуре отсутствует нужный символ операции, то используйте клавиатуру калькулятора (если она не видна, нажмите «Показать клавиатуру»), в которой доступны как все логические операции, так и набор наиболее часто используемых переменных.

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

  • И (AND): & *
  • ИЛИ (OR): +
  • НЕ (NOT): ¬ !
  • Исключающее ИЛИ (XOR): ^
  • Импликация: -> =>
  • Эквивалентность: = ~ <=>
  • Штрих Шеффера: |
  • Стрелка Пирса:

Что умеет калькулятор

  • Строить таблицу истинности по функции
  • Строить таблицу истинности по двоичному вектору
  • Строить совершенную конъюнктивную нормальную форму (СКНФ)
  • Строить совершенную дизъюнктивную нормальную форму (СДНФ)
  • Строить полином Жегалкина (методами Паскаля, треугольника, неопределённых коэффициентов)
  • Определять принадлежность функции к каждому из пяти классов Поста
  • Строить карту Карно
  • Минимизировать ДНФ и КНФ
  • Искать фиктивные переменные

Что такое булева функция

Булева функция f(x1, x2, ... xn) — это любая функция от n переменных x1, x2, … xn, в которой её аргументы принимают одно из двух значений: либо 0, либо 1, и сама функция принимает значения 0 или 1. То есть это правило, по которому произвольному набору нулей и единиц ставится в соответствие значение 0 или 1. Подробнее про булевы функции можно посмотреть на Википедии.

Что такое таблица истинности?

Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов. Таблица состоит из n+1 столбцов и 2n строк, где n — число используемых переменных. В первых n столбцах записываются всевозможные значения аргументов (переменных) функции, а в n+1-ом столбце записываются значения функции, которые она принимает на данном наборе аргументов.

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

Как задать логическую функцию

Есть множество способов задать булеву функцию:

  • таблица истинности
  • характеристические множества
  • вектор значений
  • матрица Грея
  • формулы

Рассмотрим некоторые из них:

Чтобы задать функцию через вектор значений необходимо записать вектор из 2n нулей и единиц, где n — число аргументов, от которых зависит функция. Например, функцию двух аргументов можно задать так: 0001 (операция И), 0111 (операция ИЛИ).

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

  • Совершенная дизъюнктивная нормальная форма (СДНФ)
  • Совершенная конъюнктивная нормальная форма (СКНФ)
  • Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬abc ∨ ¬a¬bc ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 1
  3. Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые конъюнкции с помощью дизъюнкции

Алгоритм построения СКНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 0
  3. Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые дизъюнкции с помощью конъюнкции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

  1. Построить таблицу истинности для функции
  2. Добавить новый столбец к таблице истинности и записать в 1, 3, 5… ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6… прибавить по модулю два значения из соответственно 1, 3, 5… строк.
  3. Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10… строк, а к 3, 4, 7, 8, 11, 12… строкам аналогично предыдущему пункту прибавить переписанные значения.
  4. Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
  5. Выписать булевы наборы, на которых значение последнего столбца равно единице
  6. Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬ab∨¬bc∨ca

1. Построим таблицу истинности для функции


Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение: { 0, 0, 1 } { 0, 1, 0 } { 0, 1, 1 } { 1, 0, 1 } { 1, 1, 1 }

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

K1: { 0, 0, 1 } — ¬a¬bc
K2: { 0, 1, 0 } — ¬ab¬c
K3: { 0, 1, 1 } — ¬abc
K4: { 1, 0, 1 } — a¬bc
K5: { 1, 1, 1 } — abc

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

K1 ∨ K2 ∨ K3 ∨ K4 ∨ K5 = ¬a¬bc ∨ ¬ab¬c¬abc ∨ a¬bc ∨ abc


Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение: { 0, 0, 0 } { 1, 0, 0 } { 1, 1, 0 }

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

D1: { 0, 0, 0 } — a∨b∨c
D2: { 1, 0, 0 } — ¬a∨b∨c
D3: { 1, 1, 0 } — ¬a¬b∨c

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

D1 ∧ D2 ∧ D3 = (a∨b∨c) ∧ (¬a∨b∨c) ∧ (¬a¬b∨c)


Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

Окончательно получим такую таблицу:

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

{ 0, 0, 1 } — c, { 0, 1, 0 } — b, { 0, 1, 1 } — bc, { 1, 1, 0 } — ab, { 1, 1, 1 } — abc

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Понравилась статья? Поделить с друзьями:
  • Как найти украденный телефон по imei самостоятельно
  • Как исправить проблемы с кишечником
  • Как найти null в базе
  • Как найти установленный порт
  • Как можно исправить кредитную историю в нбки