Как составить таблицу про течение

Течения мирового океана теплые и холодные (Таблица)

Справочная таблица течения мирового океана содержит информацию по морским течениям мирового океана, теплые, холодные, скорость течения, температура, соленость, в каком океане протекают. Сведения, содержащиеся в таблице, могут быть использованы в самостоятельной работе студентов географов и экологов, при написании курсовых работ и подготовке пособий по каждому материку и части света.

Карта течений мирового океана

Теплые  холодные течения мирового океана карта 

Течения мирового океана теплые и холодные таблица

Течения мирового океана

Тип течения

Океаны

Особенности морских течений

Аляскинское течение

Нейтральное

Тихий океан

Протекает в северо-восточной части Тихого океана, является северной веткой Северо-Тихоокеанского течения. Протекает на большой глубине до самого дна. Скорость течения от 0,2 до 0,5 м/с. Соленость 32,5 ‰. Температура на поверхности от 2 до 15 C° в зависимости от времени года.

Антильское течение

Теплое

Атлантический

Тёплое течение в Атлантическом океане, является продолжением Пассатного течения, на севере соединяется с Гольфстримом. Скорость 0,9—1,9 км/ч. Температура на поверхности от 25 до 28 C°. Соленость 37 ‰

Бенгельское течение

Холодное

Атлантический

Холодное антарктическое течение, которое протекает от мыса Доброй надежды до пустыни Намиб в Африке. Температура на поверхности на 8 C° ниже средней для этих широт.

Бразильское

Теплое

Тихий океан

Ветка Южно-Пассатного течения, протекает вдоль берегов Бразилии на юго-запад в верхнем слое вод. Скорость течения от 0,3 до 0,5 м/с. Температура на поверхности от 15 до 28 C° в зависимости от времени года.

Восточно-Австралийское

Теплое

Тихий океан

Протекает вдоль берегов Австралии отклоняясь к югу. Средняя скорость 3,6 — 5,7 км/ч. Температура на поверхности ≈ 25 C°

Восточно-Гренландское

Холодное

Северный Ледовитый океан

Протекает вдоль побережья Гренландии в южном направлении. Скорость течения 2,5 м/с. Температура на поверхности от <0 до 2 C°. Соленость 33 ‰

Восточно-Исландское

Холодное

Атлантический

Протекает вдоль восточного берега острова Исландия в южном направлении. Температура от -1 до 3 C°. Скорость течения 0,9 — 2 км/ч.

Восточно-Сахалинское течение

Холодное 

Тихий океан 

Протекает вдоль восточного побережья Сахалина в южном направлении в Охотском море. Соленость ≈ 30 ‰. Температура на поверхности от -2 до 0 C°.

Гвианское течение

Нейтральное

Тихий океан

Является веткой Южно-Пассатного течения и протекает вдоль северо-восточных берегов Южной Америки. Скорость > 3 км/ч. Температура 23-28 C°.

Гольфстрим

Теплое

Атлантический

Теплое течение в Атлантическом океане, протекает вдоль восточного побережья Северной Америки. Мощное струйное течение шириной 70-90 км, скорость протекания 6 км/ч, на глубине уменьшается. Средняя температура от 25 до 26 C° (на глубине 10 — 12 C°). Соленость 36 ‰.

Западно-Австралийское

Холодное

Индийский 

Протекает с юга на север у западных берегов Австралии, часть течения Западных Ветров. Скорость течения 0,7—0,9 км/ч. Соленость 35,7 ‰. Температура меняется от 15 до 26 °C.

Западно-Гренландское

Нейтральное

Атлантический, Северный Ледовитый океаны

Протекает вдоль западного берега Гренландии в морях Лабрадор и Баффина. Скорость 0,9 — 1,9 км/ч.

Западно-Исландское

Холодное

Атлантический

Это ветка Восточно-Гренландского течения, протекает вдоль западного побережья Гренландии. Скорость течения 2,5 м/с. Температура на поверхности от <0 до 2 C°. Соленость 33 ‰

Игольное течение

Теплое

Атлантический, Индийский

Течение Игольного Мыса, устойчивое и наиболее сильное течение мирового океана. Проходит вдоль восточного побережья Африки. Средняя скорость до 7,5 км/ч (на поверхности до 2 м/с).

Ирмингера

Теплое

Атлантический

Протекает не далеко от Исландии. Перемещает теплые воды на север.

Калифорнийское

Холодное

Тихий океан

Является южной веткой Северо-Тихоокеанского течения, протекает с севра на юг вдоль Калифорнийского побережья. Поверхностное течение. Скорость 1- 2 км/ч. Температура 15 -26C°. Соленость 33-34‰.

Канадское течение

Холодное

Северный Ледовитый

— 

Канарское течение

Холодное

Атлантический

Проходит вдоль Канарских островов, затем переходит в Североэкваториальное течение. Скорость 0,6 м/с. Ширина ≈ 500 км. Температура воды от 12 до 26 C°. Соленость 36 ‰.

Карибское

Теплое

Атлантический 

Течение в Карибском море, продолжение северо-пассатного течения. Скорость 1- 3 км/ч. Температура 25-28 C°. Соленость 36,0 ‰.

Курильское (Оясио)

Холодное

Тихий океан

Еще называют камчатским, протекает вдоль Камчатки, Курильских островов и Японии. Скорость от 0,25 м/с до 1 м/с. Ширина ≈ 55 км.

Лабрадорское

Холодное

Атлантический

Протекает между Канадой и Гренландией на юг. Скорость течения 0,25 — 0,55 м/с. Температура меняется от -1 до 10C°.

Мадагаскарское течение

Теплое

Индийский 

Поверхностное течение у берегов Мадагаскара, является веткой Южно-Пассатного течения. Средняя скорость 2- 3 км/ч. Температура до 26 C°. Солёность 35 ‰.

Межпассатное противотечение

Теплое

Тихий, Атлантический, Индийский океаны

Мощное поверхностное противотечение между Северным пассатным и Южным пассатным. К ним также относят течения Кромвелла и течение Ломоносова. Скорость очень переменчива.

