Как составить транскрибируемую днк

И транскрипция, и трансляция относятся к матричным биосинтезам. Матричным биосинтезом называется синтез
биополимеров (нуклеиновых кислот, белков) на матрице — нуклеиновой кислоте ДНК или РНК. Процессы матричного биосинтеза относятся к пластическому обмену: клетка расходует энергию АТФ.

Матричный синтез можно представить как создание копии исходной информации на несколько другом или новом
«генетическом языке». Скоро вы все поймете — мы научимся достраивать по одной цепи ДНК другую, переводить РНК в ДНК
и наоборот, синтезировать белок с иРНК на рибосоме. В данной статье вас ждут подробные примеры решения задач, генетический словарик пригодится — перерисуйте его себе :)

Перевод РНК в ДНК

Возьмем 3 абстрактных нуклеотида ДНК (триплет) — АТЦ. На иРНК этим нуклеотидам будут соответствовать — УАГ (кодон иРНК).
тРНК, комплементарная иРНК, будет иметь запись — АУЦ (антикодон тРНК). Три нуклеотида в зависимости от своего расположения
будут называться по-разному: триплет, кодон и антикодон. Обратите на это особое внимание.

Репликация ДНК — удвоение, дупликация (лат. replicatio — возобновление, лат. duplicatio — удвоение)

Процесс синтеза дочерней молекулы ДНК по матрице родительской ДНК. Нуклеотиды достраивает фермент ДНК-полимераза по
принципу комплементарности. Переводя действия данного фермента на наш язык, он следует следующему правилу: А (аденин) переводит в Т (тимин), Г (гуанин) — в Ц (цитозин).

Репликация ДНК

Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них
содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между
дочерними клетками.

Транскрипция (лат. transcriptio — переписывание)

Транскрипция представляет собой синтез информационной РНК (иРНК) по матрице ДНК. Несомненно, транскрипция происходит
в соответствии с принципом комплементарности азотистых оснований: А — У, Т — А, Г — Ц, Ц — Г (загляните в «генетический словарик»
выше).

Транскрипция

До начала непосредственно транскрипции происходит подготовительный этап: фермент РНК-полимераза узнает особый участок молекулы ДНК — промотор и связывается с ним. После связывания с промотором происходит раскручивание молекулы ДНК, состоящей из двух
цепей: транскрибируемой и смысловой. В процессе транскрипции принимает участие только транскрибируемая цепь ДНК.

Транскрипция осуществляется в несколько этапов:

  • Инициация (лат. injicere — вызывать)
  • Образуется несколько начальных кодонов иРНК.

  • Элонгация (лат. elongare — удлинять)
  • Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК
    быстро растет.

  • Терминация (лат. terminalis — заключительный)
  • Достигая особого участка цепи ДНК — терминатора, РНК-полимераза получает сигнал к прекращению синтеза иРНК. Транскрипция завершается. Синтезированная иРНК направляется из ядра в цитоплазму.

Фазы транскрипции

Трансляция (от лат. translatio — перенос, перемещение)

Куда же отправляется новосинтезированная иРНК в процессе транскрипции? На следующую ступень — в процесс трансляции.
Он заключается в синтезе белка на рибосоме по матрице иРНК. Последовательность кодонов иРНК переводится в последовательность
аминокислот.

Трансляция

Перед процессом трансляции происходит подготовительный этап, на котором аминокислоты присоединяются к соответствующим молекулам тРНК. Трансляцию можно разделить на несколько стадий:

  • Инициация
  • Информационная РНК (иРНК, синоним — мРНК (матричная РНК)) присоединяется к рибосоме, состоящей из двух субъединиц.
    Замечу, что вне процесса трансляции субъединицы рибосом находятся в разобранном состоянии.

    Первый кодон иРНК, старт-кодон, АУГ оказывается в центре рибосомы, после чего тРНК приносит аминокислоту,
    соответствующую кодону АУГ — метионин.

  • Элонгация
  • Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз.
    Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.

    Доставка нужных аминокислот осуществляется благодаря точному соответствию 3 нуклеотидов (кодона) иРНК 3 нуклеотидам (антикодону) тРНК. Язык перевода между иРНК и тРНК выглядит как: А (аденин) — У (урацил), Г (гуанин) — Ц (цитозин).
    В основе этого также лежит принцип комплементарности.

    Трансляция

    Движение рибосомы вдоль молекулы иРНК называется транслокация. Нередко в клетке множество рибосом садятся на одну молекулу
    иРНК одновременно — образующаяся при этом структура называется полирибосома (полисома). В результате происходит одновременный синтез множества одинаковых белков.

    Полисома

  • Терминация
  • Синтез белка — полипептидной цепи из аминокислот — в определенный момент завершатся. Сигналом к этому служит попадание
    в центр рибосомы одного из так называемых стоп-кодонов: УАГ, УГА, УАА. Они относятся к нонсенс-кодонам (бессмысленным), которые не кодируют ни одну аминокислоту. Их функция — завершить синтез белка.

Существует специальная таблица для перевода кодонов иРНК в аминокислоты. Пользоваться ей очень просто, если вы запомните, что
кодон состоит из 3 нуклеотидов. Первый нуклеотид берется из левого вертикального столбика, второй — из верхнего горизонтального,
третий — из правого вертикального столбика. На пересечении всех линий, идущих от них, и находится нужная вам аминокислота :)

Таблица генетического кода

Давайте потренируемся: кодону ЦАЦ соответствует аминокислота Гис, кодону ЦАА — Глн. Попробуйте самостоятельно найти
аминокислоты, которые кодируют кодоны ГЦУ, ААА, УАА.

Кодону ГЦУ соответствует аминокислота — Ала, ААА — Лиз. Напротив кодона УАА в таблице вы должны были обнаружить прочерк:
это один из трех нонсенс-кодонов, завершающих синтез белка.

Примеры решения задачи №1

Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК),
приведенной вверху.

«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов
во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны
соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»

Задача на транскрипцию и трансляцию

Объяснение:

По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити
ДНК: А-Т, Т-А, Г-Ц, Ц-Г.

Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК:
А-У, Т-А, Г-Ц, Ц-Г.

Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК:
А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что
тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).

Пример решения задачи №2

«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет
следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется
на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону
тРНК»

Задача на транскрипцию и трансляцию

Обратите свое пристальное внимание на слова «Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой
синтезируется участок центральной петли тРНК «. Эта фраза кардинально меняет ход решения задачи: мы получаем право напрямую и сразу
синтезировать с ДНК фрагмент тРНК — другой подход здесь будет считаться ошибкой.

Итак, синтезируем напрямую с ДНК фрагмент молекулы тРНК: АУЦ-ГУУ-УГЦ-ЦГА-УГГ. Это не отдельные молекулы тРНК (как было
в предыдущей задаче), поэтому не следует разделять их запятой — мы записываем их линейно через тире.

Третий триплет ДНК — АЦГ соответствует антикодону тРНК — УГЦ. Однако мы пользуемся таблицей генетического кода по иРНК,
так что переведем антикодон тРНК — УГЦ в кодон иРНК — АЦГ. Теперь очевидно, что аминокислота кодируемая АЦГ — Тре.

Пример решения задачи №3

Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и
аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной
молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.

Задача на транскрипцию и трансляцию

Один триплет ДНК состоит из 3 нуклеотидов, следовательно, 150 нуклеотидов составляют 50 триплетов ДНК (150 / 3). Каждый триплет ДНК
соответствует одному кодону иРНК, который в свою очередь соответствует одному антикодону тРНК — так что их тоже по 50.

По правилу Чаргаффа: количество аденина = количеству тимина, цитозина = гуанина. Аденина 20%, значит и тимина также 20%.
100% — (20%+20%) = 60% — столько приходится на оставшиеся цитозин и гуанин. Поскольку их процент содержания равен, то
на каждый приходится по 30%.

Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? :)

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Рабочий лист №1

ФИО________________________________________________________________

Ход работы:

1. Индивидуально:

1.Ознакомьтесь с небольшим отрывком
биологического текста и определите смысловую (информационную) и не смысловую
(не информационную)  часть текста.

Текст№1:

Биосинтез белков
является важнейшим процессом анаболизма. Все признаки, свойства и функции
клеток и организмов определяются в конечном итоге белками. Белки недолговечны,
время их существования ограничено. В каждой клетке постоянно синтезируются
тысячи различных белковых молекул. Способность клетки синтезировать
определенные белки закреплена наследственно, информация о последовательности
аминокислот в белковой молекуле закодирована в виде последовательности
нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре
конкретного белка, называется 
геном. Ген, локус,фен, белок, нуклеиновые кислоты, смысловая часть,
траскрибируемая часть, биосинтез белка, транскрипция, трансляция, решение задач

Социализация: фронтально

-Возникло ли у вас затруднение в определении
смысловой и не смысловой части текста?_________

2. Индивидуально:

Я вам предлагаю ознакомиться с текстом
гена, кодирующим какой либо белок, внимательно посмотрите и ответьте на вопрос:

-Можете ли вы без затруднений определить
смысловую (информационную) и не смысловую (неинформационную) часть этого текста
гена?
________________

Текст№2 участка
гена:
   
ААТГГЦТАЦААГГГЦЦЦА

Социализация: фронтально

3. Работа в паре:

1.      Попробуйте
сформулировать тему занятия используя не информационную часть текста №1 из
рабочего листа №1(
см. выше)

таблица №1

Неизвестные
понятия и термины

Известные
понятия и термины

смысловая часть гена,траскрибируемая
часть,

биосинтез белка,
транскрипция,ген,решение задач

2.      На
основании сформулированной темы, поставьте цель своего занятия (какой конечный
результат вы бы хотели получить?)_____________________________________________________________________
______________________________________________________________________________

3.      Что для
этого вам необходимо сделать?_______________________________________________________________________

Рабочий лист № 2    №1 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей
карточки, работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 1-2

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ГЦЦТАТАТГГГТАГАТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ГГЦТТТАТГЦГТАААТТГ3′, а затем
осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 1-2

1.

2.

Рабочий лист № 2    №2 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей карточки,
работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 2-1

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ЦЦЦГАТАТГГТТАГАТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ГАЦТТТАТГЦГТГААТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 2-1

1.

2.

Рабочий лист № 2    №3 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей
карточки, работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 3-4

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ЦТЦТАТАТГГАТАГАТЦГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ААЦТГТАТГЦГТЦААТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 3-4

1.

2.

Рабочий лист № 2    № 4 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей
карточки, работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 4-3

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ТТЦГАТАТГГТТАГАТЦГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′АЦЦТЦТАТГАГТЦААТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 4-3

1.

2.

Рабочий лист № 2    № 5 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей
карточки, работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 5-6

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ТТТГАТАТГГАТАГААЦГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ЦЦЦГЦТАТГГГТЦААТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 5-6

1.

2.

Рабочий лист № 2    № 6 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей
карточки, работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 6-5

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ТТЦГАЦАТГГАЦАГАГЦГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ЦЦЦГГГАТГГАТЦААТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 6-5

1.

2.

Рабочий лист № 2    № 7 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей
карточки, работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 7-8

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ТТАГАГАТГГАТАГАГЦГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ЦАЦГАГАТГГАТЦАТТТГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 7-8

1.

2.

Рабочий лист № 2    № 8 (номер
для работы в  паре)

ФИО________________________________________________________________

Алгоритм работы:

Работа в паре:

Используя
рабочий лист № 2 и свой порядковый номер, действуй по алгоритму:

1.Прочитай
напарнику задание из своей карточки.

2.
Выполни в рабочем листе №2 напарника задание № 1 из своей карточки,
объясняя его решение.

3.
Проследи, как твой напарник выполняет задание № 2 из твоей карточки.

4.
Поменяйся ролями с напарником: пусть теперь он объяснит тебе задание своей
карточки, работая по пунктам 1–3.

5.
Поменяйся карточками с напарником. Поблагодари напарника за работу. Смени
партнера.

