Как составить таблицу истинности для составного высказывания

Инфоурок


Информатика

ПрезентацииПостроение таблиц истинности для сложных высказываний.

Построение таблиц истинности для сложных высказываний.



Скачать материал

ПОСТРОЕНИЕ ТАБЛИЦ ИСТИННОСТИ ДЛЯ СЛОЖНЫХ ВЫСКАЗЫВАНИЙ. Подготовила учитель ин...



Скачать материал

  • Сейчас обучается 88 человек из 28 регионов

  • Сейчас обучается 358 человек из 65 регионов

  • Сейчас обучается 97 человек из 41 региона

Описание презентации по отдельным слайдам:

  • ПОСТРОЕНИЕ ТАБЛИЦ ИСТИННОСТИ ДЛЯ СЛОЖНЫХ ВЫСКАЗЫВАНИЙ. Подготовила учитель ин...

    1 слайд

    ПОСТРОЕНИЕ ТАБЛИЦ ИСТИННОСТИ ДЛЯ СЛОЖНЫХ ВЫСКАЗЫВАНИЙ. Подготовила учитель информатики высшей категории Габриэль Татьяна Васильевна

  • ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ Сложные высказывания можно записыва...

    2 слайд

    ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ Сложные высказывания можно записывать в виде формул. Для этого простые логические высказывания нужно обозначить как логические переменные буквами и связать их с помощью знаков логических операций. Такие формулы называются логическими выражениями. Например:

  • ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ Чтобы определить значение логическо...

    3 слайд

    ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ И ТАБЛИЦЫ ИСТИННОСТИ Чтобы определить значение логического выражения необходимо подставить значения логических переменных в выражение и выполнить логические операции. Операции в логическом выражении выполняются слева направо с учетом скобок в следующем порядке:      1. инверсия;      2. конъюнкция;      3. дизъюнкция;      4. импликация и эквивалентность. Для изменения указанного порядка выполнения логических операций используются круглые скобки.

  • ТАБЛИЦЫ ИСТИННОСТИ Для каждого составного высказывания (логического выражения...

    4 слайд

    ТАБЛИЦЫ ИСТИННОСТИ Для каждого составного высказывания (логического выражения) можно построить таблицу истинности, которая определяет истинность или ложность логического выражения при всех возможных комбинациях исходных значений простых высказываний (логических переменных).

  • АЛГОРИТМ ПОСТРОЕНИЯ ТАБЛИЦЫ ИСТИННОСТИ 1) записать выражение и определить пор...

    5 слайд

    АЛГОРИТМ ПОСТРОЕНИЯ ТАБЛИЦЫ ИСТИННОСТИ 1) записать выражение и определить порядок выполнения операций 2) определить количество строк в таблице истинности. Оно равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение (определяется по формулеQ=2n + 1, где n — количество входных переменных) 3) определить количество столбцов в таблице истинности (= количество логических переменных + количество логических операций) 4) построить таблицу истинности, обозначить столбцы (имена переменных и обозначения логических операций в порядке их выполнения) и внести в таблицу возможные наборы значений исходных логических переменных. 5) заполнить таблицу истинности, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности

  • Например, построим таблицу истинности для логической функции: 	Количество вх...

    6 слайд

    Например, построим таблицу истинности для логической функции: Количество входных переменных в заданном выражении равно трем (A,B,C). Значит, количество входных наборов, а значит и строк Q=23=8. Количество столбцов равно 6 (3 переменные + 3 операции). Столбцы таблицы истинности соответствуют значениям исходных выражений A,B,C, промежуточных результатов и (B V C), а также искомого окончательного значения сложного арифметического выражения

  • A	B	C		B V C

  • A	B	C		B V C	 0	0	0			 0	0	1			 0	1	0			 0	1	1			 1	0	0			 1	0	1			 1	1	0...

    8 слайд

    ABCB V C 000 001 010 011 100 101 110 111

  • A	B	C		B V C	 0	0	0	1	0	0 0	0	1	1	1	1 0	1	0	1	1	1 0	1	1	1	1	1 1	0	0	0	0	0 1	0...