Миндао

Нейтральное

Тихий океан

— 

Мозамбикское

Теплое

Индийский 

Поверхностное течение вдоль берегов Африки на Юг в Мозамбикском проливе. Ветка Южно-пассатного течения. Скорость до 3 км/ч. Температура до 25 C°. Солёность 35‰.

Муссонное течение

Теплое

Индийский 

Вызвано муссонными ветрами. Скорость 0,6 — 1 м/с. Летом меняет направление в противоположную сторону. Средняя температура 26C°. Солёность 35‰.

Ново-Гвинейское

Теплое

Тихий океан

Протекает в Гвинейском заливе с запада на восток. Средняя температура 26 — 27C°. Средняя скорость 2 км/ч.

Норвежское течение

Теплое

Северный Ледовитый 

Течение в Норвежском море. Температура 4- 12C° зависит от времени года. Скорость 1,1 км/ч. Протекает на глубине 50-100 метров. Соленость 35,2‰.

Нордкапское

Теплое

Северный Ледовитый 

Ветка Норвежского течения вдоль северного побережья Кольского и Скандинавского полуострова. Является поверхностным. Скорость 1 — 2 км/ч. Температура колеблется от 1 до 9 C°. Соленость 34,5 — 35 ‰.

Перуанское течение

Холодное

Тихий океан

Поверхностное холодное течение Тихого океана с юга на север рядом с западными берегами Перу и Чили. Скорость ≈ 1 км/ч. Температура 15- 20 C°.

Приморское течение

Холодное

Тихий океан

Протекает с севера на юг от Татарского пролива вдоль берегов Хабаровского и Приморского краев. Соленость низкая 5 — 15 ‰ (разбавлено водой Амура). Скорость 1 км/ч. Ширина потока 100км.

Северное Пассатное (Североэкваториальное)

Нейтральное

Тихий, Атлантический

В Тихом океане является продолжением калифорнийского течения и переходит в Куросио. В Атлантическом океане возникает из Канарского течения и является одним из источников Гольфстрима.

Северо-Атлантическое

Теплое

Атлантический

Мощное поверхностное теплое течение океана, продолжение Гольфстрима. Оказывает влияние на климат в Европе. Температура воды 7 — 15 C°. Скорость от 0,8 до 2 км/ч.

Северо-Тихоокеанское

Теплое

Тихий океан

Является продолжением течения Куросио к востоку от Японии. Движется к берегам Северной Америки. Средняя скорость замедляется от 0,5 до 0,1 км/ч. Температура поверхностного слоя 18 -23 C°.

Сомалийское течение

Нейтральное

Индийский 

Течение зависит от муссонных ветров и протекает возле полуострова Сомали. Скорость средняя 1,8 км/ч. Температура летом 21-25C°, зимой 25,5-26,5C°. Расход воды 35 Свердруп.

Соя

Теплое

Тихий океан

Течение Японского моря. Температура от 6 до 17 C°. Соленость 33,8—34,5 ‰.

Тайваньское

Теплое

Тихий океан

— 

Течение Западных Ветров

Холодное

Тихий, Атлантический, Индийский океаны

Антарктическое циркумполярное течение. Поверхностное холодное крупное течение океана в Южном полушарии, единственное проходит через все меридианы Земли с запада на восток. Вызвано действием западных ветров. Средняя скорость 0,4 — 0,9 км/ч. Средняя температура 1 -15 °C. Солёность 34-35 ‰.

Течение мыса Горн

Холодное

Атлантический

Поверхностное холодное течение в пр. Дейка у западных берегов Огненной Земли. Скорость 25-50 см/с. Температура 0- 5 °C. Приносит айсберги летом.

Трансарктическое

Холодное

Северный Ледовитый 

Основное течение Северного ледовитого океана, вызвано стоком рек Азии и Аляски. Переносит льды от Аляски до Гренландии. 

Флоридское течение

Нейтральное

Атлантический

Протекает вдоль юго-восточного побережья Флориды. Продолжение карибского течения. Средняя скорость 6,5 км/ч. Переносит объем воды в размере 32 Sv.

Фолклендское течение

Холодное

Атлантический

Поверхностное холодное течение океана протекает вдоль юго-восточных берегов Южной Америки. Средняя температура колеблется от 4 до 15 °C. Соленость 33,5 ‰. 

Шпицбергенское

Теплое

Северный Ледовитый 

Теплое течение океана у западных берегов арх. Шпицбергена. Средняя скорость 1 — 1,8 км/ч. Температура 3-5°C. Солёность 34,5 ‰

Эль-Ниньо

Теплое

Тихий океан

Это процесс колебания температуры поверхностного слоя вод в экваториальной части Тихого океана.

Южное Пассатное

Нейтральное

Тихий, Атлантический, Индийский океаны

Теплое течение Мирового океана. В Тихом океане начинается от берегов Южной Америки и идет на запад к Австралии. В Атлантическом — является продолжением Бенгельского течения. В индийском океане продолжением Западно-Австралийского течения. Температура ≈ 32 °C.

Японское (Куросио)

Теплое

Тихий океан 

Протекает у восточных берегов Японии. Скорость течения от 1 до 6 км/ч. Средняя температура воды 25 — 28°C, зимой 12 -18°C.

_______________

Источник информации: Справочное пособие «Физическая география материков и океанов». — Ростов-на-Дону, 2004

Особенности решения задач на определение скорости течения реки. Примеры решений

Одними из увлекательных задач по математике и физике, которые предлагает учитель решить школьникам, являются задачи на определение скорости течения реки. В данной статье рассмотрим особенности решения этих задач и приведем несколько конкретных примеров.

О каких задачах пойдет речь?

Каждый знает, что вода в реке обладает некоторой скоростью течения. Равнинные реки (Дон, Волга) текут относительно медленно, небольшие же горные реки отличаются сильным течением и присутствием водяных воронок. Любой плавающий предмет, который брошен в реку, будет удаляться от наблюдателя со скоростью течения реки.

Люди, которые купались в реке, знают, что против ее течения плыть очень тяжело. Чтобы продвинуться на несколько метров, необходимо приложить намного больше усилий, чем при движении в стоячей воде озера. Наоборот, движение по течению осуществляется практически без каких-либо затрат энергии. Достаточно лишь поддерживать тело на плаву.