Логистика
движения в 1 модуле:

Пара                       
Пара

1-2

движение

1-3

3-4

движение

2-4

5-6

движение

5-7

7-8

движение

6-8

Пара 8-7

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ТААГАЦАТГГАЦАГАЦЦГ3′, а
затем осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Задание № 2

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ГАЦГАТАТГГАТТАТТТГ3′, а
затем осуществи транскрипцию (синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

Пара 7-8

1.

2.

Домашнее задание

1 уровень

Задание № 1

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ТЦЦТАТАТГГТТАГАТТГ3′, а затем
осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена

2 уровень

Примени принцип комплементарности и синтезируй
транскребируемую нить ДНК

5′ТЦЦТАТАТГГТТАГАТТГ3′, а затем
осуществи транскрипцию(синтез иРНК по матрице ДНК). Определи, с какого
нуклеотида начнется биосинтез белка? Выпиши смысловую часть гена. Определи
порядок мономеров белка используя таблицу генетического кода

3 уровень

Некоторые вирусы в качестве генетического материала
несут РНК. Такие вирусы, заразив клетку, встраивают ДНК-копию своего генома в
геном хозяйской клетки. В клетку проникла вирусная РНК следующей
последовательности:

5’–ГАУЦГАУГЦАУГЦУУ–3′.

Определите, какова будет последовательность вирусного
белка, если матрицей для синтеза иРНК служит цепь, комплементарная вирусной
РНК.

Напишите последовательность двуцепочечного фрагмента
ДНК, укажите 5′ и 3′ концы цепей. Ответ поясните.

Для
решения задания используйте таблицу генетического кода.

Для решения задания используйте таблицу генетического кода.

Лист самооценки

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ
ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

ФИ ученика_________________

1. На уроке я
работал

активно

пассивно

2. своей работой
на уроке я …

доволен

не
доволен

3. урок для меня
показался

коротким

длинным

4. за урок я

устал

не
устал

5. мое настроение

стало
лучше

стало
хуже

6. материал урока
мне был

понятен

полезен

интересен

не
понятен

бесполезен

скучен

7. домашнее
задание мне кажется

легким

интересным

трудным

не
интересным

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

А – аденин

Т – тимин

Ц – цитозин

Г – гуанин

В состав РНК входят:

А – аденин

У – урацил

Ц – цитозин

Г – гуанин

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) – дезоксирибоза. РНК – одноцепочечная, а ДНК – двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

Свойства генетического кода

  1. Генетические код триплетен, то есть состоит из аминокислот, которые состоят из триплетов, а триплеты – 3 нуклеотида.
  2. Генетический код специфичен, один триплет кодирует одну аминокислоту. Посмотрите на таблицу аминокислот. При пересечении всех трех нуклеотидов у нас нет выбора между аминокислотами, таблица указывает лишь на одну определенную аминокислоту.
  3. Генетический код избыточен, одна аминокислота может быть закодирована более чем одним триплетом нуклеотидов. Здесь важно не запутаться. Опять смотрим на таблицу. Несмотря на то, что пересечение трех нуклеотидов дает 1 аминокислоту, мы видим повторы аминокислот в таблице. Например, аминокислота фенилаланин (сокращенно Фен) кодируется как триплетом УУУ, так и УУЦ. Есть аминокислоты и с большим количеством вариантов.
  4. Неперекрываемость генетического кода. Один и тот же нуклеотид не может входить в состав разных триплетов. Это не значит, что если у нас есть триплет УУУ, то рядом с ним не может быть триплета УЦГ. Это значит, что урацил в этих триплетах – не одна и та же молекула.
  5. Генетический код универсален, то есть, несмотря на все различия между живыми организмами, их генетическая информация кодируется одинаковыми аминокислотами, но в разных последовательностях и вариациях.
  6. Полярность генетического кода. В цепочке аминокислот есть триплеты, которые не несут информацию, а присутствуют для разделения цепи. Так как они не некодирующие, то в таблице у этих сочетаний букв стоит прочерк: УАА, УАГ, УГА.

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

Процесс транскрипции

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

Процесс трансляции

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

Задание ollbio10101120162017в1

В геном одного из растений ввели генно-инженерную конструкцию, похожую на использованную в предыдущем задании. Но промотор был заменён на другой – APETALA 3, который включается в лепестках и тычинках. В дальнейшем получили чистую линию трансгенных растений (линия №1).

Другие растение трансформировали конструкцией, в которой кодирующая часть гена CRE была поставлена под промотор LEA, активирующийся на поздних стадиях формирования зародыша, а ко ди рующая часть гена Flp – под промотор CAULIFLOWER, который активен в чашелистиках и лепест ках. После этого удалось получить чистую линию №2.

А. Какие органы будут светиться у растений из линии №1? Растений из линии №2?

Б. Каким будет фенотип растений первого поколения гибридов между линиями №1 и №2? Для об основания ответа опишите структуру генно-инженерной конструкции с флуоресцентными белками.

В. Каким будет расщепление по фенотипами и генотипам среди потомков второго поколения, полученных при самоопылении гибридов первого поколения? Считайте, что генно-инженерные конструкции наследуются независимо, а кроссинговер внутри конструкций не происходит


А. Красным светом будут светиться лепестки и тычинки, поскольку промотор APETALA 3 активен именно в этих органах. У линии №2 свечения не будет, поскольку в неё не были введены гены, кодирующе флуоресцентные белки.

Б. Поскольку рекомбиназа CRE подействовала на поздних этапах развития зародыша, то у всех потомков F1 произойдёт рекомбинация по сайтам LoxP. Строение этого участка ДНК будет следующим:

В чашелистиках и лепестках на эту последовательность ДНК подействует флиппаза. Это приведёт к тому, что участок между сайтами FRT «перевернётся»:

Это означает, что после включения промотора APETALA 3 в лепестках и тычинках лепестки будут светиться зелёным светом (результат двух рекомбинаций), а тычинки – синим светом (результат только одной рекомбинации). Остальные части растения не должны светиться.

В. Условно обозначим исходную вставку, несущую гены флуоресцирующих белков, в линии №1 как L1 (см. рисунок 1 в условии задачи), а отсутствие вставки обозначим как l0.
Аналогично обозначим генно-инженерную конструкцию, несущую гены рекомбиназы и флипазы, в линии №2 как R (см. рис. 2), а отсутствие вставки будем обозначать как r0. Тогда генотипы родительских линий:
Р: Линия №1 – L1L1 r0r0 × Линия №2 l0l0 RR

Сразу после скрещивания генотипы зигот:
F1: L1l0 Rr0

Но уже при формировании зародыша «включится» рекомбиназа CRE, что приведёт к изменению структуры ДНК-вставки L1. Обозначим получившийся вариант вставки, которая потенциально могла бы светиться синим светом, как L2 (см. рис. 3 из ответа Б). Ни в пестиках, ни в тычинках гены CRE и Flp не «включаются» (не экспрессируются) , поэтому потомкам F2 могут достаться либо L2, либо l0.

Гаметы: 1/4 L2R 1/4 L2r 1/4 l0R 1/4 l0r
Генотипы зигот сразу после образования

Жёлтой заливкой показаны генотипы, в которых не присутствует вставка с рекомбиназами, поэтому генотипы изменяться не будут. Красными точечными рамками показаны генотипы, в которых нет вставку с флуоресцентными белками. В этом случае рекомбинации также не
будет. У этих 1/4 растений с генотипом l0l0 свечения не будет ни в одном из органов. У 3/16 растений с генотипом L2l0 rr будет свечение и чашелистиков, и лепестков синим светом.

У остальных 9/16 растений с генотипами L2- R- на позних этапах образования зародыша произойдёт рекомбинация по сайтам LoxP. Вставка перейдёт обратно в форму L1, которая будет сохраняться по мере вегетативного развития. При образовании лепестков и чашелистиков
начнёт экспрессироваться ген Flp, что приведёт к рекомбинации по прямым повторам FRT. Участок между ними, содержащий гены DsRed и YFP, будет утрачен, а промотор APETALA 3 как бы «приблизится» к кодирующей части гена GFP. Таким образом, лепестки у этих
растений будут светиться зелёным светом, а тычинки – красным.

Ответ: среди потомков второго поколения 1/4 растений не будут светиться вообще, у 3/16 растений и чашелистики, и лепестки будут светиться синим светом, а у оставшихся 9/16 растений лепестки будут светиться зелёным, тогда как свечение тычинок будет красным

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120162017в1

Для исследования различных процессов в живых организмах используют флуоресцентные белки. При облучении, например, ультрафиолетовым светом такой белок светится в видимой части спектра. Получены зеленый (GFP, green fluorescent protein), синий (BFP, blue fluorescent protein), желтый (YFP, yellow fluorescent protein) и даже красный (DsRed, из коралла Discosoma striata) флуоресцентные белки.
В генно-инженерных конструкциях их ставят под определенные промоторы. В зависимости от этого в живом объекте светятся разные части.
35 CaMV – промотор, который работает во всех клетках растений. Генный инженер создал конcтрукцию, схематическая карта которой приведена ниже. Промотор условно изображён в форме пятиугольника, кодирующие части генов – в форме серых прямоугольников, сайты Lox P и FRT – в виде стрелок, показывающих направление асимметричной части. Для получения белкового продукта необходимо, чтобы кодирующая часть оказалась на той же цепи ДНК, что и промотор, находилась в верной ориентации (и при этом – в сторону 5´- конца нити ДНК относительно промотора). Последовательности Lox P и FRT достаточно короткие и не мешают считыванию и-РНК. Чёрными ромбами обозначены терминаторы транскрипции. Считайте, что в этом месте матричный синтез и-РНК прекращается.
А. Каким цветом должны светиться клетки, в которых содержится данная генно-инженерная конструкция? Почему?

Б. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия рекомбиназы CRE. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток?
В. Нарисуйте в тех же условных обозначениях структуру приведённого участка ДНК после действия флиппазы Flp. (Считайте, что при этом рекомбинация произошла только один раз!) Изменится ли после этого свечение клеток?
Г. Предположим, что на исходную последовательнось ДНК в генно-инженерной конструкции сначала подействовали рекомбиназой CRE, а после этого – флиппазой Flp. Нарисуйте схему строения ДНК для этого случая. Каким будет свечение клеток?


В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P.
Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно
друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем

соединит по-новому две нити ДНК (т.е. произойдет рекомбинация).
Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp).

При рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT.

 

Предварительное доказательство (лемма) к задаче 9 (5 баллов).
1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек.

Затем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами “перевернулась”.

2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем
молекулу ДНК и условно обозначим на ней буквами несколько точек.
Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке).

 

А. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом.
Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом:

Свечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток.
В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом:

Клетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»:

В этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор

Задание ollbio09101120172018в2

У одного из представителей семейства Колокольчиковые (Campanulaceae) – платикодона
крупноцветкового (Platycodon grandiflorum) пентамерные цветки, состоящие из круга чашелистиков,
круга лепестков, круга тычинок и круга плодолистиков (см. рис.). Иногда среди платикодонов можно найти
махровые цветки, у которых на месте тычинок развиваются лепестки.
А. Нарисуйте диаграмму махрового цветка платикодона. На диаграмме обозначьте части цветка.
Предложите для него формулу.
Б. Предположим, что в природной популяции
платикодона крупноцветкового возникла форма
с махровыми цветками (по остальным признакам
форма не отличается от нормы). Образование
махровых цветков определяется одной рецессивной
мутацией. Ученые пересадили из природы на
экспериментальный участок два мутантных и одно
нормальное растение. Считая, что при опылении
пыльца всех особей смешивается, пыльца из
природных популяций не попадает на участок, и
при этом возможно самоопыление, рассчитайте,
каким может быть расщепление в потомстве первого
поколения по генотипам и фенотипам.
В. Далее среди потомков первого поколения выбрали только те растения, у которых цветки нормальные,
а остальные убрали с участка до опыления. С оставленных растений собрали семена и посеяли. Каким
может оказаться расщепление среди потомков второго поколения по генотипу и фенотипу?