    9 слайд

    ABCB V C 000100 001111 010111 011111 100000 101010 110010 111010

  • Задание. Постройте таблицу истинности для данного логического выражения: Коли...

    10 слайд

    Задание. Постройте таблицу истинности для данного логического выражения: Количество входных переменных в заданном выражении равно двум (A,B,). Значит, количество входных наборов, а значит и строк Q=22 =4 + 1 =5, а количество столбцов равно 2 + 4 = 6 АBАVB¬A¬АVB 00 01 10 11

  • Проверка А	В				 0	0	0	1	1	0 0	1	1	1	1	1 1	0	1	0	0	0 1	1	1	0	1	1

    11 слайд

    Проверка АВ 000110 011111 101000 111011

Краткое описание документа:

Презентация к уроку информатики и ИКТ на тему: «Построение таблиц истинности для сложных высказываний» в 10 профильном классе.  Презентация может быть использована для объяснения новой темы. Программа профильного курса рассчитана на 280 часов по 4 часа в неделю.  Используется учебник Н. Д. Угриновича, глава: «Основы логики и логические основы компьютера» и программа дистанционного курса по информатике и ИКТ(http://elearning.edu54.ru/Курс рассчитан на 280 учебных часов, включает в себя 18 дистанционных модулей).

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 266 063 материала в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 15.05.2014
  • 1394
  • 3
  • 15.05.2014
  • 4183
  • 155
  • 15.05.2014
  • 1951
  • 48
  • 15.05.2014
  • 981
  • 0

Рейтинг:
5 из 5

  • 15.05.2014
  • 3562
  • 17
  • 15.05.2014
  • 1240
  • 0
  • 14.05.2014
  • 736
  • 16

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Информационные технологии в деятельности учителя физики»

  • Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»

  • Курс повышения квалификации «Облачные технологии в образовании»

  • Курс повышения квалификации «Сетевые и дистанционные (электронные) формы обучения в условиях реализации ФГОС по ТОП-50»

  • Курс профессиональной переподготовки «Информационные технологии в профессиональной деятельности: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»

  • Курс повышения квалификации «Применение MS Word, Excel в финансовых расчетах»

  • Курс повышения квалификации «Введение в программирование на языке С (СИ)»

  • Курс профессиональной переподготовки «Управление в сфере информационных технологий в образовательной организации»

  • Курс повышения квалификации «Современные тенденции цифровизации образования»

  • Курс повышения квалификации «Применение интерактивных образовательных платформ на примере платформы Moodle»

  • Настоящий материал опубликован пользователем Габриэль Татьяна Васильевна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Габриэль Татьяна Васильевна

    • На сайте: 7 лет и 10 месяцев
    • Подписчики: 0
    • Всего просмотров: 4736
    • Всего материалов:

      4

  • Файлы

Файлы

Рабочий лист подходит для учеников 7 класса, работающих по учебнику «Информатика. ФГОС», автор Л….

13

4.1.Логические выражения

Каждое составное высказывание можно выразить в виде формулы (логического выражения), в которую входят логические переменные, обозначающие высказывания, и знаки логических операций, обозначающие логические функции.

Для записи составного высказывания в виде логического выражения на формальном языке (языке алгебры логики) в составном высказывании нужно выделить простые высказывания и логические связи между ними.

Запишем в форме логического выражения составное высказывание

«(2·2=5 или 2·2=4) и (2·2≠5 или 2·24)».

Проанализируем составное высказывание. Оно содержит два простых высказывания:

А = «2•2=5»—ложно (0), В = «2•2=4»—истинно (1).

Тогда составное высказывание можно записать в следующей форме: «(А или В) и (Ā или В)».

Теперь необходимо записать высказывание в форме логического выражения с учётом последовательности выполнения логических операций. При выполнении логических операций определён следующий порядок их выполнения:

инверсия, конъюнкция, дизъюнкция.

Для изменения указанного порядка могут использоваться скобки:

F = (A v В) & (Ā v В).

Истинность или ложность составных высказываний можно определять чисто формально, руководствуясь законами алгебры высказываний, не обращаясь к смысловому содержанию высказываний.