Все эти особенности позволяют сделать следующий важный вывод: если тело, имеющее в стоячей воде скорость v, будет двигаться в русле реки, то его скорость относительно берега будет равна:

  • v + u для движения по течению;
  • v — u для движения против течения.

Здесь u — скорость течения.

Если тело движется под некоторым углом к течению, то результирующий вектор его скорости будет равен сумме векторов v¯ и u¯.

Формулы, которые необходимо запомнить

Помимо приведенной выше информации, для решения задач на скорость течения реки следует запомнить несколько формул. Перечислим их.

Скорость течения является величиной постоянной, а вот скорость тела (лодки, катера, пловца) в общем случае может меняться, как по величине, так и по направлению. Для равномерного прямолинейного движения справедливой будет формула:

Где S — пройденный путь, v — скорость перемещения тела. Если движение происходит с ускорением a, тогда следует применять формулу:

Помимо этих формул, для успешного решения задач следует уметь пользоваться тригонометрическими функциями при разложении векторов скорости на составляющие.

Теперь перейдем к решению конкретных задач.

Задача с лодкой и рыбаком

Один рыбак решил отправиться на своей лодке без мотора вверх против течения реки на расстояние 2 километра. В стоячей воде он бы преодолел это расстояние за 30 минут, но при движении по реке ему понадобился целый час. Необходимо найти, чему равна скорость течения реки.

Поскольку скорость воды в реке является величиной неизвестной, то обозначим ее буквой x. Скорость лодки также неизвестна, однако ее можно вычислить, используя значения из условия для движения в стоячей воде. Получаем для скорости v лодки:

Мы нашли скорость, с которой рыбак на лодке может перемещаться по спокойному озеру. Чтобы найти скорость лодки против течения, необходимо из найденной величины вычесть значение x. Тогда для движения вверх по реке можно записать следующее равенство:

Выражаем отсюда значение неизвестного параметра, имеем:

Осталось подставить цифры из условия задачи и записать ответ:

Таким образом, скорость течения в реке в два раза меньше таковой для лодки.

Задача с моторной лодкой

Моторная лодка совершает каждый день переходы по реке из пункта A в пункт B. Дистанция между A и B составляет 7 км. Известно, что скорость лодки по течению равна 8 км/ч. Чему равна скорость течения, если на путь вниз по реке лодка затрачивает на 10 минут больше времени, чем при движении вверх по ней.

В данном случае мы не знаем ни скорость моторной лодки, ни скорость воды в реке. Обозначим первую как y, а вторую как x. Тогда можно записать следующие четыре уравнения:

Первое уравнение отражает скорость лодки по течению, второе и третье уравнения связывают время и скорость при движении вниз и вверх по реке соответственно. Четвертое уравнение следует из условия задачи о разности времен прямого и обратного пути между пунктами A и B.

Сначала найдем из этих уравнений время t1 и t2:

Для определения скорости x воды в реке вычтем из второго третье уравнение, получим:

Подставляем в это равенство рассчитанные величины t1 и t2, а также расстояние между пунктами S, получаем, что вода в реке течет со скоростью 0,64 км/ч.

Задача: движение катера под углом к течению

Теперь решим задачу, которая требует умения пользоваться тригонометрическими формулами.

Катер начал движение от одного берега реки к другому под углом 60 o к течению. Скорость катера в стоячей воде равна 10 км/ч. Скорость течения составляет 2 км/ч. Необходимо определить, на какое расстояние катер сместится вдоль берега, прибыв на противоположную сторону реки. Ширина русла реки равна 500 метров.

Данную задачу следует решать, разбив путь катера на две составляющие: перпендикулярную и параллельную берегу. Используя данные задачи, для перпендикулярной составляющей пути можно записать выражение:

Где v — скорость катера, S1 — ширина реки. Подставляя данные, находим время, которое катер находился в пути:

Для вычисления параллельного берегу пути S2 к горизонтальной проекции скорости катера следует добавить скорость течения, тогда соответствующее равенство будет иметь вид:

Подставляя известные величины, получаем ответ: катер вдоль берега пройдет путь 404 метра.

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние 112 км, если его собственная скорость 30 км/ч, а скорость течения реки 2 км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 — 2 = 28 (км/ч) — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет 112 км, разделив расстояние на скорость:

Решение задачи по действиям можно записать так:

1) 30 — 2 = 28 (км/ч) — скорость движения катера против течения,

Ответ: За 4 часа катер преодолеет расстояние 112 км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта A до пункта B по реке равно 120 км. Сколько времени потратит моторная лодка на путь от пункта A до B, если её собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

Значит расстояние между пунктами лодка преодолеет за:

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта A до пункта B, надо расстояние разделить на скорость:

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч) — скорость лодки,

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 — 3 = 24 (км/ч) — скорость лодки,

1) При движении по течению реки моторная лодка потратит 4 часа на путь от пункта A до пункта B.

2) При движении против течения реки моторная лодка потратит 5 часов на путь от пункта A до пункта B.

Как решать задачи на движение на ЕГЭ по математике 2019

Классическим примером текстовой задачи, которая может встретиться вам на ЕГЭ, является задача на движение. Эти задачи довольно разнообразны и включают в себя: задачи на движение навстречу, задачи на движение вдогонку, задачи на движение по реке. И поэтому вопрос, как же решать задачи на движение, иногда ставят учеников в тупик.

Научиться решать такие задачи довольно легко, для этого нужно знать алгоритм, состоящий всего из 3 шагов.

