Как составить уравнение эллипса в канонической системе координат

 (схема 21)

Эллипсом называется
геометрическое место точек плоскости, сумма расстояний от каждой из которых до
двух данных точек этой плоскости, называемых 
фокусами, есть величина постоянная, равная 2
a.

Обозначим фокусы через F1  и F2,
расстояние между ними через 2
c, а сумму расстояний от произвольной точки эллипса до
фокусов – через  2
a. По  определению 2a>2c,  то есть a>c  .

Выберем систему координат
 так, чтобы
фокусы
F1  и F2
лежали на оси 0
x, а начало координат совпадало с серединой отрезка F1F2. Тогда фокусы имют координаты:  F1(–c;0)  и F2(c;0). Пусть M(x;y)
произвольная точка эллипса (текущая точка). Тогда по определению эллипса можно записать

По сути, мы получили уравнение эллипса. Упростим его с помощью ряда несложных математических преобразований:

 

Так как, a>c, то a2c2>0, то можно обозначить a2c2=b2. Тогда 
последнее уравнение имеет вид: 

                                                                                                                                           (2.17)

Это
уравнение равносильно первоначальному. Оно называется 
каноническим уравнением
эллипса
 – кривой
второго порядка
.

Установим форму эллипса, пользуясь его каноническим
уравнением.

1. Уравнение (2.17) содержит x и y
только в четных степенях, поэтому
если  точка (
x;y)
принадлежит  эллипсу,  то 
ему  также  принадлежат 
точки (–
x;y), (x;–y), (–x;–y). Отсюда: эллипс симметричен относительно осей 0x и 0y, а также
относительно точки
O(0;0), которую называют центром эллипса.

2. Найдем точки пересечения эллипса с осями координат.
Положив
y=0, найдем точки A1(a;0) и A2(–a;0), в которых ось 0x пересекает эллипс. Положив в  уравнении 
(2.17)
x=0, находим точки пересечения эллипса с осью 0y: B1(0;b) и B2(0;–b). Точки A1, A2, B1, B2 называются вершинами эллипса. Отрезки А1А2,
В1В2, а также
их длины 2
a и 2b – соответственно большая и малая оси эллипса (рис. 2.4).

3. Из уравнения (2.17) следует, что каждое слагаемое в
левой  части не превосходит единицы,
т.е.:
 

.

Следовательно, все точки эллипса лежат внутри
прямоугольника, ограниченного прямыми
x= ± a
и y= ± b.

4. В уравнении (2.17) левая часть – сумма
неотрицательных слагаемых, т.е. при возрастании одного слагаемого другое будет
уменьшаться, если |
x| возрастает, |y|
уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму
овальной замкнутой кривой. Форма эллипса зависит от отношения
. При a=b эллипс превращается в окружность, уравнение эллипса
(2.17) принимает вид
: x2+y2=a2. Отношение 
половины расстояния между фокусами к большой полуоси эллипса – эксцентриситет  эллипса  . Причем
0<
ε<1, так как 0<c<a.

Отсюда видно, что чем меньше эксцентриситет эллипса,
тем будет
менее  эллипс сплющенным; при ε=0 эллипс
превращается в окружность.

Пусть M(x;y) – произвольная точка эллипса с фокусами F1  и F2.  Длины
отрезков |
MF1|=r1 и |MF2|=r2фокальные
радиусы
точки
M, r1+r2=2a. Имеют место формулы: r1=a+εx  и  r2=a εx.

Прямые  – директрисы
эллипса
.

Если r – расстояние от произвольной точки до какого–нибудь фокуса,
d
расстояние от этой же точки до соответствующей этому фокусу директрисы (рис. 2.5), то отношение
есть величина
постоянная, равная эксцентриситету эллипса: 
 .

Из   равенства a2c2=b2
следует, что
a>b. Если же
наоборот, то уравнение (2.17) определяет эллипс, большая ось которого 2
b лежит на
оси 0
y, а малая ось 2a – на оси 0x. Фокусы  такого
эллипса находятся в точках
F1(0;c) и F2(0;c), где 
. Данный эллипс будет растянут вдоль оси 0y.

Пример 2.5. Составить уравнение линии, для каждой точки
которой  отношение расстояний от нее до
точки
A(3;0) и до прямой x=12, равно числу ε=0,5.  Полученное
уравнение привести к простейшему виду
.