Подставим в логическое выражение значения логических переменных и, используя таблицы истинности базовых логических операций, получим значение логической функции:

F = (A v В) & (Ā v В) = (0 v 1) & (1 v 0) = 1 & 1 = 1.

14

4.2.Таблицы истинности

Таблицы, в которых логические операции отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний, называются таблицами истинности.

Простые высказывания обозначаются переменными (например, A и B).

При построении таблиц истинности целесообразно руководствоваться определённой последовательностью действий:

1) необходимо определить количество строк в таблице истинности. Оно равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение. Если количество логических переменных равно п, то:

количество строк = 2n.

В нашем случае логическая функция имеет 2 переменные и, следовательно, количество строк в таблице истинности должно быть равно 4;

2)необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.

В нашем случае количество переменных равно двум: А и В, а количество логических операций — пяти (таблица 8), то есть количество столбцов таблицы истинности равно семи;

3)необходимо построить таблицу истинности с указанным количеством строк и столбцов, обозначить столбцы и внести в таблицу возможные наборы значений исходных логических переменных;

4)необходимо заполнить таблицу истинности по столбцам, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности.

Теперь мы можем определить значение логической функции для любого набора значений логических переменных.

15

Таблица 8 – Таблица истинности логической функции

4.3.Равносильные логические выражения

Логические выражения, у которых последние столбцы таблиц истинности сов-

падают, называются равносильными. Для обозначения равносильных логических выражений используется знак «=».

Докажем, что логические выражения равносильны. Построим сначала таблицу истинности логического выражения (табли-

ца 9).

Таблица 9 – Таблица истинности логического выражения

А

В

0

0

1

1

1

0

1

1

0

0

1

0

0

1

0

1

1

0

0

0

Теперь построим таблицу истинности логического выражения (таблица 10).

Таблица 10 – Таблица истинности логического выражения

А

В

А v В

0

0

0

1

0

1

1

0

1

0

1

0

1

1

1

0

Значения в последних столбцах таблиц истинности совпадают, следовательно, логические выражения равносильны:

=.

16

5. Построение таблиц истинности для сложных выражений

Согласно определению, таблица истинности логической формулы выражает соответствие между всевозможными наборами значений переменных и значениями формулы.

Для формулы, которая содержит две переменные, таких наборов значений

переменных всего четыре:

(0, 0),

(0, 1),

(1, 0),

(1, 1).

Если формула содержит три переменные, то возможных наборов значений

переменных восемь:

(0, 0, 0),

(0, 0, 1),

(0, 1, 0),

(0, 1, 1),

(1, 0, 0),

(1, 0, 1),

(1, 1, 0),

(1, 1, 1).

Количество наборов для формулы с четырьмя переменными равно шестнадцати и т.д.

Удобной формой записи при нахождении значений формулы является таблица, содержащая кроме значений переменных и значений формулы также и значения промежуточных формул.

Пример 1 1. Составим таблицу истинности для формулы, которая содержит две пере-

менные X и Y. В первых двух столбцах таблицы запишем четыре возможных пары значений этих переменных, в последующих столбцах — значения промежуточных формул и в последнем столбце — значение формулы. В результате получим таблицу 11:

Таблица 11 – Таблица истинности для формулы с переменными Х и У

Пример 2

Cоставить таблицу истинности сложного логического выражения: D = неA & (B+C).

А, В, С – три простых высказывания, поэтому:

количество строк = 23 +2 = 10 (n=3, т.к. на входе три элемента А, В, С) количество столбцов (таблица 12):

1)А,

2)В,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Построение таблиц истинности

Автор статьи

Екатерина Андреевна Гапонько

Эксперт по предмету «Информатика»

Задать вопрос автору статьи

Определение 1

Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.

Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.

Определение 2

Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.

Определение 3

Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:

Рисунок 1.

Приоритетом в выполнении порядка выполнения операций пользуются скобки.

Алгоритм построения таблицы истинности логической функции

  1. Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка), $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.

  2. Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.

  3. Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.

«Построение таблиц истинности» 👇

Рисунок 2.

Пример 1

Составить таблицу истинности логического выражения $D=bar{A} vee (B vee C)$.