Формула, которую обязательно нужно знать, и секрет, как ее легко запомнить

Для решения любой задачи на движение вам обязательно нужно знать всего одну формулу, которая вам уже давно известна:И уметь правильно выражать из этой формулы скорость и время:Многие ученики путаются при записи этих формул, допуская ошибки. Чтобы раз и навсегда запомнить формулы нахождения расстояния, скорости и времени, просто нарисуй треугольник. В верхнем углу треугольника напиши S, а внизу — V и t. Проведи горизонтальную черту между ними. Теперь мы можем закрыть рукой ту величину, которую нам нужно найти, и увидим формулу нахождения этой величины. Например, нам нужно найти расстояние. Закрываем рукой S, и на нашем рисунке останется V t – это и есть формула нахождения расстояния. Или нам нужно найти время. Закрываем рукой t, и на нашем рисунке остается – формула нахождения времени. Нужно найти скорость? Закрываем рукой V, получаем – формулу нахождения скорости. Главное запомнить, что S должна быть в верхнем углу. Это можно сделать, например, с помощью ассоциации, что S похожа на змею, а змея – хозяйка горы, поэтому она на вершине. Вот как выглядит такой магический треугольник:

3 простых шага решения задачи на движение

Чтобы правильно решить задачу на движение нужно:

  1. Определить неизвестное и составить таблицу на основании условия задачи.
  2. Составить уравнение на основании таблицы.
  3. Вернуться к условиям задачи и записать правильный ответ.

Давайте подробнее разберем каждый шаг:

  1. Вначале нам нужно внимательно прочитать условие задачи и определить, что же взять за переменную Х. Чаще всего в задачах на движение удобнее всего за переменную Х обозначить скорость. Если же скорость нам прямо дана в условиях задачи, то за переменную Х обозначаем время. Если в условиях задачи прямо указаны значения и скорости, и времени, тогда за переменную Х берем расстояние. Затем из условий задачи определить все, что нам известно и занести в таблицу.
  2. На основании полученной таблицы составляем уравнение и решаем его. После решения уравнения не торопимся записывать ответ. Ведь нахождение Х – это не всегда ответ к исходной задаче. Такую ошибку совершают многие ученики: фактически правильно решив задачу, они записывают неправильный ответ.
  3. После решения уравнения возвращаемся к условиям задачи и смотрим, что же требовалось найти. Находим неизвестное и записываем ответ.

Задачи на движение бывают разными. В таких задачах участники движения могут двигаться навстречу друг другу, вдогонку, они могут двигаться по реке (против течения или по течению). Каждая из этих задач имеет особенности решения, о которых мы поговорим ниже и разберем на примерах.

Задачи на движение вдогонку: примеры с решением

При решении задачи, по условия которой оба участника движения двигаются в одном направлении, как правило, сравнивается время их движения. Необходимо запомнить правила:

  1. Если время движения сравнивается (то есть присутствуют слова больше/меньше), то мы приравниваем время и прибавляем слагаемое. То есть чтобы получить большее время, мы прибавляем к меньшему времени что-то еще (из условий задачи).
  2. Если условия задачи содержат общее время, то дроби, выражающее время, складываются.

Давайте разберем, как работают эти правила при решении задач.

Задача 1

Велосипедист и автомобилист одновременно выехали из пункта А в пункт Б, расстояние между которыми равно 50 км. Известно, что скорость автомобилиста на 40 км/ч больше, чем у велосипедиста, в результате чего автомобилист приехал в пункт Б на 4 часа раньше. Найдите скорость велосипедиста.

1. Необходимо определить, что взять за переменную Х и составить таблицу. Вспоминаем, что удобнее всего за Х обозначить скорость в том случае, если она прямо не указано в условиях задачи.

В нашем случае скорость в условиях задачи не указана, поэтому скорость велосипедиста обозначаем за Х.

Составляем таблицу, данные для которой берем из условий задачи.

Итак, расстояние (S) нам известно – 50 км, скорость велосипедиста – х, скорость автомобилиста на 40 км/ч больше, значит она равна х + 40. Чтобы определить время вспоминаем формулу t = S / V и подставляем в нее наши значения. Время, затраченное велосипедистом, получится 50 / х, а время, затраченное автомобилистом — 50 / (х + 40).2. На основании таблицы и условий задачи необходимо составить уравнение.

Из условий задачи нам известно, что автомобилист приехал раньше велосипедиста на 4 часа (смотрим наше первое правило). Это значит, что велосипедист затратил на 4 часа больше времени, чем автомобилист. Следовательно,

50 / (х + 40) + 4 = 50 / х

Решаем полученное уравнение, для этого приводим наши дроби к одному знаменателю:

50х + 4х (х + 40) – 50 (х+40) / х (х + 40) = 0

(50х + 4х 2 + 160х – 50х – 2000) / х (х+40) = 0

(4х 2 + 160х – 2000) / (х 2 + 40х) = 0

Умножим обе части уравнение на х 2 + 40х:

4х 2 + 160х – 2000 = 0

Разделим обе части уравнения на 4:

х 2 + 40х – 500 = 0

D = 40 2 – 4 * 1 * (-500) = 3600

Далее находим корни уравнения:

х2 = — 50

3. Возвращаемся к условиям задачи и вспоминаем, что же требовалось найти.

Нам нужно было определить скорость велосипедиста, которую мы обозначили за Х.

Скорость велосипедиста должна быть положительна, поэтому х2 не подходит по смыслу задачи. Следовательно, нас интересует только х1 и скорость велосипедиста равна 10 км/ч.

Задача 2

Велосипедист выехал с постоянной скоростью из города А в город Б, расстояние между которыми равно 80 км. На следующий день он поехал обратно, при этом его скорость была на 2 км/ч больше прежней. По пути велосипедист останавливался и отдыхал 2 часа. В итоге на возвращение из города Б в город А у него ушло времени столько же, сколько на путь из города А в город Б. Найдите скорость велосипедиста на пути из города А в город Б.

1. Обозначим скорость велосипедиста на пути из города А в город Б как переменную Х.

Из условий задачи: расстояние — 80 км, скорость велосипедиста во второй день – х. Его скорость во второй день была на 2 км/ч больше, чем в первый день, т.е. в первый день она была ниже, следовательно, скорость велосипедиста в первый день равна х – 2. Определим затраченное велосипедистом время на путь по формуле t = S / V. Тогда время, затраченное в первый день на путь равно 80 / х, во второй день — 80 / (х + 2).2. На основании таблицы и условий задачи составим уравнение.