А. Опираясь на рисунок, мы видим, что чашелистики изображены свободными, тогда как все лепестки
срослись. Пять тычинок свободные, а плодолистиков три, и они также срослись. (У Колокольчиковых
завязь нижняя, но это не принципиально для дальнейшего решения.) Можно предложить следующую
формулу для типичного цветка в сем. Колокольчиковые: * Ч5 Л(5) Т5 П(3) или * Ca5 Co(5) A5 G(3) . Поскольку у махровых форм происходит замена тычинок на лепестки, в формуле вместо тычинок нужно указать дополнительный круг лепестков: * Ч5 Л(5)+(5) П(3) или * Ca5 Co(5)+(5) G(3) .

При построении диаграммы должны выполняться следующие принципы:
1. Органы в круге располагаются друг относительно друга под углом 360 : 5 = 72 градуса.
2. В двух соседних кругах органы должны чередоваться, т.е. положение медианы каждого
органа должно приходиться строго на промежуток между органами предыдущего круга. Для
пентамерного цветка между органами в соседних кругах угол должен составлять 36 градусов. На
рисунке видно, что плодолистики (поскольку из три) не могут правильно чередоваться с пятью
тычинками.
3. Если рассматривать органы через круг, то их медианы должны находиться друг напротив друга
(органы противолежат).
4. Центром цветка считается центр завязи. Поэтому при проверке расположения органов в цветке все
линии будут проводиться через центр завязи и центральную (медианную) жилку органа.
5. На рисунке показан цветок с центрально-угловой плацентацией (гинецей синкарпный). Между
гнездами завязи находятся перегородки (септы). Для плодолистика медианой считается линия, делящая угол между септами ровно пополам.

 

Б. Обозначим ген, отвечающий за проявление махровости как А. Поскольку мы знаем, что махровость цветков определяется рецессивной мутацией по этому гену, генотип махровых растений может быть только аа. Взятое из природы нормальное растение могло оказаться как гомозиготой АА, так и носителем рецессивного аллеля Аа. Поэтому возможно два варианта расщепления среди потомков.
Из природы были взяты два махровых и одно немахровое растение, и по семенной продуктивности все три растения одинаковы, следовательно, 2/3 семян будет собрано с махровых, и 1/3 – с немахровых растений. Однако пыльцу может образовать только растение с немахровыми цветками.
Вариант 1. Немахровое растение – гомозигота АА.

Тогда среди потомков в данном скрещивании должно оказаться:
1/3 (≈33.3%) АА 2/3 (≈66.7%)
Аа или 1 АА : 2 Аа
По фенотипу все потомки окажутся немахровыми.
Вариант 2. Немахровое растение – гетерозигота Аа.
Среди женских гамет соотношение вклад каждого из растений останется прежним, т.е. 2/3 от
всех аллелей а придут от махровых растений. Среди оставшихся 1/3 женских гамет 1/6 будет нести
аллель а, и еще 1/6 – аллель А. Таким образом, соотношение среди женских гамет будет 5/6 а и 1/6 А.
Среди мужских гамет 1/2 будет нести аллель А, и еще 1/2 – аллель а.

Таким образом, среди потомков первого поколения возможно следующее расщепление по
генотипам: 1/12 АА (≈8.3%) 6/12=1/2 Аа (50.0%) 5/12 аа (≈41.7%)
1 АА : 6 Аа : 5 аа
По фенотипам: 7/12 (≈50.3%) немахровых 5/12 (≈41.7%) махровых
7 немахровых : 5 махровых

 

В. В первом варианте скрещивания махровых растений не окажется. Рассчитаем доли потомков
по генотипам и фенотипам во втором поколении.
1/3 (≈33.3%) АА дадут только гаметы А, тогда как 2/3 растений с генотипом Аа дадут половину
гамет А и вторую половину гамет а. Таким образом, суммарно гамет А в популяции окажется 2/3,
и 1/3 гамет, несущих аллель а.

Таким образом, среди потомков второго поколения возможно следующее расщепление по
генотипам: 4/9 АА (≈44.4%) 4/9 Аа (44.4%) 1/9 аа (≈11.1%)
4 АА : 4 Аа : 1 аа
По фенотипам: 8/9 (≈88.9%) немахровых 1/9 (≈11.1%) махровых
8 немахровых : 1 махровых.
Во втором случае (из природы было взято гетерозиготное немахровое растение) после того,
как мы удалим все махровые растения, останется 1/7 АА (≈14.3%) и 6/7 Аа (≈85.7%). Последние
дадут половину гамет А (3/7) и половину гамет а (3/7). Суммарная доля гамет А составит 4/7. Тогда:

Во втором случае расщепление среди потомков второго поколения будет:
по генотипам:
16/49 АА (≈32.6%) 24/49 Аа (≈49.0%) 9/49 аа (≈18.4%)
25 АА : 30 Аа : 9 аа
По фенотипам: 40/49 (≈81.6%) немахровых 9/49 (≈18.4%) махровых
40 немахровых : 9 махровых.

pазбирался: Надежда | обсудить разбор

Задание ollbio08101120172018в2

У многих видов бактерий для защиты от вирусов есть специальные ферменты – рестриктазы. Они расщепляют ДНК по определённым симметричным последовательностям, которые в ДНК бактерий данного вида отсутствуют или модифицированы присоединением к основанию метильной группы. Они называются по первым буквам латинского названия рода и вида бактерии, например, Bgl – рестриктаза из гнилостной бактерии Bacillus globigii. При действии такого фермента на очищенную ДНК разрывы происходят в
строго определённых местах и образуются фрагменты ДНК определённой длины с определёнными последовательностями на концах. Например, рестриктаза BglII расщепляет последовательность:
При этом на концах полученных фрагментов ДНК всегда будут одинаковые и комплементарные друг другу одноцепочечные участки ДНК, называемыми «липкими концами», т.к. они могут соединяться между собой за счёт образования комплементарных пар оснований. Если такой комплекс обработать ферментом

ДНК-лигазой, произойдёт ковалентное соединение фрагментов, соединённых «липкими концами». Это лежит в основе метода получения рекомбинантных ДНК.
При таком сшивании соединение концов одного фрагмента при его длине более 500 нуклеотидных пар происходит в 10 раз чаще, чем соединение концов двух разных фрагментов.
У многих бактерий кроме основной хромосомы присутствуют небольшие дополнительные ДНК, называемые плазмидами. Они представляют собой кольцевые молекулы ДНК, способные к репликации в клетке, и несут гены, отсутствующие в основной хромосоме, например, гены устойчивости к антибиотикам.
Плазмида pСО36 несёт гены устойчивости к эритромицину и ампицилину и состоит из 4200 пар нуклеотидов. Рестриктаза BglII расщепляет эту плазмиду только по гену устойчивости к эритромицину в начале этого гена. В районе расщепления ДНК имеет последовательность нуклеотидов:

Плазмиду обработали рестриктазой BglII до полного расщепления. После этого рестриктазу удалили и смесь фрагментов ДНК обработали ДНК-лигазой. Полученные ДНК смешали с клетками бактерий, не несущих плазмид и неустойчивых к антибиотикам. В результате произошла генетическая трансформация: в часть клеток проникла ДНК плазмиды и изменила их свойства. Полученные клетки высеяли на твёрдую питательную среду, не содержащую антибиотиков. В результате деления каждая клетка образовала
колонию генетически идентичных клеток. Было получено 51366 таких колоний. Клетки из каждой колонии пересеяли на среду, содержащую ампициллин, на которой рост дали 573 колонии. Клетки из колоний,
выросших на ампициллине, пересеяли на среду с эритромицином. На этой среде выросла 51 колония.
Из них выдели плазмидную ДНК, и оказалось что она представлена двумя разными по длине формами, причём каждой колонии был только один вид плазмиды.
А. Какова (в %) эффективность трансформации клеток плазмидной ДНК?
Б. Почему не все колонии, выросшие на ампициллине, дали рост на эритромицине?
В. Как можно объяснить разную длину плазмид в устойчивых к эритромицину колониях?
Г. Сколько всего размерных классов плазмид можно найти в колониях, устойчивых к ампицилину?


Сначала найдём место расщепления плазмиды рестриктазой BglII:

Таких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент:

Остаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину.

При сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к
ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину.
Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один
фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться
в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного
большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет
замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с
разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально.
А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в
результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут
на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578,
выросших на ампицилине. Эффективность трансформации представляет долю трансформированных
клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12%
Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в
результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому
антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину.
В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента).
Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов
и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить
по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно.
Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор

Задание EB2719t

Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: АГТЦЦГАТГТГТ. Определите последовательность кодонов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка. Ответ поясните. Для решения задания используйте таблицу генетического кода.


Выписываем ДНК.

АГТЦЦГАТГТГТ

По принципу комплементарности строим иРНК на матрице ДНК.

УЦАГГЦУАЦАЦА

Теперь, опять же по принципу комплементарности, строим тРНК.

АГУ, ЦЦГ, АУГ, УГУ

Определяем с помощью таблицы аминокислотную последовательность синтезируемого белка по иРНК.

сер-гли-тир-тре

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319D

В некоторой молекуле ДНК на долю нуклеотидов с тимином приходится 14%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.


Для решения данного задания следует вспомнить правило Чаргаффа, которое гласит, что количество аденина равно количеству тимина, а количество гуанина – цитозину. Это согласуется и с правилом комплементарности.

По условию в молекуле ДНК на тимин приходится 14%. Исходя из правила Чаргаффа, на аденин тоже приходится 14%. Остаток приходится на гуанин и цитозин в равных количествах.

Аденин + Тимин = 14%+14% = 28%

Гуанин + Цитозин = 100% – 28% = 72%

Гуанин и Цитозин раздельно: 72% : 2 = 36%

Ответ: 36

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2719D

Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов:ЦГЦЦЦГАТАЦТАГАЦ

В результате мутации – замены одного нуклеотида в ДНК третья аминокислота во фрагменте полипептида заменилась на аминокислоту Гис. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

 


  1. По принципу комплементарности на основе ДНК находим иРНК.

ДНК: ЦГЦ-ЦЦГ-АТА-ЦТА-ГАЦ

иРНК: ГЦГ-ГГЦ-УАУ-ГАУ-ЦУГ

  1. Третья аминокислота, которая кодировалась до мутации состоит из нуклеотидов УАУ, то есть это аминокислота Тир.

Аминокислота Гис кодируется следующими триплетами: ЦАУ, ЦАЦ.

В условии сказано, что произошла замена лишь одного нуклеотида. Значит, аминокислота Гис кодируется последовательностью ЦАУ.

После мутации:

иРНК: ГЦГ-ГГЦ-ЦАУ-ГАУ-ЦУГ

ДНК: ЦГЦ-ЦЦГ-ГТА-ЦТА-ГАЦ

  1. Одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом благодаря такому свойству генетического кода как универсальность

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0520D

Установите соответствие между характеристиками и видами молекул: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ ВИДЫ МОЛЕКУЛ

А)   содержит один вид азотистых оснований

Б)    обеспечивает энергией реакции синтеза

В)    входит в состав рибосом

Г)    содержит макроэргические связи

Д)    содержит четыре вида азотистых оснований

Е)    служит матрицей при трансляции

1)     РНК

2)     АТФ


РНК расшифровывается как рибонуклеиновая кислота. РНК. Сама РНК состоит из цепи нуклеотидов. Нуклеотиды РНК включают в себя следующие части: фосфатная группа, сахар рибоза и азотистое основание. Одно из отличий ДНК от РНК – азотистые основания. Для РНК это аденин, урацил, гуанин и цитозин, а для ДНК вместо урацила тимин. РНК играют важную роль в биосинтезе белка в клетке. РНК входит в состав рибосом.

АТФ расшифровывается как аденозинтрифосфат. Это молекулы, которые являются универсальным аккумулятором энергии в клетке. АТФ включает в себя азотистое основание аденин, сахар рибозу и 3 остатка фосфорной кислоты. Фосфатные группы соединены макроэргическими связями, есть в них заключено много энергии, которая при разрушении этих связей высвобождается. Синтез АТФ происходит в животных клетках в митохондриях, а в растительных и в митохондриях, и в хлоропластах. АТФ можно обнаружить в цитоплазме, ядре, митохондриях, хлоропластах. В растительных клетках эти молекулы образуются в результате фотосинтеза, а в животных – в результате дыхания.

Один вид азотистых оснований содержит АТФ, это аденин.