Решение:

  1. Определим количество строк:

    Количество простых выражений – $n=3$, значит

    кол-во строк = $2^3 + 1=9$.

  2. Определим количество столбцов:

    Количество переменных – $3$.

    Количество логических операций и их последовательность:

    1. инверсия ($bar{A}$);
    2. дизъюнкция, т.к. она находится в скобках ($B vee C$);
    3. дизъюнкция ($overline{A}vee left(Bvee Cright)$) – искомое логическое выражение.

      Кол-во столбцов = $3 + 3=6$.

  3. Заполним таблицу, учитывая таблицы истинности логических операций.

Рисунок 3.

Пример 2

По данному логическому выражению построить таблицу истинности:

[F=overline{(Avee B)bigwedge overline{C}}vee overline{(Avee C)bigwedge B}]

Решение:

  1. Определим количество строк:

    Количество простых выражений – $n=3$, значит

    кол-во строк = $2^3 + 1=9$.

  2. Определим количество столбцов:

    Количество переменных – $3$.

    Количество логических операций и их последовательность:

    1. отрицание ($bar{C}$);
    2. дизъюнкция, т.к. она находится в скобках ($A vee B$);
    3. конъюнкция ($(Avee B)bigwedge overline{C}$);
    4. отрицание, которое обозначим $F_1$ ($overline{(Avee B)bigwedge overline{C}}$);
    5. дизъюнкция ($A vee C$);
    6. конъюнкция ($(Avee C)bigwedge B$);
    7. отрицание, которое обозначим $F_2$ ($overline{(Avee C)bigwedge B}$);
    8. дизъюнкция – искомая логическая функция ($overline{(Avee B)bigwedge overline{C}}vee overline{(Avee C)bigwedge B}$).

      Кол-во столбцов = $3 + 8 = 11$.

  3. Заполним таблицу, учитывая таблицу истинности логических операций.

Рисунок 4.

Алгоритм построения логической функции по ее таблице истинности

  1. Выделяют в таблице истинности строки со значением функции, равным $1$.
  2. Выписывают искомую формулу как дизъюнкцию нескольких логических выражений. Количество этих выражений равно количеству выделенных строк.
  3. Каждое логическое выражение в этой дизъюнкции записать как конъюнкцию аргументов функции.
  4. В случае, когда значение какого-то из аргументов функции в соответствующей строке таблицы принимает значение $0$, то этот аргумент записать в виде его отрицания.

Пример 3

По данной таблице истинности некоторой логической функции $Y(A,B)$ cоставить соответствующую логическую функцию.

Рисунок 5.

Решение:

  1. Значение функции равно $1$ в $1$-й и $3$-й строках таблицы.
  2. Поскольку имеем $2$ строки, получим дизъюнкцию двух элементов:

    Рисунок 6.

  3. Каждое логическое выражение в этой дизъюнкции запишем как конъюнкцию аргументов функции $A$ и $B$: $left(Awedge Bright)vee left(Awedge Bright)$
  4. В случае, когда значение в соответствующей строке таблицы равно $0$, запишем этот аргумент с отрицанием, получим искомую функцию:[Yleft(A,Bright)=left(overline{A}wedge overline{B}right)vee left(Awedge overline{B}right).]

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата написания статьи: 12.04.2016

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Скрыть клавиатуру

¬

0

1

a

b

c

x

y

z

(

)

X1

X2

X3

X4

X5

X6

Показать настройки

Таблица истинности

СКНФ

СДНФ

Полином Жегалкина

Классификация Поста

Минимизация, карта Карно

Фиктивные переменные

С решением

Построить

Построено таблиц, форм:

Как пользоваться калькулятором

  1. Введите в поле логическую функцию (например, x1 ∨ x2) или её вектор (например, 10110101)
  2. Укажите действия, которые необходимо выполнить с помощью переключателей
  3. Укажите, требуется ли вывод решения переключателем «С решением»
  4. Нажмите на кнопку «Построить»

Видеоинструкция к калькулятору

Используемые символы

В качестве переменных используются буквы латинского и русского алфавитов (большие и маленькие), а также цифры, написанные после буквы (индекс переменной). Таким образом, именами переменных будут: a, x, a1, B, X, X1, Y1, A123 и так далее.