Решение. Пусть M(x;y) – текущая (произвольная) точка искомого
геометрического множества точек. Опустим перпендикуляр
MB на прямую

. Тогда  точка
B(12;y). По условию задачи
 
.

По формуле расстояния между
двумя  точками получаем:


 Отсюда

 Полученное уравнение представляет собой эллипс вида  где, согласно формуле (2.17).

Определим фокусы эллипса F1(–c;0) и F2(c;0). Для эллипса справедливо равенство b2=a2c2,
откуда
c2=a2b2 =9 и c=3. То есть,
F1(–3;0) и F1(3;0)–
фокусы эллипса (точки
F2 и A совпадают).

Эксцентриситет эллипса 

 Примечание. Если эллипс (окружность) вращать вокруг одной из его
осей, то описываемая им поверхность будет эллипсоидом вращения (сферой)
 

Пример 2.6. В геодезии используется система географических координат,
основанная на понятии геоида. Геоид – поверхность Земли,
ограниченная уровенной поверхностью, продолженной под континенты. Поверхность
геоида отличается от физической поверхности Земли, на которой резко выражены
горы и океанические впадины.

Тело, поверхность которого более всего соответствует
поверхности геоида, имеет определенные размеры и ориентирована соответственно в
теле Земли, называется референц–эллипсоидом. В  нашей стране с 1946 года для всех
геодезических работ принят референц–эллипсоид Красовского с
параметрами
a=6 378 245 м, b=6 356 863 м, α=1: 298,3.

Линия, проходящая вертикально через центр эллипсоида
является полярной осью. Линия, проходящая через центр эллипсоида,
перпендикулярно к полярной оси, – экваториальной осью. При пересечении
поверхности эллипсоида плоскостью, проходящей через его центр, перпендикулярно
к полярной оси, образуется окружность, называемая экватором. Окружность,
полученная от пересечения поверхности эллипсоида плоскостью, параллельной
плоскости экватора, называется параллелью. Линия пересечения
поверхности эллипсоида с плоскостью, проходящей через заданную точку и полярную
ось, называется меридианом данной точки. Положение точки на земной поверхности
определяется пересечением параллели и меридиана, проходящих через нее. Угол φ между плоскостью экватора и отвесной
линией называется географической широтой. Для определения долгот
точек один из меридианов (Гринвичский) принимают за начальный или нулевой. Угол
λ, составленный плоскостью меридиана,
проходящего через данную точку, и плоскостью начального меридиана, называется
географической долготой 

 Гиперболагеометрическое место точек плоскости, модуль разности расстояний от
каждой из которых до двух данных точек этой плоскости – фокусов, есть величина
постоянная, равная 2
a.

Обозначим фокусы через 
F1 и F2, расстояние между ними через 2c, а модуль
разности расстояний от каждой точки 
гиперболы до фокусов через 2
a. По определению 2a<2c,  то есть a<c.

Выберем  систему координат x0y так, чтобы фокусы F1 и F2 лежали на оси 0x, а начало координат совпало с серединой отрезка F1F2. Тогда фокусы будут иметь координаты F1(c;0) и  F2(–c;0). На этой основе выведем уравнение гиперболы. Пусть M(x;y) – ее произвольная точка.  Тогда по определению  |MF1MF2|=2a, то есть. Проведя преобразования, аналогичные упрощениям уравнения эллипса, получим  каноническое уравнение гиперболы:

,                                                                                                                                                                             (2.18)

 где
b2=a2c2.
Гипербола линия 2–го порядка.      

Установим форму гиперболы, исходя из ее канонического
уравнения.

1. Уравнение (2.18) содержит x и y только в
четных степенях. Следовательно, гипербола симметрична  относительно осей координат
0
x и 0y, и относительно  точки O(0;0) – центра гиперболы.

2. Найдем точки пересечения  гиперболы с осями координат. Положив в
уравнении (2.18)
y=0, находим две точки пересечения гиперболы с осью 0xA1(a;0) и A2(–a;0).

Положив в (2.18) x=0, получаем y2= – b2,
чего быть не может. Т.е. гипербола ось 0
y  не пересекает.

Точки A1(a;0) и A2(–a;0) – вершины гиперболы, а отрезок |A1A2|=2a  – действительная ось. Отрезок |B1B2|=2b,
соединяющий точки
B1(0;b) и B2(0;–b) – мнимая ось (рис. 2.6). Прямоугольник
со сторонами 2
a и 2b –  основной
прямоугольник гиперболы
.