Обеспечивает энергией тоже АТФ.

Входит в состав рибосом РНК.

Макроэргические связи содержит АТФ.

Четыре вида азостистых оснований содержит РНК, это аденин, урацил, гуанин, цитозин.

Служит матрицей при трансляции РНК, трансляция – один из этапов биосинтеза белка.

Ответ: 221211

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0320D

Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.


Одна аминокислота кодируется одним триплетом нуклеотидов. В условии сказано, что белок состоит из 102 аминокислот, значит, из 102 триплетов.

Ответ: 102

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0319t

Участок гена состоит из 100 триплетов. Сколько аминокислот будет представлено в молекуле кодируемого этим участком фрагментом белка? В
ответе запишите только соответствующее число.


Одна аминокислота кодируется одним триплетом нуклеотидов. Следовательно, 100 триплетов – 100 аминокислот.

Ответ: 100

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11284

Дана цепь ДНК: ЦТААТГТААЦЦА. Определите:

А) Первичную структуру закодированного белка.

Б) Процентное содержание различных видов нуклеотидов в этом гене (в двух цепях).

В) Длину этого гена.

Г) Длину белка.

https://bio-ege.sdamgia.ru/get_file?id=25056

Примечание от составителей сайта.

Длина 1 нуклеотида — 0,34 нм

Длина одной аминокислоты — 0,3 нм

Длина нуклеотида и аминокислоты — это табличные данные, их нужно знать (к условию не прилагаются)


Содержание верного ответа и указания к оцениванию Баллы
  1. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому и-РНК: ГАУ-УАЦ-АУУ-ГГУ.
  2. По таблице генетического кода определяем аминокислоты: асп — тир — иле — гли-.
  3. Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА, поэтому вторая цепь ДНК: ГАТ-ТАЦ-АТТ-ГГТ.
  4. Количество А=8; Т=8; Г=4; Ц=4. Все количество: 24, это 100%. Тогда

А = Т = 8, это (8х100%) : 24 = 33,3%. Г = Ц = 4, это (4х100%) : 24 = 16,7%.

  1. Длина гена: 12 х 0,34 нм (длина каждого нуклеотида) = 4,08 нм.
  2. Длина белка: 4 аминокислоты х 0,3 нм (длина каждой аминокислоты) = 1,2 нм.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11283

В одной молекуле ДНК нуклеотиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.


Содержание верного ответа и указания к оцениванию Баллы
  1. Аденин (А) комплементарен тимину (Т), а гуанин (Г) — цитозину (Ц), поэтому количество комплементарных нуклеотидов одинаково;
  2. количество нуклеотидов с аденином составляет 24%;
  3. количество гуанина (Г) и цитозина (Ц) вместе составляют 52%, а каждого из них — 26%.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11273

Ген содержит 1500 нуклеотидов. В одной из цепей содержится 150 нуклеотидов А, 200 нуклеотидов Т, 250 нуклеотидов Г и 150 нуклеотидов Ц. Сколько нуклеотидов каждого вида будет в цепи ДНК, кодирующей белок? Сколько аминокислот будет закодировано данным фрагментом ДНК?


Содержание верного ответа и указания к оцениванию Баллы
  1. В кодирующей цепи ДНК в соответствии с правилом комплементарности нуклеотидов будет содержаться: нуклеотида Т — 150, нуклеотида А — 200, нуклеотида Ц — 250, нуклеотида Г — 150. Таким образом, всего А и Т по 350 нуклеотидов, Г и Ц по 400 нуклеотидов.
  2. Белок кодируется одной из цепей ДНК.
  3. Поскольку в каждой из цепей 1500/2=750 нуклеотидов, в ней 750/3=250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11282

В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы и-РНК и т-РНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?


Содержание верного ответа и указания к оцениванию Баллы
  1. Первичная структура белка определяется последовательностью аминокислот, зашифрованных на участке молекулы ДНК. ДНК является матрицей для молекулы и-РНК.
  2. Матрицей для синтеза белка является молекула и-РНК, а они в пробирке одинаковые.
  3. 3) К месту синтеза белка т-РНК транспортируют аминокислоты в соответствии с кодонами и-РНК.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11276

В процессе трансляции участвовало 30 молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.


  1. Одна т-РНК транспортирует одну аминокислоту. Так как в синтезе белка участвовало 30 т-РНК, белок состоит из 30 аминокислот.
  2. Одну аминокислоту кодирует триплет нуклеотидов, значит, 30 аминокислот кодирует 30 триплетов.
  3. 3) Триплет состоит из 3 нуклеотидов, значит, количество нуклеотидов в гене, кодирующем белок из 30 аминокислот, равно 30х3=90.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21764

Последовательность аминокислот во фрагменте молекулы белка следующая: ФЕН-ГЛУ-МЕТ. Определите, пользуясь таблицей генетического кода, возможные триплеты ДНК, которые кодируют этот фрагмент белка.https://bio-ege.sdamgia.ru/get_file?id=25056


  • Составим цепь иРНК. Для этого выпишем аминокислоты из условия и найдем соответствующие им триплеты нуклеотидов. Внимание! Одну аминокислоту могут кодировать несколько триплетов.

ФЕН – УУУ или УУЦ

ГЛУ – ГАА или ГАГ

МЕТ – АУГ

  • Определим триплеты ДНК по принципу комплементарности

УУУ-ААА

УУЦ-ААГ

ГАА-ЦТТ

ГАГ-ЦТЦ

АУГ-ТАЦ

Содержание верного ответа и указания к оцениванию Баллы
  1. Аминокислота ФЕН кодируется следующими триплетами иРНК: УУУ или УУЦ, следовательно, на ДНК ее кодируют триплеты ААА или ААГ.
  2. Аминокислота ГЛУ кодируется следующими триплетами иРНК: ГАА илиГАГ. Следовательно, на ДНК ее кодируют триплеты ЦТТ или ЦТЦ.
  3. 3) Аминокислота МЕТ кодируется триплетом иРНК АУГ. Следовательно, на ДНК ее кодирует триплет ТАЦ.
Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26715

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая).

5’-ТАТЦГАТТЦГЦЦТГА-3’

3’-АТАГЦТААГЦГГАЦТ-5’

Установите нуклеотидную последовательность участка тРНК который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента. Какой кодон иРНК будет соответствовать антикодону этой тРНК, если она переносит к месту синтеза белка аминокислоту ГЛУ. Ответ поясните. Для решения задания используйте таблицу генетического кода:

https://bio-ege.sdamgia.ru/get_file?id=25056


Выписываем себе смысловую цепь:

5’-ТАТ — ЦГА — ТТЦ — ГЦЦ — ТГА- 3’.

Выписываем транскрибируемую цепь:

3’-АТА — ГЦТ — ААГ — ЦГГ — АЦТ- 5’.

Строим тРНК по транскрибируемой ДНК:

5’УАУ3’, 5’ЦГА3’, 5’УУЦ3’, 5’ГЦЦ3’, 5’УГА3’.

Теперь, пользуясь табличкой генетического кода, обнаружим последовательности иРНК, кодирующие аминокислоту «Глу».

Это последовательности 5’- ГАА — 3’ и 5’- ГАГ — 3’.

Построим комплементарные этим иРНК триплеты тРНК:

3’ЦУУ5’ и  3’ЦУЦ5’. Нам необходимо понять, какая же иРНК, переносящая аминокислоту «Глу» комплементарна антикодону тРНК. Значит, мы должны найти полученные нами кодоны тРНК в построенной ранее цепочке тРНК. Однако, мы получили триплеты ориентированные от 5’ к 3’ концу, а в построенной цепочке наоборот.

Перепишем полученные триплеты в нужной ориентации:

3’УУЦ5’ и 3’ЦУЦ 5’.

Третий триплет последовательности тРНК совпадает с полученным нами триплетом 3’УУЦ5’.

Значит, иРНК, которая переносит аминокислоту «Глу» в данном случае имеет последовательность 5’- ГАА — 3’

Содержание верного ответа и указания к оцениванию Баллы
  1. 1) Нуклеотидная последовательность участка тРНК — УАУ-ЦГА-ЦУУ-ГЦЦ-УГА;

    2) нуклеотидная последовательность кодона ГАА (находим по таблице генетического кода триплеты соответсвующие аминокислоте глу — ГАА; ГАГ);

    3) нуклеотидная последовательность антикодона тРНК — ЦУУ, что соответствует кодону ГАА по правилу комплементарности.

    Примечание.

    Внимательно читайте условие.

    Ключевое слово: «Известно, что все виды РНК синтезируются на ДНК-матрице.»

    В данном задании просят найти тРНК (трилистник), который построен на основе ДНК, а затем уже у нее вычислить местоположение антикодона.

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB26713

Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов на ДНК, кодирующих определенный белок и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода:https://bio-ege.sdamgia.ru/get_file?id=25056


Нам дана тРНК, она ориентирована от 5′ к 3′ концу.

Для удобства, на черновике, выписываем цепь тРНК из условия, чтобы не потерять какой-нибудь нуклеотид:

тРНК 5’УЦГ3′, 5’ЦГА3′, 5’ААУ3′, 5’ЦЦЦ3′

Теперь выписываем тРНК, ориентируя антикодоны не в направлении 5′ к 3′ концу, а наоборот. тРНК 3’ГЦУ5′, 3’АГЦ5′, 3’УАА5′, 3’ЦЦЦ5′

Примечание: когда записываем тРНК, то указываем 5′ и 3′ концы, ставим запятые между тРНК.

Картинки по запросу трнк

Теперь строим цепь иРНК, указываем 5′ и 3′ концы. тРНК ориентирована от 3′ к 5′ , поэтому, учитывая принцип антипараллельности, иРНК ориентирована наоборот, от 5′ и 3′:

Напоминаю, какие же есть пары у РНК: А комплементарна У, Г комплементарна Ц.

иРНК 5′ — ЦГА — УЦГ — АУУ — ГГГ — 3′

Теперь по принципу комплементарности строим цепь ДНК по иРНК, это будет транскрибируемая цепь ДНК. Над ней необходимо будет построить смысловую цепь ДНК. Опять же, не забываем про антипараллельность.

Напоминаю пары в ДНК: А комплементарна Т, Ц комплементарна Г

3′ — ГЦТ — АГЦ — ТАА — ЦЦЦ — 5′ — это наша транскрибируемая цепь. Строим по ней смысловую цепь: 5′ — ЦГА — ТЦГ — АТТ — ГГГ — 3′

Теперь определим последовательность получившихся аминокислот в иРНК. Для этого воспользуемся таблицей генетического кода, которая прилагается в задании.

Как пользоваться таблицей? .

Рассмотрим пример: последовательность аминокислоты: АГЦ

  1. Находим первое основание в первом столбце таблицы – А.
  2. Находим второе основание среди колонок 2-4. Наше основание – Г. Ему соответствует 4 столбец таблицы.
  3. Находим последнее, третье основание. У нас это Ц. В последнем столбике ищем в первой строке букву Ц. Теперь ищем пересечение с нужным столбиков, указывающим на второе основание.
  4. Получаем аминокислоту «сер»

C:UsersКсеньяDesktopБезымянный.png

Определим наши аминокислоты:

ЦГА — «Арг»

УЦГ – «Сер»

АУУ– «Иле»

ГГГ – «Гли»

Итоговая последовательность: Арг-Сер-Иле-Гли

Содержание верного ответа и указания к оцениванию Баллы
  1. 1. По принципу комплементарности определяем последовательность иРНК: 5’-ЦГА-УЦГ-АУУ-ГГГ- 3’;

    2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности:

     

    5’ − ЦГА-ТЦГ-АТТ-ГГГ − 3’

    3’ − ГЦТ-АГЦ-ТАА-ЦЦЦ − 5’

     

    3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде: Арг-Сер-Иле-Гли

Ответ включает все названные выше элементы, не содержит биологических ошибок. 3
Ответ включает 2 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 3 названных выше элемента, но содержит не грубые биологические ошибки. 2
Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит не грубые биологические ошибки. 1
Ответ неправильный 0
Максимальный балл 3

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB11126

Чем строение молекулы ДНК отличается от строения молекулы иРНК?