Для записи логических операций можно использовать
как обычные символы клавиатуры (*, +, !, ^, ->, =), так и символы, устоявшиеся в литературе (, , ¬, , , ). Если на вашей клавиатуре отсутствует нужный символ операции, то используйте клавиатуру калькулятора (если она не видна, нажмите «Показать клавиатуру»), в которой доступны как все логические операции, так и набор наиболее часто используемых переменных.

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

  • И (AND): & *
  • ИЛИ (OR): +
  • НЕ (NOT): ¬ !
  • Исключающее ИЛИ (XOR): ^
  • Импликация: -> =>
  • Эквивалентность: = ~ <=>
  • Штрих Шеффера: |
  • Стрелка Пирса:

Что умеет калькулятор

  • Строить таблицу истинности по функции
  • Строить таблицу истинности по двоичному вектору
  • Строить совершенную конъюнктивную нормальную форму (СКНФ)
  • Строить совершенную дизъюнктивную нормальную форму (СДНФ)
  • Строить полином Жегалкина (методами Паскаля, треугольника, неопределённых коэффициентов)
  • Определять принадлежность функции к каждому из пяти классов Поста
  • Строить карту Карно
  • Минимизировать ДНФ и КНФ
  • Искать фиктивные переменные

Что такое булева функция

Булева функция f(x1, x2, ... xn) — это любая функция от n переменных x1, x2, … xn, в которой её аргументы принимают одно из двух значений: либо 0, либо 1, и сама функция принимает значения 0 или 1. То есть это правило, по которому произвольному набору нулей и единиц ставится в соответствие значение 0 или 1. Подробнее про булевы функции можно посмотреть на Википедии.

Что такое таблица истинности?

Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов. Таблица состоит из n+1 столбцов и 2n строк, где n — число используемых переменных. В первых n столбцах записываются всевозможные значения аргументов (переменных) функции, а в n+1-ом столбце записываются значения функции, которые она принимает на данном наборе аргументов.

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

Как задать логическую функцию

Есть множество способов задать булеву функцию:

  • таблица истинности
  • характеристические множества
  • вектор значений
  • матрица Грея
  • формулы

Рассмотрим некоторые из них:

Чтобы задать функцию через вектор значений необходимо записать вектор из 2n нулей и единиц, где n — число аргументов, от которых зависит функция. Например, функцию двух аргументов можно задать так: 0001 (операция И), 0111 (операция ИЛИ).

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

  • Совершенная дизъюнктивная нормальная форма (СДНФ)
  • Совершенная конъюнктивная нормальная форма (СКНФ)
  • Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬abc ∨ ¬a¬bc ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 1
  3. Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые конъюнкции с помощью дизъюнкции

Алгоритм построения СКНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 0
  3. Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые дизъюнкции с помощью конъюнкции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

  1. Построить таблицу истинности для функции
  2. Добавить новый столбец к таблице истинности и записать в 1, 3, 5… ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6… прибавить по модулю два значения из соответственно 1, 3, 5… строк.
  3. Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10… строк, а к 3, 4, 7, 8, 11, 12… строкам аналогично предыдущему пункту прибавить переписанные значения.
  4. Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
  5. Выписать булевы наборы, на которых значение последнего столбца равно единице
  6. Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬ab∨¬bc∨ca

1. Построим таблицу истинности для функции


Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение: { 0, 0, 1 } { 0, 1, 0 } { 0, 1, 1 } { 1, 0, 1 } { 1, 1, 1 }

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

K1: { 0, 0, 1 } — ¬a¬bc
K2: { 0, 1, 0 } — ¬ab¬c
K3: { 0, 1, 1 } — ¬abc
K4: { 1, 0, 1 } — a¬bc
K5: { 1, 1, 1 } — abc

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

K1 ∨ K2 ∨ K3 ∨ K4 ∨ K5 = ¬a¬bc ∨ ¬ab¬c¬abc ∨ a¬bc ∨ abc


Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение: { 0, 0, 0 } { 1, 0, 0 } { 1, 1, 0 }