3. Из уравнения (2.18) следует, что уменьшаемое . Это означает, что точки гиперболы расположены справа
от прямой
x=a (правая
ветвь гиперболы) и слева от прямой
x=–a (левая
ветвь) (рис. 2.6).

 


4. Из уравнения (2.18) гиперболы видно, что
когда |
x| возрастает, то |y| также
возрастает
. Это
следует из того, что разность 

сохраняет значение, равно
e единице. Следовательно, гипербола имеет форму,
состоящую из двух неограниченных ветвей.

Прямая L называется асимптотой некоторой неограниченной кривой, если расстояние d от точки M этой кривой до прямой L стремится к нулю при неограниченном
удалении
точки M вдоль кривой 
от начала координат.

Покажем, что гипербола  имеет две асимптоты: . Так как 
данные прямые и гипербола (2.18) симметричны относительно координатных
осей, то достаточно рассмотреть только точки, расположенные в первой четверти.

Возьмем на прямой   точку N, имеющую
ту же абсциссу, что и точка
M(x;y) на гиперболе 
. Найдем разность |MN|:

Очевидно: так как числитель есть величина постоянная, а знаменатель дроби увеличивается с возравстанием переменной х, то длина отрезка |MN| стремится
к нулю. Так как |
MN| больше
расстояния
от точки M до прямой L, то d стремится к нулю тем более (
и подавно). Следовательно, прямые

 – есть
асимптоты гиперболы (рис. 2.7).



       Построение гиперболы начинают с нанесения ее основного прямоугольника на координатную плоскость. Далее проводят диагонали этого прямоугольника, которые являются асимптотами гиперболы, затем отмечают ее вершины, фокусы и строят ветви гиперболы.       
 

Эксцентриситет  гиперболы
отношение расстояния между фокусами к величине её действительной оси,
обозначается
ε
. Так
как у гиперболы
c>a, то
эксцентриситет ее больше единицы. Эксцентриситет характеризует  форму гиперболы. Так как                 
. Видно, что чем меньше
эксцентриситет гиперболы, тем меньше отношение 
 ее полуосей, а
значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет 
равносторонней гиперболы равен 
. Действительно, . Фокальные радиусы

,

 для точек
правой ветви гиперболы имеют вид: r1=εx+ar2=εxa; для точек
левой ветви: 
r1=–(εx+a), r2=–(εxa).

Прямые называются директрисами
гиперболы. Тот факт, что для гиперболы
ε>1, то 
 означает: правая директриса  расположена  между центром и правой вершиной гиперболы,
левая – между центром и левой вершиной. Директрисы
гиперболы  имеют тоже свойство 
, что и директрисы эллипса. 

Уравнение  определяет гиперболу с действительной осью 2bрасположенной на оси 0y, и мнимой осью 2a, расположенной на оси абсцисс  (подобная гипербола изображена
на рисунке
2.7 пунктиром).

Значит, гиперболы
 
 и 
 имеют общие
асимптоты. Такие гиперболы называются сопряженными.

Примечание. Если у кривой 2–го порядка смещен центр в некоторую
точку
O(x0;y0), то  она
называется нецентральной кривой. Уравнение такой кривой имеет вид: 

 Примечание. При вращении гиперболы вокруг ее действительной оси
образуется двуполостный гиперболоид, вокруг  ее мнимой оси – однополостный гиперболоид
 

Подробно данные уравнения рассмотрены в теме:
«Исследование общего уравнения 2–ой степени» (смотри схему 10), частными
случаями которого являются данные формулы.

Вопросы
для самопроверки

Эллипс: определение, свойства, построение

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух заданных точек F_1, и F_2 есть величина постоянная (2a), бо́льшая расстояния (2c) между этими заданными точками (рис.3.36,а). Это геометрическое определение выражает фокальное свойство эллипса.

Фокальное свойство эллипса

Точки F_1, и F_2 называются фокусами эллипса, расстояние между ними 2c=F_1F_2 — фокусным расстоянием, середина O отрезка F_1F_2 — центром эллипса, число 2a — длиной большой оси эллипса (соответственно, число a — большой полуосью эллипса). Отрезки F_1M и F_2M, соединяющие произвольную точку M эллипса с его фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки эллипса, называется хордой эллипса.