Из условий задачи нам известно, что во второй день велосипедист останавливался и отдыхал 2 часа, следовательно, в пути он провел на 2 часа меньше (смотрим наше первое правило). Также нам известно, что общее затраченное велосипедистом время в первый и во второй дни равно. Следовательно:

80 / (х + 2) + 2 = (80 / х)

Решаем полученное уравнение, для чего приводим дроби к общему знаменателю:

(80х + 160 – 80х – 2х (х+2)) / х (х + 2) = 0

Умножаем обе части уравнения на х (х + 2):

160 – 2х 2 + 4х = 0

— 2х 2 — 4х + 160 = 0

Делим обе части уравнения на -2:

D = 2 2 – 4 * 1 * (-80) = 4 + 320 = 324

Тогда корни уравнения равны:

3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость велосипедиста на пути из города А в город Б, которую мы обозначали за Х.

Скорость должна быть положительна, поэтому х2 = — 10 не подходит по смыслу задачи. Следовательно, скорость велосипедиста равна 8.

Задачи на движение навстречу: примеры с решением

Главное, что нужно помнить о движении навстречу: скорости участников движения складываются.

В тех случаях, когда нам неизвестно общее расстояние, то есть мы не можем его определить из условий задачи и из составленных уравнений, данное расстояние следует принимать за единицу.

Примеры решения задач на движение навстречу:

Задача 1

Из города А в город Б выехал автомобилист, через 3 часа навстречу ему выехал мотоциклист со скоростью 60 км/ч. Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Расстояние между городами А и Б равно 470 км. Найдите скорость автомобилиста.

1. Обозначим скорость автомобилиста как Х.

Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Следовательно, автомобилист проехал 350 км, а мотоциклист 470 – 350 = 120 км.

Составим таблицу:2. Составим уравнении на основании таблицы и условий задачи.

Из условий задачи известно, что автомобилист ехал на 3 часа дольше, чем мотоциклист (пользуемся первым правилом, которое разбирали при решении задач на движение вдогонку). Следовательно:

Решаем полученное уравнение:

3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость автомобилиста, которую мы обозначали за Х. Следовательно, скорость автомобилиста равна 70 км/ч.

Задача 2

Из городов А и Б одновременно навстречу друг другу выехали автомобилист и велосипедист. Автомобилист приехал в город А на 6 часов раньше, чем велосипедист приехал в город Б. Встретились они через 4 часа после начала движения. Сколько времени затратил автомобилист на путь из города Б в город А?

1. Время автомобилиста обозначим как Х.

Примем расстояние между городами А и Б за единицу. Остальные данные берем из условий задачи.

Составим таблицу:2. Составим уравнение на основании таблицы и условий задачи.

Известно, что велосипедист и автомобилист встретились через 4 часа после начала движения и в сумме преодолели все расстояние от города А до города Б. То есть все расстояние от города А до города Б было преодолено за 4 часа.

Вспоминаем, что при движении навстречу скорости движения участников складываются. Подставим в формулу пути известные нам данные:

((1 / х) + (1 / (х — 6))) * 4 = 1

Решаем полученное уравнение:

(4 / х) + (4 / (х — 6)) = 1

Приводим дроби к одному знаменателю:

(4х — 24 + 4х — х 2 + 6х) / (х (х — 6)) = 0

Делим обе части уравнения на х (х — 6), при условии, что х > 6:

-х 2 + 14х — 24 = 0

Умножим обе части уравнение на -1:

х 2 — 14х + 24 = 0

Находим дискриминант нашего квадратного уравнения:

D = 14 2 – 4 * 1 * 24 = 100

Находим корни уравнения:

х2 2 + 40х – 40х – 200 = 0

3. Возвращаемся к условию задачи. Нам необходимо было найти собственную скорость катера, которую мы обозначили за Х. Так как скорость не может быть отрицательной, то х1 = -15 противоречит условию задачи. Следовательно, собственная скорость катера равна 15 км/ч.

Задача 2

Моторная лодка вышла в 9:00 из пункта А в пункт Б, расстояние между которыми 30 км. Пробыв в пункте Б 3 часа, моторная лодка повернула назад и вернулась в пункт А в 20:00. Найдите скорость течения реки, если известно, что собственная скорость моторной лодки 8 км/ч.

1. Обозначим скорость течения реки за х. Остальные данные берем из условия задачи.

Составим таблицу:2. Составим уравнение.

Нам известно, что моторная лодка начала свое движение в 9:00, а закончила в 20:00, а также в течение этого времени пробыла без движения во время стоянки – 3 часа. Таким образом, общее время движения будет 20 – 9 – 3 = 8 часов. Когда речь идет об общем времени движения, то нам нужно сложить время движения по течению и время движения против течения (пользуемся вторым правилом, которое разбирали при решении задач на движение вдогонку). Получаем:

30 / (8+х) + 30 / (8-х) = 8

Решаем полученное уравнение. Для этого приводим дроби к общему знаменателю:

(30 (8+х) + 30 (8-х) – 8 (8-х) (8+х)) / (8-х) (8+х) = 0

Умножаем обе части уравнения на (8-х) (8+х):

240 + 30х + 240 – 30х – (64 – 8х) (8+х) = 0

480 – 512 – 64х + 64х – 8х 2 = 0

3. Возвращаемся к условию задачи. Нам необходимо было найти скорость течения, которую мы обозначили за х. Так как скорость не может быть отрицательной, то х1 = -2 противоречит условию задачи. Следовательно, скорость течения равна 2 км/ч.

Итак, мы разобрались, как решать задачи на движения. В ЕГЭ 2019 помимо задач на движение могут содержаться и другие текстовые задачи: на смеси и сплавы, на работу, на проценты. О том, как их решать, вы можете узнать на нашем сайте.

источники:

http://izamorfix.ru/matematika/arifmetika/zadachi_po_reke.html

http://yourrepetitor.ru/kak-reshat-zadachi-na-dvizhenie-na-ege-po-matematike-2019/

В материале «Холодные и теплые течения Таблица» представлены основные океанические течения и их принадлежность к океанам.