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

D1: { 0, 0, 0 } — a∨b∨c
D2: { 1, 0, 0 } — ¬a∨b∨c
D3: { 1, 1, 0 } — ¬a¬b∨c

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

D1 ∧ D2 ∧ D3 = (a∨b∨c) ∧ (¬a∨b∨c) ∧ (¬a¬b∨c)


Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

Окончательно получим такую таблицу:

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

{ 0, 0, 1 } — c, { 0, 1, 0 } — b, { 0, 1, 1 } — bc, { 1, 1, 0 } — ab, { 1, 1, 1 } — abc

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Департамент образования Ивановской области

ОГБПОУ «Кинешемский педколледж»

Построение таблиц истинности

Методическое пособие

Подготовила: Совина М.В.

преподаватель высшей категории

2015

М.В. Совина

Методическое пособие «Построение таблиц истинности»- Кинешма, 2015

В данном методическом пособии предлагаются материалы для самостоятельного изучения правил построения таблиц истинности в алгебре логики студентами заочного отделения. Пособие включает теоретическую часть, примеры и задания.

Содержание

Алгебра логики…………………………………………………………………

4

Логические операции………………………………………………………….

5

Этапы построения таблиц истинности………………………………………

9

Пример построения таблиц истинности…………………………………….

10

Задания для самоконтроля……………………………………………………

12

Рекомендуемая литература……………………………………………………

13

Алгебра логики

Логикаэто наука о формах и способах мышления. Логика позволяет строить формальные модели окружающего мира.

Первые учения о формах и способах рассуждений возникли
в странах Древнего Востока (Китай, Индия), но в основе
современной логики лежат учения, созданные древнегреческими
мыслителями.

Основными формами мышления являются: понятие, высказывание, умозаключение.

Понятие — это форма мышления, фиксирующая основные, существенные признаки объекта.

Высказывание — это форма мышления, в которой что-либо утверждается или отрицается о свойствах реальных предметов и отношениях между ними. Высказывание может быть либо ИСТИННО либо ЛОЖНО.

Умозаключение — это форма мышления, с помощью которой из одного или нескольких суждений может быть получено новое суждение

Основы формальной логики заложил Аристотель.

Алгебра логики была разработана для того, чтобы можно было
оперировать высказываниями, не вникая в их содержание.

Алгебра логики — это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.

Создателем алгебры логики является живший в ХIХ веке английский математик Джордж Буль, в честь которого эта алгебра названа булевой алгеброй.

Логические операции

Простые высказывания обозначаются латинскими буквами: А, В, С …

Bысказывания, образованные из других высказываний с помощью логических связок, называются составными.

Употребляемые в обычной речи слова и словосочетания «не”, “и”, “или”, “если… , то”, “тогда и только тогда” и другие позволяют из простых высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Пусть через А обозначено высказывание “Тимур поедет летом на море”,

а через В — высказывание “Тимур летом отправится в горы”.

А, В — логические переменные, каждое из которых мoжет принимать только два значения — “истина” или “ложь”, обозначаемые, соответственно, “1” или “0”.

Составное высказывание “Тимур летом побывает на море и в горах” можно кратко записать как А и В.

Здесь “и” — логическая связка.

Составное высказывание “Тимур летом побывает на море или в горах” можно кратко записать как А или В.

Здесь “или” — логическая связка.

Истинность или ложность получаемых составных высказываний зависит от истинности или ложности элементарных высказываний.

В алгебре логики в соответствии с логическими связками используют 5 базовых логические операций: конъюнкция, дизъюнкция, инверсия, импликация и эквивалентность. Для каждой из операций составлены таблицы истинности

Таблица истинности логической операции выражает соответствие между всевозможными наборами значений исходных данных, переменными и значениями, получаемыми в результате выполнения операции.

Приоритеты логических операций:

  • инверсия (отрицание),

  • конъюнкция (логическое умножение),

  • дизъюнкция (логическое сложение),

  • импликация (следование),

  • эквивалентность (равносильность).

Изменить последовательность выполнения логических операций можно с помощью скобок.

Этапы построения таблиц истинности

Решение логических выражений принято записывать в виде таблиц истинности – таблиц, в которых по действиям показано, какие значения принимает логическое выражение при всех возможных наборах его переменных.