Отношение e=frac{c}{a} называется эксцентриситетом эллипса. Из определения (2a&gt;2c) следует, что 0leqslant e&lt;1. При e=0, т.е. при c=0, фокусы F_1 и F_2, а также центр O совпадают, и эллипс является окружностью радиуса a (рис.3.36,6).

Геометрическое определение эллипса, выражающее его фокальное свойство, эквивалентно его аналитическому определению — линии, задаваемой каноническим уравнением эллипса:

frac{x^2}{a^2}+frac{y^2}{b^2}=1.

(3.49)

Действительно, введем прямоугольную систему координат (рис.3.36,в). Центр O эллипса примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось или первую ось эллипса), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2); прямую, перпендикулярную фокальной оси и проходящую через центр эллипса (вторую ось эллипса), примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Эллипс и его фокальные свойства, эксцентриситет эллипса

Составим уравнение эллипса, пользуясь его геометрическим определением, выражающим фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0),~F_2(c,0). Для произвольной точки M(x,y), принадлежащей эллипсу, имеем:

vline,overrightarrow{F_1M},vline,+vline,overrightarrow{F_2M},vline,=2a.

Записывая это равенство в координатной форме, получаем:

sqrt{(x+c)^2+y^2}+sqrt{(x-c)^2+y^2}=2a.

Переносим второй радикал в правую часть, возводим обе части уравнения в квадрат и приводим подобные члены:

(x+c)^2+y^2=4a^2-4asqrt{(x-c)^2+y^2}+(x-c)^2+y^2~Leftrightarrow ~4asqrt{(x-c)^2+y^2}=4a^2-4cx.

Разделив на 4, возводим обе части уравнения в квадрат:

a^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2~Leftrightarrow~ (a^2-c^2)^2x^2+a^2y^2=a^2(a^2-c^2).

Обозначив b=sqrt{a^2-c^2}&gt;0, получаем b^2x^2+a^2y^2=a^2b^2. Разделив обе части на a^2b^2ne0, приходим к каноническому уравнению эллипса:

frac{x^2}{a^2}+frac{y^2}{b^2}=1.

Следовательно, выбранная система координат является канонической.

Если фокусы эллипса совпадают, то эллипс представляет собой окружность (рис.3.36,6), поскольку a=b. В этом случае канонической будет любая прямоугольная система координат с началом в точке Oequiv F_1equiv F_2, a уравнение x^2+y^2=a^2 является уравнением окружности с центром в точке O и радиусом, равным a.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.49), и только они, принадлежат геометрическому месту точек, называемому эллипсом. Другими словами, аналитическое определение эллипса эквивалентно его геометрическому определению, выражающему фокальное свойство эллипса.


Директориальное свойство эллипса

Директрисами эллипса называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии frac{a^2}{c} от нее. При c=0, когда эллипс является окружностью, директрис нет (можно считать, что директрисы бесконечно удалены).

Эллипс с эксцентриситетом 0&lt;e&lt;1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство эллипса). Здесь F и d — один из фокусов эллипса и одна из его директрис, расположенные по одну сторону от оси ординат канонической системы координат, т.е. F_1,d_1 или F_2,d_2.

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.37,6) условие frac{r_2}{rho_2}=e можно записать в координатной форме:

sqrt{(x-c)^2+y^2}=ecdot!left(frac{a^2}{c}-xright)

Избавляясь от иррациональности и заменяя e=frac{c}{a},~a^2-c^2=b^2, приходим к каноническому уравнению эллипса (3.49). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1colonfrac{r_1}{rho_1}=e.

Эллипс и его директориальное свойство, эксцентриситет эллипса


Уравнение эллипса в полярной системе координат

Построение кривой эллипса по точкам в полярной системе координат

Уравнение эллипса в полярной системе координат F_1rvarphi (рис.3.37,в и 3.37(2)) имеет вид

r=frac{p}{1-ecdotcosvarphi}

где p=frac{b^2}{a} фокальный параметр эллипса.