Океан Теплые течения Холодные течения
Тихий Северное Пассатное
Южное Пассатное
Межпассатное противотечение
Аляскинское
Северо-Тихоокеанское
Куросио
Восточно-Австралийское
Западных Ветров
Перуанское
Калифорнийское
Атлантический Северное Пассатное
Южное Пассатное
Гольфстрим
Северо-Атлантическое
Гвинейское
Антильское
Гвианское
Бразильское
Западных Ветров
Лабрадорское
Бенгельское
Канарское
Индийский Южное Пассатное
Муссонное
Мозамбикское
Мыса Игольного
Западных Ветров
Сомалийское
Северный Ледовитый Западно-Гренландское
Шпицбергенское
Нордкапское
Норвежское
Трансарктическое
Восточно-Гренландское

Другие таблицы по географии

Поделиться ссылкой:

Классическим примером текстовой задачи, которая может встретиться вам на ЕГЭ, является задача на движение. Эти задачи довольно разнообразны и включают в себя: задачи на движение навстречу, задачи на движение вдогонку, задачи на движение по реке. И поэтому вопрос, как же решать задачи на движение, иногда ставят учеников в тупик.

Научиться решать такие задачи довольно легко, для этого нужно знать алгоритм, состоящий всего из 3 шагов.

  1. Формула, которую обязательно нужно знать, и секрет, как ее легко запомнить
  2. Как решать задачи на движение: 3 простых шага
  3. Задачи на движение вдогонку: примеры с решением
  4. Задачи на движение навстречу: примеры с решением
  5. Задачи на движение по течению и против течения: примеры с решением

Формула, которую обязательно нужно знать, и секрет, как ее легко запомнить

Для решения любой задачи на движение вам обязательно нужно знать всего одну формулу, которая вам уже давно известна:Kak reshat zadachi na dvigenieИ уметь правильно выражать из этой формулы скорость и время:Kak reshat zadachi na dvigenie1Многие ученики путаются при записи этих формул, допуская ошибки. Чтобы раз и навсегда запомнить формулы нахождения расстояния, скорости и времени, просто нарисуй треугольник. В верхнем углу треугольника напиши S, а внизу — V и t. Проведи горизонтальную черту между ними. Теперь мы можем закрыть рукой ту величину, которую нам нужно найти, и увидим формулу нахождения этой величины. Например, нам нужно найти расстояние. Закрываем рукой S, и на нашем рисунке останется V t – это и есть формула нахождения расстояния. Или нам нужно найти время. Закрываем рукой t, и на нашем рисунке остается  – формула нахождения времени. Нужно найти скорость? Закрываем рукой V, получаем  – формулу нахождения скорости. Главное запомнить, что S должна быть в верхнем углу. Это можно сделать, например, с помощью ассоциации, что S похожа на змею, а змея – хозяйка горы, поэтому она на вершине. Вот как выглядит такой магический треугольник:Kak reshat zadachi na dvigenie3

Чтобы правильно решить задачу на движение нужно:

  1. Определить неизвестное и составить таблицу на основании условия задачи.
  2. Составить уравнение на основании таблицы.
  3. Вернуться к условиям задачи и записать правильный ответ.

Давайте подробнее разберем каждый шаг:

  1. Вначале нам нужно внимательно прочитать условие задачи и определить, что же взять за переменную Х. Чаще всего в задачах на движение удобнее всего за переменную Х обозначить скорость. Если же скорость нам прямо дана в условиях задачи, то за переменную Х обозначаем время. Если в условиях задачи прямо указаны значения и скорости, и времени, тогда за переменную Х берем расстояние. Затем из условий задачи определить все, что нам известно и занести в таблицу.
  2. На основании полученной таблицы составляем уравнение и решаем его. После решения уравнения не торопимся записывать ответ. Ведь нахождение Х – это не всегда ответ к исходной задаче. Такую ошибку совершают многие ученики: фактически правильно решив задачу, они записывают неправильный ответ.
  3. После решения уравнения возвращаемся к условиям задачи и смотрим, что же требовалось найти. Находим неизвестное и записываем ответ.

Задачи на движение бывают разными. В таких задачах участники движения могут двигаться навстречу друг другу, вдогонку, они могут двигаться по реке (против течения или по течению). Каждая из этих задач имеет особенности решения, о которых мы поговорим ниже и разберем на примерах.

Задачи на движение вдогонку: примеры с решением

Kak reshat zadachi na dvigenie10

При решении задачи, по условия которой оба участника движения двигаются в одном направлении, как правило, сравнивается время их движения. Необходимо запомнить правила:

  1. Если время движения сравнивается (то есть присутствуют слова больше/меньше), то мы приравниваем время и прибавляем слагаемое. То есть чтобы получить большее время, мы прибавляем к меньшему времени что-то еще (из условий задачи).
  2. Если условия задачи содержат общее время, то дроби, выражающее время, складываются.

Давайте разберем, как работают эти правила при решении задач.

Задача 1

Велосипедист и автомобилист одновременно выехали из пункта А в пункт Б, расстояние между которыми равно 50 км. Известно, что скорость автомобилиста на 40 км/ч больше, чем у велосипедиста, в результате чего автомобилист приехал в пункт Б на 4 часа раньше. Найдите скорость велосипедиста.

Решение:

1. Необходимо определить, что взять за переменную Х и составить таблицу. Вспоминаем, что удобнее всего за Х обозначить скорость в том случае, если она прямо не указано в условиях задачи.

В нашем случае скорость в условиях задачи не указана, поэтому скорость велосипедиста обозначаем за Х.

Составляем таблицу, данные для которой берем из условий задачи.

Итак, расстояние (S) нам известно – 50 км, скорость велосипедиста – х, скорость автомобилиста на 40 км/ч больше, значит она равна х + 40. Чтобы определить время вспоминаем формулу t = S / V и подставляем в нее наши значения. Время, затраченное велосипедистом, получится 50 / х, а время, затраченное автомобилистом — 50 / (х + 40).Kak reshat zadachi na dvigenie42. На основании таблицы и условий задачи необходимо составить уравнение.