Для составления таблицы необходимо:

  1. Выяснить количество строк в таблице. Оно равно 2n+1, где n-количество переменных.

  2. Выяснить количество столбцов. Оно равно количество переменных плюс количество логических операций.

  3. Установить последовательность выполнения логических операций с учетом скобок и приоритетов.

  4. Построить таблицу, указывая названия столбцов и возможные наборы значений исходных логических переменных.

  5. Заполнить таблицу истинности по столбцам.

Заполнение столбцов значений переменных таблицы:

1.  разделить колонку значений первой переменной пополам и заполнить верхнюю часть «0», а нижнюю «1»;

2.  разделить колонку  значений  второй переменной на четыре части и заполнить каждую четверть чередующимися группами «0» и «1», начиная с группы «0»;

3.  продолжать деление колонок значений последующих переменных на 8, 16 и т.д. частей и заполнение их группами «0» или «1» до тех пор, пока группы «0» и «1» не будут состоять из одного символа.

Заполнение столбцов, содержащих логические операции, выполняется в соответствии с таблицами истинности этих логических операций

Примеры построения таблиц истинности

Пример 1. Для формулы  A/ (B / ¬B /¬C) постройте  таблицу истинности.

1этап:  Количество логических переменных 3, следовательно, количество строк — 23 +1= 9.

2 этап: Количество логических операций в формуле 5, количество логических переменных 3, следовательно количество столбцов — 3 + 5 = 8.

3этап: Последовательность операций:

1) ¬B

2) ¬C

3)  ¬B /¬C

4) B / ¬B /¬C

5) A/ (B / ¬B /¬C)

4 этап: Построение таблицы

A

B

C

¬B

¬C

¬B¬C

B¬B¬C

A(B¬B¬C)

5 этап: Заполнение таблицы

 

Пример 2. Определите истинность  логического выражения  

F(А, В) = (А/ В)/(¬А/¬В) .

1. В выражении две переменные А и В (n=2).

2.  mстрок=2n, m=22=4 строки.

3. В формуле 5 логических операций.

4. Расставляем порядок действий

1) А/ В;  2) ¬А;  3) ¬В;  4) ¬А/¬В;  5) (А/ В)/(¬А/¬В).

5. Кстолбцов=n+5=2+5=7 столбцов.

А

В

А/ В

¬А

¬В

¬А/¬В

F

0

0

0

1

1

1

0

0

1

1

1

0

1

1

1

0

1

0

1

1

1

1

1

1

0

0

0

0

Вывод: логическое выражение принимает значение истина при наборах F(0,1)=1 и F(1,0)=1.

Задания для самоконтроля

  1. Составьте таблицу истинности логического выражения:

A  B (A  B)

  1. Определите истинность  логического выражения :

F(А,В) =A  B  C  A

  1. Постройте таблицу истинности сложного высказывания

А V (A ^ B) V (B ^ C)

  1. Составить таблицу истинности для формулы

X·Y v X v Y v X

  1. Составить таблицу истинности для формулы

Рекомендуемая литература

  1. Андреева Е.В. Математические основы информатики. Элективный курс: учебное пособие.-М.:БИНОМ. Лаборатория знаний, 2005

  2. Выгодский М.Я. Справочник по элементарной математике. М. «Наука»,1989.

  3. Соколова О.А. Универсальные поурочныеразработки по информатике 10 класс:- М.:ВАКО,2008, -400с.

  4. Угринович Н. Информатика и ИТ 10-11- М.:Лаборатория Базовых Знаний,2001. – 464с.

  5. Щеглов А.И. Элементарное введение в теорию множеств и алгебру логики. Иваново, 1978.

  6. Математическая логика.- Режим доступа: // http://mathlog.h11.ru/index.html

  7. Cистемa федеральных образовательных порталов . —

Режим лоступа:

Понравилась статья? Поделить с друзьями:
  • Как найти смайлик камня
  • Как исправить ошибки родителя
  • Как найти наушники xiaomi если потерял его
  • Как найти удаленную историю в инсте
  • Как найти ютуб в магазине