В самом деле, выберем в качестве полюса полярной системы координат левый фокус F_1 эллипса, а в качестве полярной оси — луч F_1F_2 (рис.3.37,в). Тогда для произвольной точки M(r,varphi), согласно геометрическому определению (фокальному свойству) эллипса, имеем r+MF_2=2a. Выражаем расстояние между точками M(r,varphi) и F_2(2c,0) (см. пункт 2 замечаний 2.8):

begin{aligned}F_2M&=sqrt{(2c)^2+r^2-2cdot(2c)cdot rcos(varphi-0)}=\[3pt] &=sqrt{r^2-4cdot ccdot rcdotcosvarphi+4cdot c^2}.end{aligned}

Следовательно, в координатной форме уравнение эллипса F_1M+F_2M=2a имеет вид

r+sqrt{r^2-4cdot ccdot rcdotcosvarphi+4cdot c^2}=2cdot a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

r^2-4cdot ccdot rcdotcosvarphi+4cdot c^2~Leftrightarrow~acdot!left(1-frac{c}{a}cdotcosvarphiright)!cdot r=a^2-c^2.

Выражаем полярный радиус r и делаем замену e=frac{c}{a},~b^2=a^2-c^2,~p=frac{b^2}{a}:

r=frac{a^2-c^2}{acdot(1-ecdotcosvarphi)} quad Leftrightarrow quad r=frac{b^2}{acdot(1-ecdotcosvarphi)} quad Leftrightarrow quad r=frac{p}{1-ecdotcosvarphi},

что и требовалось доказать.


Геометрический смысл коэффициентов в уравнении эллипса

Найдем точки пересечения эллипса (см. рис.3.37,а) с координатными осями (вершины зллипса). Подставляя в уравнение y=0, находим точки пересечения эллипса с осью абсцисс (с фокальной осью): x=pm a. Следовательно, длина отрезка фокальной оси, заключенного внутри эллипса, равна 2a. Этот отрезок, как отмечено выше, называется большой осью эллипса, а число a — большой полуосью эллипса. Подставляя x=0, получаем y=pm b. Следовательно, длина отрезка второй оси эллипса, заключенного внутри эллипса, равна 2b. Этот отрезок называется малой осью эллипса, а число b — малой полуосью эллипса.

Действительно, b=sqrt{a^2-c^2}leqslantsqrt{a^2}=a, причем равенство b=a получается только в случае c=0, когда эллипс является окружностью. Отношение k=frac{b}{a}leqslant1 называется коэффициентом сжатия эллипса.


Замечания 3.9

1. Прямые x=pm a,~y=pm b ограничивают на координатной плоскости основной прямоугольник, внутри которого находится эллипс (см. рис.3.37,а).

2. Эллипс можно определить, как геометрическое место точек, получаемое в результате сжатия окружности к ее диаметру.

Действительно, пусть в прямоугольной системе координат Oxy уравнение окружности имеет вид x^2+y^2=a^2. При сжатии к оси абсцисс с коэффициентом 0&lt;kleqslant1 координаты произвольной точки M(x,y), принадлежащей окружности, изменяются по закону

begin{cases}x'=x,\y'=kcdot y.end{cases}

Подставляя в уравнение окружности x=x' и y=frac{1}{k}y', получаем уравнение для координат образа M'(x',y') точки M(x,y):

(x')^2+{left(frac{1}{k}cdot y'right)!}^2=a^2 quad Leftrightarrow quad frac{(x')^2}{a^2}+frac{(y')^2}{k^2cdot a^2}=1 quad Leftrightarrow quad frac{(x')^2}{a^2}+frac{(y')^2}{b^2}=1,

поскольку b=kcdot a. Это каноническое уравнение эллипса.

3. Координатные оси (канонической системы координат) являются осями симметрии эллипса (называются главными осями эллипса), а его центр — центром симметрии.

Действительно, если точка M(x,y) принадлежит эллипсу frac{x^2}{a^2}+frac{y^2}{b^2}=1. то и точки M'(x,-y) и M''(-x,y), симметричные точке M относительно координатных осей, также принадлежат тому же эллипсу.

4. Из уравнения эллипса в полярной системе координат r=frac{p}{1-ecosvarphi} (см. рис.3.37,в), выясняется геометрический смысл фокального параметра — это половина длины хорды эллипса, проходящей через его фокус перпендикулярно фокальной оси (r=p при varphi=frac{pi}{2}).