  1. ДНК построена по типу двойной спирали, и-РНК — одноцепочечная.
  2. В нуклеотидах ДНК углевод дезоксирибоза и азотистое основание тимин
  3. В нуклеотидах и-РНК — рибоза и урацил.

Ответ: см. решение

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB20604

Вставьте в текст «Биосинтез белка» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

БИОСИНТЕЗ БЕЛКА

В результате пластического обмена в клетках синтезируются специфические для организма белки. Участок ДНК, в котором закодирована информация о структуре одного белка, называется ______(А). Биосинтез белков начинается с синтеза ______(Б), а сама сборка происходит в цитоплазме при участии ______(В). Первый этап биосинтеза белка получил название _________(Г), а второй — трансляция.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

  1. иРНК
  2. ДНК
  3. транскрипция
  4. мутация
  5. ген
  6. рибосома
  7. комплекс Гольджи
  8. фенотип

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам: 


Ген — участок ДНК, в котором закодирована информация о структуре одного белка. 5)

Биосинтез белка начинается с синтеза иРНК, сборка происходит в цитоплазме при помощи рибосом.1) 6)

Первый этап — транскрипция (переписывание). 3)

Ответ: 5163

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21657

Установите правильную последовательность процессов биосинтеза белка. Запишите в таблицу соответствующую последовательность цифр.

  1. присоединение аминокислоты к пептиду
  2. синтез иРНК на ДНК
  3. узнавание кодоном антикодона
  4. объединение иРНК с рибосомой
  5. выход иРНК в цитоплазму

Расположим в правильном порядке:

  1. синтез иРНК на ДНК
  2. выход иРНК в цитоплазму
  3. объединение иРНК с рибосомой
  4. узнавание кодоном антикодона
  5. присоединение аминокислоты к пептиду

Ответ: 25431

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB21756

Установите правильную последовательность реакций, происходящих в процессе биосинтеза белков. Запишите в таблицу соответствующую последовательность цифр.

  1. раскручивание молекулы ДНК
  2. объединение иРНК с рибосомой
  3. присоединение первой тРНК с определённой аминокислотой
  4. выход иРНК в цитоплазму
  5. постепенное наращивание полипептидной цепи
  6. синтез иРНК на одной из цепей ДНК

Раскручивание молекулы ДНК синтез иРНК на одной из цепей ДНК выход иРНК в цитоплазму объединение иРНК с рибосомой присоединение первой тРНК с определённой аминокислотой постепенное наращивание полипептидной цепи

Ответ: 164235

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB16828

Установите последовательность процессов при биосинтезе белка в клетке.

  1. образование пептидной связи между аминокислотами
  2. взаимодействие кодона иРНК и антикодона тРНК
  3. выход тРНК из рибосомы
  4. соединение иРНК с рибосомой
  5. выход иРНК из ядра в цитоплазму
  6. синтез иРНК

1. Образование функционального центра рибосомы — ФЦР, состоящего из иРНК и двух субъединиц рибосом. В ФЦР всегда находятся два триплета (шесть нуклеотидов) иРНК, образующих два активных центра: А (аминокислотный) — центр узнавания аминокислоты и П (пептидный) — центр присоединения аминокислоты к пептидной цепочке.

2. Транспортировка аминокислот, присоединенных к тРНК, из цитоплазмы в ФЦР. В активном центре А осуществляется считывание антикодона тРНК с кодоном иРНК, в случае комплементарности возникает связь, которая служит сигналом для продвижения (скачок) вдоль иРНК рибосомы на один триплет. В результате этого комплекс «кодон рРНК и тРНК с аминокислотой» перемещается в активный центр , где и происходит присоединение аминокислоты к пептидной цепочке (белковой молекуле). После чего тРНК покидает рибосому.

3. Пептидная цепочка удлиняется до тех пор, пока не закончится трансляция и рибосома не соскочит с иРНК. На одной иРНК может умещаться одновременно несколько рибосом (полисома). Полипептидная цепочка погружается в канал эндоплазматической сети и там приобретает вторичную, третичную или четвертичную структуру. Скорость сборки одной молекулы белка, состоящего из 200-300 аминокислот, составляет 1-2 мин. Формула биосинтеза белка: ДНК (транскрипция) —> РНК (трансляция) —> белок

Ответ: 654213

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB10829

Установите, в какой последовательности образуются структуры молекулы белка.

  1. полипептидная цепь
  2. клубок или глобула
  3. полипептидная спираль
  4. структура из нескольких субъединиц

Картинки по запросу первичная вторичная третичная четвертичная структура белка

Третичная структура — глобула, четвертичная — несколько глобул.

Ответ: 1324

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB22097

Все при­ведённые ниже процессы, кроме двух, можно отнести к матричным реакциям в клетке. Определите два процесса, «вы­па­да­ю­щих» из об­ще­го спис­ка, и за­пи­ши­те в ответ цифры, под ко­то­ры­ми они ука­за­ны.

  1. синтез РНК
  2. биосинтез белка
  3. хемосинтез
  4. фотолиз воды
  5. репликацию ДНК

Раз “матричные реакции», то они связаны с ДНК и РНК. Не стоит забывать, что они являются белками. К матричным реакциям, в таком случае, относятся: синтез РНК, репликация ДНК, биосинтез белка. Хемосинтез и фотолиз воды отношения к этому не имеют.

Ответ: 34

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB0301

Длина фрагмента молекулы ДНК бактерии равняется 20,4 нм. Сколько аминокислот будет в белке, кодируемом данным фрагментом ДНК?

Примечание.

Длина одного нуклеотида 0,34 нм.


Обратите внимание на примечание, оно явно здесь не просто так.

Итак, сейчас перед нами практически задача по математике из начальной школы.

Первое наше действие: У нас есть бусы, длина которых 20,4 единиц измерения. Диаметр одной бусины 0,34 единиц измерения. Сколько здесь бусин? Естественно, нужно просто поделить все бусы на размер одной их составляющей:

20,4 : 0,34= 60.

Мы нашли количество нуклеотидов. У генетического кода есть такое свойство как триплетность. Она аминокислота кодируется тремя нуклеотидами. Чтобы узнать число аминокислот нужно разбить нуклеотиды на группки по три:

60: 3= 20

20 аминокислот будет в белке с длинной фрагмента ДНК 20,4 нм.

Ответ: 20

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB2412

Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.


Раз одна аминокислота кодируется тремя нуклеотидами, то 1 аминокислота=3 нуклеотида

25*3 = 75

Ответ: 75

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB1038

Все представленные на схеме вещества, кроме двух, имеют в своём составе азотистое основание — аденин. Определите два вещества, «выпадающие» из общего списка, и запишите


В состав ДНК и РНК точно входят Аденин, ведь отличаются они совсем другими азотистыми основаниями: Аденину в РНК по принципу комплементарности соответствует Урацил, а не Тимин. На картинке с тРНК вообще видны буквы А. Это и есть Аденин.

Внимание! Раз на первой картинке была ДНК, то это совсем не значит, что на второй и третьей тоже она. Это может быть любой другой белок, в состав которого Аденин может и не входить.

Остается еще АТФ. В ее она включает в себя Аденин, так что под решение вопроса не подходит.

Лишними являются вторичная и третичная структура неопределенного белка.

Ответ: 23

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6645

Сколько ами­но­кис­лот кодирует 900 нуклеотидов. В ответ запишите только соответствующее число.


1 аминокислота= 3 нуклеотида. Делим все нуклеотиды на 3, получаем аминокислоты.

900 : 3 = 300.

Ответ: 300

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB7512

Какой ан­ти­ко­дон транспортной РНК со­от­вет­ству­ет триплету ТГА в мо­ле­ку­ле ДНК?


Здесь можно разработать алгоритм. Если дана молекула ДНК, а нужно найти тРНК, то нужно:

  1. Записать информационную РНК (иРНК) по принципу комплементарности
  2. Записать транспортную ДНК по принципу комплементарности.
  3. Готово!

На нашем примере:

Тимину соответствует аденин

Гуанину – цитозин

Аденину – урацил, ведь это РНК

1) АЦУ

Аденину соответствует урацил

Цитозину – гуанин

Урацилу – аденин

2) УГА

Ответ: УГА

pазбирался: Ксения Алексеевна | обсудить разбор

Задание EB6702

В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле. В ответ запишите только соответствующее число.


Раз у нас дано, что 20% от общего числа – гуанин, то это значит, то 20% приходится и на комплементарный ему цитозин.

20% + 20% = 40%- гуанин и цитозин.

Для аденина и тимина остается:

100% – 40% = 60%

60% – для аденина и тимина, а вопрос только про тимин,значит, число нужно поделить на 2:

60% : 2 = 30%

30% – на тимин

30% – на аденин

Ответ: 30

pазбирался: Ксения Алексеевна | обсудить разбор

Ксения Алексеевна | Просмотров: 9.2k

Введение в транскрипцию ДНК

На чтение 4 мин. Просмотров 11 Опубликовано 29.05.2021

Транскрипция ДНК – это процесс, который включает транскрипцию генетической информации из ДНК в РНК. Транскрибируемое сообщение ДНК или транскрипт РНК используется для производства белков. ДНК находится в ядре наших клеток. Он контролирует клеточную активность, кодируя производство белков. Информация в ДНК не преобразуется напрямую в белки, но сначала должна быть скопирована в РНК. Это гарантирует, что информация, содержащаяся в ДНК, не будет испорчена.

Содержание

  1. Ключевые выводы: транскрипция ДНК
  2. Как работает транскрипция ДНК
  3. Транскрипция в прокариотических и эукариотических клетках
  4. От транскрипции к переводу
  5. Обратная транскрипция

Ключевые выводы: транскрипция ДНК

  • При транскрипции ДНК ДНК транскрибируется с образованием РНК. Затем транскрипт РНК используется для производства белка.
  • Три основных этапа транскрипции – это инициация, элонгация и терминация.
  • При инициации фермент РНК-полимераза связывается с ДНК в промоторной области.
  • При элонгации РНК-полимераза транскрибирует ДНК в РНК.
  • При терминации РНК-полимераза высвобождения из ДНК, заканчивающейся транскрипцией.
  • Процессы обратной транскрипции используют фермент обратной транскриптазы для преобразования РНК в ДНК.

Как работает транскрипция ДНК

ДНК состоит из четырех нуклеотидных оснований, спаренных вместе, чтобы придать ДНК форму двойной спирали. Этими основаниями являются: аденин (A) , гуанин (G) , цитозин (C) и тимин (T) . Аденин соединяется с тимином (A-T) , а цитозин – с гуанином (C-G) . Последовательности нуклеотидных оснований – это генетический код или инструкции для синтеза белка.

Процесс транскрипции ДНК состоит из трех основных этапов:

  1. Инициирование: РНК-полимераза связывается с ДНК.
    ДНК транскрибируется ферментом, называемым РНК-полимеразой. Определенные нуклеотидные последовательности сообщают РНК-полимеразе, где начинать и где заканчивать. РНК-полимераза прикрепляется к ДНК в определенной области, называемой промоторной областью. ДНК в промоторной области содержит определенные последовательности, которые позволяют РНК-полимеразе связываться с ДНК.
  2. Удлинение
    Определенные ферменты, называемые факторами транскрипции, раскручивают Нить ДНК и позволяют РНК-полимеразе транскрибировать только одну нить ДНК в одноцепочечный РНК-полимер, называемый информационной РНК (мРНК). Нить, которая служит шаблоном, называется антисмысловой цепью. Нить, которая не транскрибируется, называется смысловой цепью.
    Как и ДНК, РНК состоит из нуклеотидных оснований. Однако РНК содержит нуклеотиды аденин, гуанин, цитозин и урацил (U). Когда РНК-полимераза транскрибирует ДНК, пары гуанина с цитозином (G-C) и пары аденина с урацилом (A-U) .
  3. Терминация
    РНК-полимераза перемещается по ДНК, пока не достигнет последовательности терминатора. В этот момент РНК-полимераза высвобождает полимер мРНК и отделяется от ДНК.