Из условий задачи нам известно, что автомобилист приехал раньше велосипедиста на 4 часа (смотрим наше первое правило). Это значит, что велосипедист затратил на 4 часа больше времени, чем автомобилист. Следовательно,

50 / (х + 40) + 4 = 50 / х

Решаем полученное уравнение, для этого приводим наши дроби к одному знаменателю:

50х + 4х (х + 40) – 50 (х+40) / х (х + 40) = 0

(50х + 4х2 + 160х – 50х – 2000) / х (х+40) = 0

(4х2 + 160х – 2000) / (х2 + 40х) = 0

Умножим обе части уравнение на х2 + 40х:

2 + 160х – 2000 = 0

Разделим обе части уравнения на 4:

х2 + 40х – 500 = 0

Находим дискриминант:

D = 402 – 4 * 1 * (-500) = 3600

Далее находим корни уравнения:

х1 = 10

х2 = — 50

3. Возвращаемся к условиям задачи и вспоминаем, что же требовалось найти.

Нам нужно было определить скорость велосипедиста, которую мы обозначили за Х.

Скорость велосипедиста должна быть положительна, поэтому х2 не подходит по смыслу задачи. Следовательно, нас интересует только х1 и скорость велосипедиста равна 10 км/ч.

Ответ: 10 км/ч.

Задача 2

Велосипедист выехал с постоянной скоростью из города А в город Б, расстояние между которыми равно 80 км. На следующий день он поехал обратно, при этом его скорость была на 2 км/ч больше прежней. По пути велосипедист останавливался и отдыхал 2 часа. В итоге на возвращение из города Б в город А у него ушло времени столько же, сколько на путь из города А в город Б. Найдите скорость велосипедиста на пути из города А в город Б.

Решение:

1. Обозначим скорость велосипедиста на пути из города А в город Б как переменную Х.

Составим таблицу.

Из условий задачи: расстояние — 80 км, скорость велосипедиста во второй день – х. Его скорость во второй день была на 2 км/ч больше, чем в первый день, т.е. в первый день она была ниже, следовательно, скорость велосипедиста в первый день равна х – 2. Определим затраченное велосипедистом время на путь по формуле t = S / V. Тогда время, затраченное в первый день на путь равно 80 / х, во второй день — 80 / (х + 2).Kak reshat zadachi na dvigenie52. На основании таблицы и условий задачи составим уравнение.

Из условий задачи нам известно, что во второй день велосипедист останавливался и отдыхал 2 часа, следовательно, в пути он провел на 2 часа меньше (смотрим наше первое правило).  Также нам известно, что общее затраченное велосипедистом время в первый и во второй дни равно. Следовательно:

80 / (х + 2) + 2 =  (80 / х)

Решаем полученное уравнение, для чего приводим дроби к общему знаменателю:

(80х + 160 – 80х – 2х (х+2)) / х (х + 2) = 0

Умножаем обе части уравнения на х (х + 2):

160 – 2х2 + 4х = 0

— 2х2 — 4х + 160 = 0

Делим обе части уравнения на -2:

х2 + 2х – 80 = 0

Находим дискриминант:

D = 22 – 4 * 1 * (-80) = 4 + 320 = 324

Тогда корни уравнения равны:

х1 = 8

х2 = — 10

3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость велосипедиста на пути из города А в город Б, которую мы обозначали за Х.

Скорость должна быть положительна, поэтому х2 = — 10 не подходит по смыслу задачи. Следовательно, скорость велосипедиста равна 8.

Ответ: 8 км/ч.

Задачи на движение навстречу: примеры с решением

Kak reshat zadachi na dvigenie11

Главное, что нужно помнить о движении навстречу: скорости участников движения складываются.

В тех случаях, когда нам неизвестно общее расстояние, то есть мы не можем его определить из условий задачи и из составленных уравнений, данное расстояние следует принимать за единицу.

Примеры решения задач на движение навстречу:

Задача 1

Из города А в город Б выехал автомобилист, через 3 часа навстречу ему выехал мотоциклист со скоростью 60 км/ч. Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Расстояние между городами А и Б равно 470 км. Найдите скорость автомобилиста.

Решение:

1. Обозначим скорость автомобилиста как Х.

Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Следовательно, автомобилист проехал 350 км, а мотоциклист 470 – 350 = 120 км.

Составим таблицу:Kak reshat zadachi na dvigenie62. Составим уравнении на основании таблицы и условий задачи.

Из условий задачи известно, что автомобилист ехал на 3 часа дольше, чем мотоциклист (пользуемся первым правилом, которое разбирали при решении задач на движение вдогонку). Следовательно:

350/х = 120/60 + 3

350/х = 5

Решаем полученное уравнение:

5х = 350

х = 70

3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость автомобилиста, которую мы обозначали за Х. Следовательно, скорость автомобилиста равна 70 км/ч.

Ответ: 70 км/ч.

Задача 2

Из городов А и Б одновременно навстречу друг другу выехали автомобилист и велосипедист. Автомобилист приехал в город А на 6 часов раньше, чем велосипедист приехал в город Б. Встретились они через 4 часа после начала движения. Сколько времени затратил автомобилист на путь из города Б в город А?

Решение:

1. Время автомобилиста обозначим как Х.

Примем расстояние между городами А и Б за единицу. Остальные данные берем из условий задачи.

Составим таблицу:Kak reshat zadachi na dvigenie72. Составим уравнение на основании таблицы и условий задачи.

Известно, что велосипедист и автомобилист встретились через  4 часа после начала движения  и в сумме преодолели все расстояние от города А до города Б. То есть все расстояние от города А до города Б было преодолено за 4 часа.

Вспоминаем, что при движении навстречу скорости движения участников складываются. Подставим в формулу пути известные нам данные:

((1 / х) +  (1 / (х — 6))) * 4 = 1

Решаем полученное уравнение:

(4 / х) +  (4 / (х — 6)) = 1

Приводим дроби к одному знаменателю:

(4х — 24 + 4х — х2 + 6х) / (х (х — 6))  = 0

Делим обе части уравнения на х (х — 6), при условии, что х > 6:

2 + 14х — 24 = 0

Умножим обе части уравнение на -1:

х2 — 14х + 24 = 0

Находим дискриминант нашего квадратного уравнения:

D = 142 – 4 * 1 * 24 = 100

Находим корни уравнения:

х1 = 12

х2 = 2

х2 < 6, следовательно, корнем уравнения не является.