Эксцентриситет, коэффициент сжатия и фокусы эллипса

5. Эксцентриситет e характеризует форму эллипса, а именно отличие эллипса от окружности. Чем больше e, тем эллипс более вытянут, а чем ближе e к нулю, тем ближе эллипс к окружности (рис.3.38,а). Действительно, учитывая, что e=frac{c}{a} и c^2=a^2-b^2, получаем

e^2=frac{c^2}{a^2}=frac{a^2-b^2}{a^2}=1-{left(frac{a}{b}right)!}^2=1-k^2,

где k — коэффициент сжатия эллипса, 0&lt;kleqslant1. Следовательно, e=sqrt{1-k^2}. Чем больше сжат эллипс по сравнению с окружностью, тем меньше коэффициент сжатия k и больше эксцентриситет. Для окружности k=1 и e=0.

6. Уравнение frac{x^2}{a^2}+frac{y^2}{b^2}=1 при a&lt;b определяет эллипс, фокусы которого расположены на оси Oy (рис.3.38,6). Это уравнение сводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение frac{(x-x_0)^2}{a^2}+frac{(y-y_0)^2}{b^2}=1,~ageqslant b определяет эллипс с центром в точке O'(x_0,y_0), оси которого параллельны координатным осям (рис.3.38,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36).

При a=b=R уравнение (x-x_0)^2+(y-y_0)^2=R^2 описывает окружность радиуса R с центром в точке O'(x_0,y_0).


Параметрическое уравнение эллипса

Параметрическое уравнение эллипса в канонической системе координат имеет вид

begin{cases}x=acdotcos{t},\ y=bcdotsin{t},end{cases}0leqslant t&lt;2pi.

Действительно, подставляя эти выражения в уравнение (3.49), приходим к основному тригонометрическому тождеству cos^2t+sin^2t=1.


Пример построения эллипса в канонической системе координат

Пример 3.20. Изобразить эллипс frac{x^2}{2^2}+frac{y^2}{1^2}=1 в канонической системе координат Oxy. Найти полуоси, фокусное расстояние, эксцентриситет, коэффициент сжатия, фокальный параметр, уравнения директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 — большая полуось, b=1 — малая полуось эллипса. Строим основной прямоугольник со сторонами 2a=4,~2b=2 с центром в начале координат (рис.3.39). Учитывая симметричность эллипса, вписываем его в основной прямоугольник. При необходимости определяем координаты некоторых точек эллипса. Например, подставляя x=1 в уравнение эллипса, получаем

frac{1^2}{2^2}+frac{y^2}{1^2}=1 quad Leftrightarrow quad y^2=frac{3}{4} quad Leftrightarrow quad y=pmfrac{sqrt{3}}{2}.

Следовательно, точки с координатами left(1;,frac{sqrt{3}}{2}right)!,~left(1;,-frac{sqrt{3}}{2}right) — принадлежат эллипсу.

Вычисляем коэффициент сжатия k=frac{b}{a}=frac{1}{2}; фокусное расстояние 2c=2sqrt{a^2-b^2}=2sqrt{2^2-1^2}=2sqrt{3}; эксцентриситет e=frac{c}{a}=frac{sqrt{3}}{2}; фокальный параметр p=frac{b^2}{a}=frac{1^2}{2}=frac{1}{2}. Составляем уравнения директрис: x=pmfrac{a^2}{c}~Leftrightarrow~x=pmfrac{4}{sqrt{3}}.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Определение.
Пусть на плоскости заданы две точки F1
и F2,
расстояние между которыми равно 2c.
Пусть, кроме того, задано число a,
большее c.
Эллипсом
называется множество точек той же
плоскости, для каждой из которых сумма
расстояний до точек F1
и F2,
называемых фокусами
эллипса,
есть число постоянное, равное 2а.

Вывод канонического уравнения

Для вывода
канонического уравнения эллипса выберем
на плоскости следующую прямоугольную
декартову систему координат: ось

проведем через фокусы эллипса, а ось


перпендикулярно ей через середину
отрезка F1F2
(рис. 3.4). По определению эллипсу
удовлетворяют те, и только те точки М
плоскости, для которых

.
(1)

Чтобы
получить уравнение эллипса следует
записать равенство (1) в координатах. В
выбранной системе координат фокусы
эллипса имеют следующие координаты: F1
(–c;
0); F2
(c;
0). Произвольную (или текущую) точку
множества опять обозначаем M(x;
y).
Так как

,

,

то уравнение (1)
равносильно следующему:

,
(2)

которое, в свою
очередь, равносильно

Рис. 3.4
уравнению:

.
(3)

Оба эти уравнения
являются уравнениями эллипса, но мы
преобразуем их к более простому виду.
Проведем следующую цепочку преобразований:

(3)









.