Транскрипция в прокариотических и эукариотических клетках

Хотя транскрипция происходит как в прокариотических, так и в эукариотических клетках, процесс более сложный у эукариот. У прокариот, таких как бактерии, ДНК транскрибируется одной молекулой РНК-полимеразы без помощи факторов транскрипции. В эукариотических клетках факторы транскрипции необходимы для того, чтобы транскрипция происходила, и существуют различные типы молекул РНК-полимеразы, которые транскрибируют ДНК в зависимости от типа генов. Гены, кодирующие белки, транскрибируются РНК-полимеразой II, гены, кодирующие рибосомные РНК, транскрибируются РНК-полимеразой I, а гены, кодирующие РНК-переносчики, транскрибируются РНК-полимеразой III. Кроме того, органеллы, такие как митохондрии и хлоропласты, имеют свои собственные РНК-полимеразы, которые транскрибируют ДНК в этих клеточных структурах.

От транскрипции к переводу

В переводе , сообщение, закодированное в мРНК, преобразуется в белок. Поскольку белки конструируются в цитоплазме клетки, мРНК должна пересекать ядерную мембрану, чтобы достичь цитоплазмы в эукариотических клетках. Попадая в цитоплазму, рибосомы и другая молекула РНК, называемая РНК переноса , работают вместе, переводя мРНК в белок. Этот процесс называется переводом. Белки можно производить в больших количествах, потому что одна последовательность ДНК может транскрибироваться сразу многими молекулами РНК-полимеразы.

Обратная транскрипция

В обратной транскрипции , РНК используется в качестве матрицы для производства ДНК. Фермент обратная транскриптаза транскрибирует РНК для создания одной цепи комплементарной ДНК (кДНК). Ферментная ДНК-полимераза превращает одноцепочечную кДНК в двухцепочечную молекулу, как это происходит при репликации ДНК. Специальные вирусы, известные как ретровирусы, используют обратную транскрипцию для репликации своих вирусных геномов. Ученые также используют процессы обратной транскриптазы для обнаружения ретровирусов.

Эукариотические клетки также используют обратную транскрипцию для удлинения концевых участков хромосом, известных как теломеры. За этот процесс отвечает фермент теломераза, обратная транскриптаза.. Расширение теломер приводит к образованию клеток, устойчивых к апоптозу или запрограммированной гибели клеток, которые становятся злокачественными. Метод молекулярной биологии, известный как полимеразная цепная реакция с обратной транскрипцией (ОТ-ПЦР) , используется для амплификации и измерения РНК. Поскольку ОТ-ПЦР определяет экспрессию генов, ее также можно использовать для выявления рака и помощи в диагностике генетических заболеваний.

ДНК и гены

ДНК ПРОКАРИОТ И ЭУКАРИОТ

jzwvo9_z7ag.jpg

Крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса

Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года

Дезоксирибонуклеиновая кислота. Общие сведения

DNAСодержание страницы:

  • Дезоксирибонуклеиновая кислота
  • Строение нуклеиновых кислот
  • Репликация
  • Строение РНК
  • Транскрипция
  • Трансляция
  • Генетический код
  • Геном: гены и хромосомы
  • Прокариоты
  • Эукариоты
  • Строение генов
  • Строение генов прокариот
  • Строение генов эукариот
  • Сравнение строения генов
  • Мутации и мутагенез
  • Генные мутации
  • Хромосомные мутации
  • Геномные мутации
  • Видео по теме ДНК
  • Дополнительный материал

ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение. ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни как человека, так и любого др. организхма. Искусственное или естественное воздействие внешней среды способны лишь в незначительной степени повлиять на общую выраженность отдельных генетических признаков или сказаться на развитии запрограммированных процессов.

Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С) и фосфатной (Ф) группы (фосфодиэфирные связи).

Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т), гуанин — только с цитозином (Г-Ц). Именно эти пары и составляют «перекладины» винтовой «лестницы» ДНК (см.: рис. 2, 3 и 4).

Аденин - тимин, цитозин - гуанин

Рис. 2. Азотистые основания

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.

репликация

Рис. 3. Репликация ДНК

Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.

Образование новой ДНК (репликация)

  1. Процесс репликации: раскручивание двойной спирали ДНК — синтез комплементарных цепей ДНК-полимеразой — образование двух молекул ДНК из одной.
  2. Двойная спираль «расстегивается» на две ветви, когда ферменты разрушают связь между базовыми парами химических соединений.
  3. Каждая ветвь является элементом новой ДНК. Новые базовые пары соединяются в той же последовательности, что и в родительской ветви.

По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.

Более подробная информация:

СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ

agct

Рис. 4 . Азотистые основания: аденин, гуанин, цитозин, тимин

Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты – это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.

НУКЛЕОТИДЫ состоят из азотистого основания, соединенного с пятиуглеродным углеводом (пентозой) – дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H2PO3–).

Азотистые основания бывают двух типов: пиримидиновые основания – урацил (только в РНК), цитозин и тимин, пуриновые основания – аденин и гуанин.

азотистые, пиримидиновые и пуриновые основания

Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые

нуклеотид днк


Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:

нуклеинотиды соединяются в цепь нуклеиновой кислоты

Рис. 6. Выделение 3’ и 5’-концов цепи ДНК

Две цепи ДНК образуют двойную спираль. Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей. Аденин всегда соединяется с тимином, а цитозин – с гуанином. Это называется правилом комплементарности (см. принцип комплементарности).

Правило комплементарности:

Например, если нам дана цепь ДНК, имеющая последовательность

3’– ATGTCCTAGCTGCTCG – 5’,

то вторая ей цепь будет комплементарна и направлена в противоположном направлении – от 5’-конца к 3’-концу:

5’– TACAGGATCGACGAGC– 3’.

Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

РЕПЛИКАЦИЯ ДНК

Репликация ДНК – это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент РНК (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).

Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.

репликация ДНК

Рис. 8. Репликация (удвоение) молекулы ДНК

ДНК-синтез – это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:

1) ДНК-топоизомераза, располагаясь перед вилкой репликации, разрезает ДНК для того, чтобы облегчить ее расплетание и раскручивание.
2) ДНК-хеликаза вслед за топоизомеразой влияет на процесс «расплетения» спирали ДНК.
3) ДНК-связывающие белки осуществляют связывание нитей ДНК, а также проводят их стабилизацию, не допуская их прилипания друг к другу.
4) ДНК-полимераза δ (дельта), согласовано со скоростью движения репликативной вилки, осуществляет синтез ведущей цепи дочерней ДНК в направлении 5’→3′ на матрице материнской нити ДНК по направлению от ее 3′-конца к 5′-концу (скорость до 100 пар нуклеотидов в секунду). Этим события на данной материнской нити ДНК ограничиваются.

репликация ДНК или синтез ДНК

Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α (Polα), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ (Polδ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.


 Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)

Нагляднее о репликации ДНК см. видео →

5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5’→3′ синтезирует праймер (РНК-затравку) – последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК. 

Вместо ДНК-полимеразы α к 3′-концу праймера присоединяется ДНК-полимераза ε.

6) ДНК-полимераза ε (эпсилон) как бы продолжает удлинять праймер, но в качестве субстрата встраивает дезоксирибонуклеотиды (в количестве 150-200 нуклеотидов). В результате образуется цельная нить из двух частей – РНК (т.е. праймер) и ДНК. ДНК-полимераза ε работает до тех пор, пока не встретит праймер предыдущего фрагмента Оказаки (синтезированный чуть ранее). После этого данный фермент удаляется с цепи.

7) ДНК-полимераза β (бета) встает вместо ДНК-полимеразы ε, движется в том же направлении (5’→3′) и удаляет рибонуклеотиды праймера, одновременно встраивая дезоксирибонуклеотиды на их место. Фермент работает до полного удаления праймера, т.е. пока на его пути не встанет дезоксирибонуклеотид (еще более ранее синтезированный ДНК-полимеразой ε). Связать результат свой работы и впереди стоящую ДНК фермент не в состоянии, поэтому он сходит с цепи. 

В результате на матрице материнской нити «лежит» фрагмент дочерней ДНК. Он называется фрагмент Оказаки.

8) ДНК-лигаза производит сшивку двух соседних фрагментов Оказаки, т.е. 5′-конца отрезка, синтезированного ДНК-полимеразой ε, и 3′-конца цепи, встроенного ДНК-полимеразой β.

СТРОЕНИЕ РНК

Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК, РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Однако в отличие от ДНК, РНК обычно имеет не две цепи, а одну. Пентоза в РНК представлена рибозой, а не дезоксирибозой (у рибозы присутствует дополнительная гидроксильная группа на втором атоме углевода). Наконец, ДНК отличается от РНК по составу азотистых оснований: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами.

Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

строение РНК

Рис. 10.  Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

ТРАНСКРИПЦИЯ

Транскрипция – это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК – эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ – 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.

Транскрипция

Рис. 11. Схематическое изображение транскрипции

Например, если нам дана последовательность кодирующей цепи

3’– ATGTCCTAGCTGCTCG – 5’,

то, по правилу комплементарности, матричная цепь будет нести последовательность

5’– TACAGGATCGACGAGC– 3’,

а синтезируемая с нее РНК – последовательность

3’– AUGUCCUAGCUGCUCG – 5’.

ТРАНСЛЯЦИЯ

Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:

video.jpg

В представленном видоролике (кнопка-ссылка слева) показан процесс образования белка из аминокислот. Наглядно (в анимированном варианте) продемонстрированы процессы транскрипции и трансляции. Биосинтез белка на рибосоме также кратко описан в разделе Аминокислоты белков. Более подробное видео о геноме, ДНК и ее структуре, а также процессах кодировки представленно ниже на данной странице: Видео по теме ДНК

СИНТЕЗ БЕЛКА

Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок

Трансляция — это процесс, посредством которого генетическая информация преобразуется в белки, рабочие лошадки клетки. Небольшие молекулы, называемые переносными РНК («тРНК»), играют решающую роль в трансляции; они являются молекулами-адаптерами, которые соответствуют кодонам (строительным блокам генетической информации) с аминокислотами (строительными блоками белков). Организмы несут множество типов тРНК, каждая из которых кодируется одним или несколькими генами («набор генов тРНК»).

Вообще говоря, функция набора генов тРНК — переводить 61 тип кодонов в 20 различных типов аминокислот — сохраняется в разных организмах. Тем не менее, состав набора генов тРНК может значительно варьировать между организмами.

ГЕНЕТИЧЕСКИЙ КОД

Генетический код — способ кодирования аминокислотной последовательности белков с помощью последовательности нуклеотидов. Каждая аминокислота кодируется последовательностью из трех нуклеотидов — кодоном или триплетом.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.

Таблица 1. Стандартный генетический код

1-е
основа

ние

2-е основание

3-е
основа

ние

U

C

A

G

U

UUU

Фенилаланин

(Phe/F)

UCU

Серин

(Ser/S)

UAU

Тирозин

(Tyr/Y)

UGU

Цистеин

(Cys/C)

U

UUC

UCC

UAC

UGC

C

UUA

Лейцин

(Leu/L)

UCA

UAA

Стоп-кодон**

UGA

Стоп-кодон**

A

UUG

UCG

UAG

Стоп-кодон**

UGG

Триптофан

(Trp/W)

G

C

CUU

CCU

Пролин

(Pro/P)

CAU

Гистидин

(His/H)

CGU

Аргинин

(Arg/R)

U

CUC

CCC

CAC

CGC

C

CUA

CCA

CAA

Глутамин

(Gln/Q)

CGA

A

CUG

CCG

CAG

CGG

G

A

AUU

Изолейцин

(Ile/I)

ACU

Треонин

(Thr/T)

AAU

Аспарагин

(Asn/N)

AGU

Серин

(Ser/S)

U

AUC

ACC

AAC

AGC

C

AUA

ACA

AAA

Лизин

(Lys/K)

AGA

Аргинин (Arg/R)

A

AUG

Метионин*

(Met/M)

ACG

AAG

AGG

G

G

GUU

Валин

(Val/V)

GCU

Аланин

(Ala/A)

GAU

Аспарагиновая кислота

(Asp/D)

GGU

Глицин

(Gly/G)

U

GUC

GCC

GAC

GGC

C

GUA

GCA

GAA

Глутаминовая кислота

(Glu/E)

GGA

A

GUG

GCG

GAG

GGG

G

Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:

  • *Триплет AUG, также кодирующий метионин, называется старт-кодоном. С этого кодона начинается синтез молекулы белка. Таким образом, во время синтеза белка, первой аминокислотой в последовательности всегда будет метионин.
  • **Триплеты UAA, UAG и UGA называются стоп-кодонами и не кодируют ни одной аминокислоты. На этих последовательностях синтез белка прекращается.