3. Возвращаемся к условиям задачи. Нам необходимо было определить, сколько времени затратил автомобилист на путь из города Б в город А. Это время мы обозначали за Х. Следовательно, автомобилист затратил на путь из города Б в город А 12 часов.

Ответ: 12 часов.

Задачи на движение по течению и против течения: примеры с решением

Kak reshat zadachi na dvigenie12

В условиях задач на движение по реке всегда дано две скорости: собственная скорость судна (скорость, с которой он может двигаться в неподвижной воде) и скорость течения.

При этом возможны две ситуации: когда судно движется по течению и когда судно движется против течения.

Когда судно движется по течению, то течение помогает судну двигаться, оно начинает двигаться быстрее, следовательно, собственная скорость судна и скорость течения складываются.

Когда же судно двигается против течения, то оно ощущает сопротивление, плыть ему становится тяжелее. В этом случае скорость течения будет вычитаться из собственной скорости судна.

Давайте рассмотрим примеры решения задач на движение по реке.

Задача 1

Катер прошел против течения реки 160 км/ч и вернулся в пункт отправления, затратив времени на обратный путь на 8 часов меньше. Найдите скорость катера в неподвижной воде, если известно, что скорость течения реки равна 5 км/ч.

Решение:

1. Обозначим собственную скорость катера – х.

Составим таблицу:Kak reshat zadachi na dvigenie82. На основании таблицы и условий задачи составим уравнение.

По условиям задачи известно, что время, затраченное на путь по течению реки, на 8 часов меньше, чем время, затраченное на путь против течения реки (пользуемся первым правилом, которое разбирали при решении задач на движение вдогонку). Соответственно:

160 / (х + 5) + 8 = 160 / (х — 5)

Решаем данное уравнение. Для этого приводим дроби к общему знаменателю:

(160 (х – 5) + 8 (х – 5) (х + 5) – 160 (х + 5)) / (х – 5) (х + 5) = 0

(160х – 800 + (8х – 40) (х + 5) – 160х — 800) / (х – 5) (х + 5)  = 0

Умножаем обе части уравнения на (х – 5) (х + 5):

-1600 + 8х2 + 40х – 40х – 200 = 0

2 – 1800 = 0

2 = 1800

х2 = 225

х1,2 = ±15

3. Возвращаемся к условию задачи. Нам необходимо было найти собственную скорость катера, которую мы обозначили за Х. Так как скорость не может быть отрицательной, то х1 = -15 противоречит условию задачи. Следовательно, собственная скорость катера равна 15 км/ч.

Ответ: 15 км/ч.

Задача 2

Моторная лодка вышла в 9:00 из пункта А в пункт Б, расстояние между которыми 30 км. Пробыв в пункте Б 3 часа, моторная лодка повернула назад и вернулась в пункт А в 20:00. Найдите скорость течения реки, если известно, что собственная скорость моторной лодки 8 км/ч.

Решение:

1. Обозначим скорость течения реки за х. Остальные данные берем из условия задачи.

Составим таблицу:Kak reshat zadachi na dvigenie92. Составим уравнение.

Нам известно, что моторная лодка начала свое движение в 9:00, а закончила в 20:00, а также в течение этого времени пробыла без движения во время стоянки – 3 часа. Таким образом, общее время движения будет 20 – 9 – 3 = 8 часов. Когда речь идет об общем времени движения, то нам нужно сложить время движения по течению и время движения против течения (пользуемся вторым правилом, которое разбирали при решении задач на движение вдогонку). Получаем:

30 / (8+х) + 30 / (8-х) = 8

Решаем полученное уравнение. Для этого приводим дроби к общему знаменателю:

(30 (8+х) + 30 (8-х) – 8 (8-х) (8+х)) / (8-х) (8+х) = 0

Умножаем обе части уравнения на (8-х) (8+х):

240 + 30х + 240 – 30х – (64 – 8х) (8+х) = 0

480 – 512 – 64х + 64х – 8х2 = 0

2 = 32

х2 = 4

х1,2 = ±2

3. Возвращаемся к условию задачи. Нам необходимо было найти скорость течения, которую мы обозначили за х. Так как скорость не может быть отрицательной, то х1 = -2 противоречит условию задачи. Следовательно, скорость течения равна 2 км/ч.

Ответ: 2 км/ч.

Итак, мы разобрались, как решать задачи на движения. В ЕГЭ 2023 помимо задач на движение могут содержаться и другие текстовые задачи: на смеси и сплавы, на работу, на проценты. О том, как их решать, вы можете узнать на нашем сайте, а также .

Наталия Годунко

Систематизируйте свои знания о течениях, заполнив в тетради таблицу. 1. Каково значение течений для нашей планеты 2. Как образуется течение 3. Какие бывают течения 4. Как образно называют течения 5. Самые крупные течения

5 лет назад

Александра Мовчан

+8

Течения

  1. Значение течений: течения влияют на климат нашей планеты.
  2. Причины образования течений: течения образовываются в результате движения воздушных масс над океанами со скоростью от 1 до 9 км/ч.; разностью плотности воды; приливами.
  3. Виды течений: поверхностные и подводные течения; постоянные, периодические и неправильные течения; теплые и холодные течения.
  4. Образное название течений: «реки посреди океана».
  5. Крупные течения: течение Западных ветров, Северо-Атлантическое, Гольфстрим, Куросио.

Ваш ответ

Как написать хороший ответ?

Интересное

  • Лучшие пляжи Мармариса в 2021 году
  • Виза в Австрию для россиян
  • Музеи Углича
  • ТОП 5 лучших отелей в Стамбуле по соотношению цены и качества
  • Путевки на отдых Текирова с аквапарком

Опрос

Какой бюджет закладываете на развлечения во время отдыха? (рестораны, активности, экскурсии, сувениры и шоппиг)

Я молодец,
я нашел ошибку!

statsPixel

Понравилась статья? Поделить с друзьями:
  • Fallout shelter как найти загадочного незнакомца
  • Как быстро найти фото на телефоне
  • Как найти эир подс в кейсе
  • Как найти нейтрон водорода
  • Как правильно составить программу дополнительного образования в школе