Свойства генетического кода

1. Триплетность. Каждая аминокислота кодируется последовательностью из трех нуклеотидов – триплетом или кодоном.

Непрерывность. Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

2. Непрерывность. Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

Непрерывность. Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

3. Неперекрываемость. Один нуклеотид не может входить одновременно в два триплета.

Неперекрываемость. Один нуклеотид не может входить одновременно в два триплета.

4. Однозначность. Один кодон может кодировать только одну аминокислоту.

Однозначность. Один кодон может кодировать только одну аминокислоту.

5. Вырожденность. Одна аминокислота может кодироваться несколькими разными кодонами.

Вырожденность. Одна аминокислота может кодироваться несколькими разными кодонами.

6. Универсальность. Генетический код одинаков для всех живых организмов.

Пример. Нам дана последовательность кодирующей цепи:

3’– CCGATTGCACGTCGATCGTATA– 5’.

Матричная цепь будет иметь последовательность:

5’– GGCTAACGTGCAGCTAGCATAT– 3’.

Теперь «синтезируем» с этой цепи информационную РНК:

3’– CCGAUUGCACGUCGAUCGUAUA– 5’.

Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:

5’– AUAUGCUAGCUGCACGUUAGCC– 3’.

Теперь найдем старт-кодон AUG:

5’– AUAUGCUAGCUGCACGUUAGCC– 3’.

Разделим последовательность на триплеты:

деление последовательности на триплеты

Найдем стоп-кодон и согласно таблице генетического кода запишем последовательность аминокислот:

Найдем стоп-кодон и согласно таблице генетического кода запишем последовательность аминокислот

Центральная догма молекулярной биологии звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК – на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.

Центральная догма молекулярной биологии

Рис. 13. Центральная догма молекулярной биологии

ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ

(общие понятия)

Геном — совокупность всех генов организма; его полный хромосомный набор.

Термин «геном» был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.

Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК

За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.

Безымянный3

Рис. 14. Соответствие между кодирующими участками ДНК, мРНК и аминокислотной последовательностью полипептидной цепи. 

В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент». Позднее эта концепция была расширена до определения «один ген — один полипептид», поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.

На рис. 14 показана схема того, как триплеты нуклеотидов в ДНК определяют полипептид —  аминокислотную последовательность белка при посредничестве мРНК. Одна из цепей ДНК играет роль матрицы для синтеза мРНК, нуклеотидные триплеты (кодоны) которой комплементарны триплетам ДНК. У некоторых бактерий и многих эукариот кодирующие последовательности прерываются некодирующими участками(так называемыми интронами).

Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.

Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.

Мы можем приблизительно рассчитать минимальный размер гена, кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350  аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.

Сколько генов в одной хромосоме?

Хромосомы прокариот и эукариотРис. 15. Вид хромосом в прокаритической (слева) и эукариотической клеках. Гистоны (Histones) — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.


 ДНК прокариот устроена более просто: их клетки не имеют ядра, поэтому ДНК находится непосредственно в цитоплазме в форме нуклеоида.

ДНК бактерийКак известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру – нуклеоид. Хромосома прокариота Escherichia coli, чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.

Прокариоты (Бактерии).

ДНК из лизированной клетки E. coliБактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).

Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.

См. также: Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции, 2013. Т. 17. № 4/2. С. 972–984.

Эукариоты.

Таблица 2. ДНК, гены и хромосомы некоторых организмов

Общая ДНК,

п.н.

Число хромосом*

Примерное число генов

Escherichia coli (бактерия)

4 639 675

1

4 435

Saccharomyces cerevisiae (дрожжи)

12 080 000

16**

5 860

Caenorhabditis elegans (нематода)

90 269 800

12***

23 000

Arabidopsis thaliana (растение)

119 186 200

10

33 000

Drosophila melanogaster (плодовая мушка)

120 367 260

18

20 000

Oryza sativa (рис)

480 000 000

24

57 000

Mus musculus (мышь)

2 634 266 500

40

27 000

Homo sapiens (человек)

3 070 128 600

46

29 000

Примечание. Информация постоянно обновляется; для получения более свежей информации обратитесь к сайтам, посвященным отдельным геномным проектам

*Для всех эукариот, кроме дрожжей, приводится диплоидный набор хромосом. Диплоидный набор хромосом (от греч. diploos- двойной и eidos- вид) – двойной набор хромосом (2n), каждая из которых имеет себе гомологичную.
**Гаплоидный набор. Дикие штаммы дрожжей обычно имеют восемь (октаплоидный) или больше наборов таких хромосом.
***Для самок с двумя Х хромосомами. У самцов есть Х хромосома, но нет Y, т. е. всего 11 хромосом.


В клетке дрожжей, одних из самых маленьких эукариот, в 2,6 раза больше ДНК, чем в клетке E. coli (табл. 2). Клетки плодовой мушки Drosophila, классического объекта генетических исследований, содержат в 35 раз больше ДНК, а клетки человека — примерно в 700 раз больше ДНК, чем клетки E. coli. Многие растения и амфибии содержат еще больше ДНК. Генетический материал клеток эукариот организован в виде хромосом. Диплоидный набор хромосом (2n) зависит от вида организма (табл. 2).

Например, в соматической клетке человека 46 хромосом (рис. 17). Каждая хромосома эукариотической клетки, как показано на рис. 17, а, содержит одну очень крупную двухспиральную молекулу ДНК. Двадцать четыре хромосомы человека (22 парные хромосомы и две половые хромосомы X и Y)  различаются по длине более чем в 25 раз. Каждая хромосома эукариот содержит определенный набор генов.

хромосомы человека

Рис. 17. Хромосомы эукариот. а — пара связанных и конденсированных сестринских хроматид из хромосомы человека. В такой форме эукариотические хромосомы пребывают после репликации и в метафазе в процессе митоза. б — полный набор хромосом из лейкоцита одного из авторов книги. В каждой нормальной соматической клетке человека содержится 46 хромосом.


от хромосомы до двойной спирали

Размер и функция ДНК как матрицы для хранения и передачи наследственного материала объясняют наличие особых структурных элементов в организации этой молекулы. У высших организмов ДНК распределена между хромосомами.

Совокупность ДНК (хромосом) организма называется геномом. Хромосомы находятся в клеточном ядре и формируют структуру, называемую хроматином. Хроматин представляет собой комплекс ДНК и основных белков (гистонов) в соотношении 1:1. Длину ДНК обычно измеряют числом пар комплементарных нуклеотидов (п.н.). Например, 3-я хромосома человека представляет собой молекулу ДНК размером 160 млн п.н.. Выделенная линеаризованная ДНК размером 3*106 п.н. имеет длину примерно 1 мм, следовательно, линеаризованная молекула 3-й хромосомы человека была бы 5 мм в длину, а ДНК всех 23 хромосом (~3*109 п.н., MR = 1,8*1012) гаплоидной клетки – яйцеклетки или сперматозоида – в линеаризованном виде составляла бы 1 м. За исключением половых клеток, все клетки организма человека (их около 1013) содержат двойной набор хромосом. При клеточном делении все 46 молекул ДНК реплицируются и снова организуются в 46 хромосом.


Если соединить между собой молекулы ДНК человеческого генома (22 хромосомы и хромосомы X и Y или Х и Х), получится последовательность длиной около одного метра. Прим.: У всех млекопитающих и других организмов с гетерогаметным мужским полом, у самок две X-хромосомы (XX), а у самцов — одна X-хромосома и одна Y-хромосома (XY).

Большинство клеток человека диплоидны, поэтому общая длина ДНК таких клеток около 2м. У взрослого человека примерно 1014 клеток, таким образом, общая длина всех молекул ДНК составляет 2・1011 км. Для сравнения, окружность Земли — 4・104 км, а расстояние от Земли до Солнца — 1,5・108 км. Вот как удивительно компактно упакована ДНК в наших клетках!

В клетках эукариот есть и другие органеллы, содержащие ДНК, — это митохондрии и хлоропласты. Выдвигалось множество гипотез относительно происхождения ДНК митохондрий и хлоропластов. Общепризнанная сегодня точка зрения заключается в том, что они представляют собой рудименты хромосом древних бактерий, которые проникли в цитоплазму хозяйских клеток и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Более 95% митохондриальных белков кодируется ядерной ДНК.

СТРОЕНИЕ ГЕНОВ

Рассмотрим строение гена у прокариот и эукариот, их сходства и различия. Несмотря на то, что ген — это участок ДНК, кодирующий всего один белок или РНК, кроме непосредственно кодирующей части, он также включает в себя регуляторные и иные структурные элементы, имеющие разное строение у прокариот и эукариот.

Кодирующая последовательность – основная структурно-функциональная единица гена, именно в ней находятся триплеты нуклеотидов, кодирующие аминокислотную последовательность. Она начинается со старт-кодона и заканчивается стоп-кодоном.

До и после кодирующей последовательности находятся нетранслируемые 5’- и 3’-последовательности. Они выполняют регуляторные и вспомогательные функции, например, обеспечивают посадку рибосомы на и-РНК.

Нетранслируемые и кодирующая последовательности составлют единицу транскрипции – транскрибируемый участок ДНК, то есть участок ДНК, с которого происходит синтез и-РНК.

Терминатор – нетранскрибируемый участок ДНК в конце гена, на котором останавливается синтез РНК.

В начале гена находится регуляторная область, включающая в себя промотор и оператор.

Промотор – последовательность, с которой связывается полимераза в процессе инициации транскрипции. Оператор – это область, с которой могут связываться специальные белки – репрессоры, которые могут уменьшать активность синтеза РНК с этого гена – иначе говоря, уменьшать его экспрессию.

Строение генов у прокариот

Общий план строения генов у прокариот и эукариот не отличается – и те, и другие содержат регуляторную область с промотором и оператором, единицу транскрипции с кодирующей и нетранслируемыми последовательностями и терминатор. Однако организация генов у прокариот и эукариот отличается.

ген прокариот

Рис. 18. Схема строения гена у прокариот (бактерий) — изображение увеличивается

В начале и в конце оперона есть единые регуляторные области для нескольких структурных генов. С транскрибируемого участка оперона считывается одна молекула и-РНК, которая содержит несколько кодирующих последовательностей, в каждой из которых есть свой старт- и стоп-кодон. С каждого из таких участков синтезируется один белок. Таким образом, с одной молекулы и-РНК синтезируется несколько молекул белка.

Для прокариот характерно объединение нескольких генов в единую функциональную единицу – оперон. Работу оперона могут регулировать другие гены, которые могут быть заметно удалены от самого оперона – регуляторы. Белок, транслируемый с этого гена называется репрессор. Он связывается с оператором оперона, регулируя экспрессию сразу всех генов, в нем содержащихся.

Для прокариот также характерно явление сопряжения транскрипции и трансляции.

явление сопряжения транскрипции и трансляции у прокариот

Рис. 19 Явление сопряжения транскрипции и трансляции у прокариот — изображение увеличивается

Такое сопряжение не встречается у эукариот из-за наличия у них ядерной оболочки, отделяющей цитоплазму, где происходит трансляция, от генетического материала, на котором происходит транскрипция. У прокариот во время синтеза РНК на матрице ДНК с синтезируемой молекулой РНК может сразу связываться рибосома. Таким образом, трансляция начинается еще до завершения транскрипции. Более того, с одной молекулой РНК может одновременно связываться несколько рибосом, синтезируя сразу несколько молекул одного белка.

Строение генов у эукариот

Гены и хромосомы эукариот очень сложно организованы

У бактерий многих видов всего одна хромосома, и почти во всех случаях в каждой хромосоме присутствует по одной копии каждого гена. Лишь  немногие гены, например гены рРНК, содержатся в нескольких копиях. Гены и регуляторные последовательности составляют практически весь геном прокариот. Более того, почти каждый ген строго соответствует аминокислотной последовательности (или последовательности РНК), которую он кодирует (рис. 14).

Структурная и функциональная организация генов эукариот гораздо сложнее. Исследование хромосом эукариот, а позднее секвенирование полных последовательностей геномов эукариот принесло много сюрпризов. Многие, если не большинство, генов эукариот обладают интересной особенностью: их нуклеотидные последовательности содержат один или несколько участков ДНК, в которых не кодируется аминокислотная последовательность полипептидного продукта. Такие нетранслируемые вставки нарушают прямое соответствие между нуклеотидной последовательностью гена и аминокислотной последовательностью кодируемого полипептида. Эти нетранслируемые сегменты в составе генов называют интронами, или встроенными последовательностями, а кодирующие сегменты — экзонами. У прокариот лишь немногие гены содержат интроны.

Итак, у эукариот практически не встречается объединение генов в опероны, и кодирующая последовательность гена эукариот чаще всего разделена на транслируемые участки – экзоны, и нетранслируемые участки – интроны.

В большинстве случаев функция интронов не установлена. В целом, лишь около 1,5% ДНК человека являются ≪кодирующими≫, т. е. несут информацию о белках или РНК. Однако с учетом крупных интронов получается, что ДНК человека на 30% состоит из генов. Поскольку гены составляют относительно небольшую долю в геноме человека, значительная часть ДНК остается неучтенной.

Схема строение гена у эукариот

Рис. 16. Схема строение гена у эукариот — изображение увеличивается

С каждого гена сначала синтезируется незрелая, или пре-РНК, которая содержит в себе как интроны, так и экзоны.

После этого проходит процесс сплайсинга, в результате которого интронные участки вырезаются, и образуется зрелая иРНК, с которой может быть синтезирован белок.

процесс альтернативного сплайсинга

Рис. 20. Процесс альтернативного сплайсинга — изображение увеличивается

Такая организация генов позволяет, например, осуществить процесс альтернативного сплайсинга, когда с одного гена могут быть синтезированы разные формы белка, за счет того, что в процессе сплайсинга экзоны могут сшиваться в разных последовательностях.

Сравнение строения генов прокариот и эукариот

Сравнение строения генов прокариот и эукариот

Рис. 21. Отличия в строении генов прокариот и эукариот — изображение увеличивается

МУТАЦИИ И МУТАГЕНЕЗ

Мутацией называется стойкое изменение генотипа, то есть изменение нуклеотидной последовательности.

Процесс, который приводит к возникновению мутаций называется мутагенезом, а организм, все клетки которого несут одну и ту же мутацию — мутантом.

Мутационная теория была впервые сформулирована Гуго де Фризом в 1903 году. Современный ее вариант включает в себя следующие положения:

1. Мутации возникают внезапно, скачкообразно.

2. Мутации передаются из поколения в поколение.

3. Мутации могут быть полезными, вредными или нейтральными, доминантными или рецессивными.

4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

5. Сходные мутации могут возникать повторно.

6. Мутации не направленны.

Мутации могут возникать под действием различных факторов. Различают мутации, возникшие под действием мутагенных воздействий: физических (например, ультрафиолета или радиации), химических (например, колхицина или активных форм кислорода) и биологических (например, вирусов). Также мутации могут быть вызваны ошибками репликации.

В зависимости от условий появления мутации подразделяют на спонтанные — то есть мутации, возникшие в нормальных условиях, и индуцированые — то есть мутации, которые возникли при особых условиях.

Мутации могут возникать не только в ядерной ДНК, но и, например, в ДНК митохондрий или пластид. Соответственно, мы можем выделять ядерные и цитоплазматические мутации.

В результате возникновения мутаций часто могут появляться новые аллели. Если мутантный аллель подавляет действие нормального, мутация называется доминантной. Если нормальный аллель подавляет мутантный, такая мутация называется рецессивной. Большинство мутаций, приводящих к возникновению новых аллелей являются рецессивными.

По эффекту выделяют мутации адаптивные, приводящие к повышению приспособленности организма к среде, нейтральные, не влияющие на выживаемость, вредные, понижающие приспособленность организмов к условиям среды и летальные, приводящие к смерти организма на ранних стадиях развития.

По последствиям выделяются мутации, приводящие к потери функции белка, мутации, приводящие к возникновению у белка новой функции, а также мутации, которые изменяют дозу гена, и, соответственно, дозу белка синтезируемого с него.

Мутация может возникнуть к любой клетке организма. Если мутация возникает в половой клетке, она называется герминативной (герминальной, или генеративной). Такие мутации не проявляются у того организма, у которого они появились, но приводят к появлению мутантов в потомстве и передаются по наследству, поэтому они важны для генетики и эволюции. Если мутация возникает в любой другой клетке, она называется соматической. Такая мутация может в той или иной степени проявляться у того организма, у которого она возникла, например, приводить к образованию раковых опухолей. Однако такая мутация не передается по наследству и не влияет на потомков.

Мутации могут затрагивать разные по размеру участки генома. Выделяют генные, хромосомные и геномные мутации.

Генные мутации

Мутации, которые возникают в масштабе меньшем, чем один ген, называются генными, или точечными (точковыми). Такие мутации приводят к изменению одного и нескольких нуклеотидов в последовательности. Среди генных мутаций выделяют замены, приводящие к замене одного нуклеотида на другой, делеции, приводящие к выпадению одного из нуклеотидов, инсерции, приводящие к добавлению лишнего нуклеотида в последовательность.

Генные мутации: замены, делеции, инсерции

Рис. 23. Генные (точечные) мутации

По механизму воздействия на белок, генные мутации делят на: синонимичные, которые (в результате вырожденности генетического кода) не приводят к изменению аминокислотного состава белкового продукта, миссенс-мутации, которые приводят к замене одной аминокислоты на другую и могут влиять на структуру синтезируемого белка, хотя часто они оказываются незначительными, нонсенс-мутации, приводящие к замене кодирующего кодона на стоп-кодон, мутации, приводящие к нарушению сплайсинга:

синонимичные, миссенс-мутации и нонсенс-мутации

Рис. 24. Схемы мутаций

Также по механизму воздействия на белок выделяют мутации, приводящие к сдвигу рамки считывания, например, инсерции и делеции. Такие мутации, как и нонсенс-мутации, хоть и возникают в одной точке гена, часто воздействуют на всю структуру белка, что может привести к полному изменению его структуры.мутации сдвига рамки считывания

Рис. 25. Схема мутации, приводящей к сдвигу рамки считывания

Хромосомные мутации

khromosomnyye_aberratsii

Рис. 26. Хромосомные абберации

Хромосомными мутациями называются мутации, которые затрагивают отдельные гены в рамках одной хромосомы. Различают делеции, когда теряется один или несколько генов, дупликации, когда удваивается тот или иной ген или несколько генов, инверсии, когда участок хромосомы поворачивается на 180 градусов, транслокации, когда гены переходят с одной хромосомы на другую. 

Хромосомные мутации - делеции, дупликации, инверсии.  

Рис. 27. Схемы хромосомных мутаций: делеции, дупликации, инверсии

транслокация - гены переходят с одной хромосомы на другую

дупликация

Рис. 28. Транслокация

Рис. 29. Хромосома до и после дупликации

Геномные мутации

Наконец, геномные мутации затрагивают весь геном целиком, то есть меняется количество хромосом. Выделяют полиплоидии — увеличение плоидности клетки, и анеуплоидии, то есть изменение количества хромосом, например, трисомии (наличие у одной из хромосом дополнительного гомолога) и моносомии (отсутствие у хромосомы гомолога).

Видео по теме ДНК

РЕПЛИКАЦИЯ ДНК, КОДИРОВАНИЕ РНК, СИНТЕЗ БЕЛКА

(Если видео не отображается оно доступно по ссылке)

См. дополнительно:

  • Нуклеиновые кислоты (PDF)
  • Общие сведения о секвенировании биополимеров
  • Метагеномика и микробиом
  • Бактериальный иммунитет и система CRISPR/Cas
  • Трансляция белка на рисбосоме (общие сведения)
  • Раскрыт секрет спиральной структуры ДНК (новое о ДНК)
  • Антимутагенные свойства пробиотиков (в свете защиты ДНК)
  • МикроРНК, микробиом кишечника и иммунитет
  • Эпигенетика, короткоцепочечные жирные кислоты и врожденная иммунная память
  • Замедление старения: роль питательных веществ и микробиоты в модуляции эпигенома (о метилировании ДНК)

Литература в помощь:

Будьте здоровы!

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

  1. ПРОБИОТИКИ
  2. ПРОБИОТИКИ И ПРЕБИОТИКИ
  3. СИНБИОТИКИ
  4. ДОМАШНИЕ ЗАКВАСКИ
  5. КОНЦЕНТРАТ БИФИДОБАКТЕРИЙ ЖИДКИЙ
  6. ПРОПИОНИКС
  7. ЙОДПРОПИОНИКС
  8. СЕЛЕНПРОПИОНИКС
  9. ГЕМОПРОПИОВИТ
  10. БИФИКАРДИО
  11. ПРОБИОТИКИ С ПНЖК
  12. МИКРОЭЛЕМЕНТНЫЙ СОСТАВ
  13. БИФИДОБАКТЕРИИ
  14. ПРОПИОНОВОКИСЛЫЕ БАКТЕРИИ
  15. МИКРОБИОМ ЧЕЛОВЕКА
  16. МИКРОФЛОРА ЖКТ
  17. ДИСБИОЗ КИШЕЧНИКА
  18. МИКРОБИОМ и ВЗК
  19. МИКРОБИОМ И РАК
  20. МИКРОБИОМ, СЕРДЦЕ И СОСУДЫ
  21. МИКРОБИОМ И ПЕЧЕНЬ
  22. МИКРОБИОМ И ПОЧКИ
  23. МИКРОБИОМ И ЛЕГКИЕ
  24. МИКРОБИОМ И ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА
  25. МИКРОБИОМ И ЩИТОВИДНАЯ ЖЕЛЕЗА
  26. МИКРОБИОМ И КОЖНЫЕ БОЛЕЗНИ
  27. МИКРОБИОМ И КОСТИ
  28. МИКРОБИОМ И ОЖИРЕНИЕ
  29. МИКРОБИОМ И САХАРНЫЙ ДИАБЕТ
  30. МИКРОБИОМ И ФУНКЦИИ МОЗГА
  31. АНТИОКСИДАНТНЫЕ СВОЙСТВА
  32. АНТИОКСИДАНТНЫЕ ФЕРМЕНТЫ
  33. АНТИМУТАГЕННАЯ АКТИВНОСТЬ
  34. МИКРОБИОМ и ИММУНИТЕТ
  35. МИКРОБИОМ И АУТОИММУННЫЕ БОЛЕЗНИ
  36. ПРОБИОТИКИ и ГРУДНЫЕ ДЕТИ
  37. ПРОБИОТИКИ, БЕРЕМЕННОСТЬ, РОДЫ
  38. ВИТАМИННЫЙ СИНТЕЗ
  39. АМИНОКИСЛОТНЫЙ СИНТЕЗ
  40. АНТИМИКРОБНЫЕ СВОЙСТВА
  41. КОРОТКОЦЕПОЧЕЧНЫЕ ЖИРНЫЕ КИСЛОТЫ
  42. СИНТЕЗ БАКТЕРИОЦИНОВ
  43. АЛИМЕНТАРНЫЕ ЗАБОЛЕВАНИЯ
  44. МИКРОБИОМ И ПРЕЦИЗИОННОЕ ПИТАНИЕ
  45. ФУНКЦИОНАЛЬНОЕ ПИТАНИЕ
  46. ПРОБИОТИКИ ДЛЯ СПОРТСМЕНОВ
  47. ПРОИЗВОДСТВО ПРОБИОТИКОВ
  48. ЗАКВАСКИ ДЛЯ ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ
  49. НОВОСТИ

Понравилась статья? Поделить с друзьями:
  • Как найти выпуск продукции если есть себестоимость
  • Как найти все делители числа программирование
  • Как составить тех карту строительства
  • Как можно исправить ошибку аутентификации
  • Как найти состав реакционной смеси