Учитывая, что
,
разделив последнее уравнение на
,
получаем:

.
(4′)

Так как
,
то
,
поэтому найдется такое положительное
число
,
что
.
Теперь уравнение (4′) примет вид:

.
(4)

Мы доказали: если
точка принадлежит эллипсу, то её
координаты удовлетворяют уравнению
(3) или (4).

Докажем обратное:
если координаты точки удовлетворяют
уравнению (4) или (3), то она принадлежит
эллипсу. Итак,

{M
(x;
y)
удовлетворяет (4)}






.
(5)

Аналогично получаем:

.
(6)

Находим сумму
расстояний:

[(4)


]=.

Таким образом, (4)
– уравнение эллипса, которое и называется
его каноническим
уравнением.

Исследование формы эллипса по его каноническому уравнению

1. Из (4)
вытекает: если точка M(x;
y)
принадлежит эллипсу, то

,
т.е. эллипс полностью лежит внутри этого
прямоугольника.

2.
Так же как и гипербола, эллипс симметричен
относительно обеих координатных осей
и относительно начала координат. Оси
симметрии эллипса называются осями
эллипса
,
центр симметрии – его центром.

3

x

. Если y
= 0, то из (1) следует, что x
= a,
если же x
= 0, то y
= b.
Таким образом, эллипс
пересекает обе координатные оси: ось

в точках A1(–a;
0), A2(a;
0), а ось

Рис. 3.5.

в точках B1(0;
b),
B2(0;
b).
Эти точки называются вершинами эллипса
Числа а
и b
называются полуосями эллипса, большой
и малой соответственно.

4

y

. В силу симметрии эллипса его можно
вначале нарисовать только в первой
четверти, а затем продолжить по симметрии.
Если

,
то из (4) получаем:
.
Найдем производную:


y

.


при
,
поэтому функция убывает на отрезке
.
Так как

и
,
то в точке пересечения эллипса с осью


он имеет горизонтальную касательную,
а в точке пересечения с осью

– вертикальную. Так же, как и у гиперболы,
фокусы эллипса находятся в точках F1
(–c;
0) F2
(c;
0). Теперь уже можно эллипс изобразить
(см. рис. 3.5).

Замечание.
Уравнение (4) задаёт эллипс, фокусы
которого лежат на оси абсцисс при
,
и лежат на оси ординат при
.
Если же
,
то (4) – уравнение окружности радиуса

с центром в начале координат. В этом
случае c
=
0. Таким
образом, окружность –
это частный случай эллипса с совпадающими
фокусами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  1. Определение эллипса.

    Начать изучение

  2. Фокусы, эксценриситет и директрисы эллипса.

    Начать изучение

  3. Уравнение касательной к эллипсу.

    Начать изучение

Определение эллипса.

Напомним, что мы назвали эллипсом линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
frac{x^{2}}{a^{2}}+frac{y^{2}}{b^{2}}=1label{ref1}
$$
при условии (a geq b > 0).

Из уравнения eqref{ref1} следует, что для всех точек эллипса (|x| leq a) и (|y| leq b). Значит, эллипс лежит в прямоугольнике со сторонами (2a) и (2b).

Точки пересечения эллипса с осями канонической системы координат, имеющие координаты ((a, 0)), ((-a, 0)), ((0, b)) и ((0, -b)), называются вершинами эллипса. Числа (a) и (b) называются соответственно большой и малой полуосями эллипса.

эллипс

Рис. 8.1. Эллипс

В каноническое уравнение входят только квадраты координат. Поэтому, если координаты ((x, y)) какой-либо точки /(M) ему удовлетворяют, то ему удовлетворяют и координаты ((-x, y)), ((x, -y)) и ((-x, -y)) точек (M_{1}), (M_{2}) и (M_{3}) (рис. 8.1). Следовательно, справедливо следующее утверждение.

Утверждение 1.

Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы — его центром симметрии.

Внешний вид эллипса проще всего описать сравнением с окружностью радиуса (a) с центром в центре эллипса: (x^{2}+y^{2}=a^{2}). При каждом (x) таком, что (|x| < a), найдутся две точки эллипса с ординатами (pm b sqrt{1-x^{2}/a^{2}}) и две точки окружности с ординатами (pm a sqrt{1-x^{2}/a^{2}}). Пусть точке эллипса соответствует точка окружности с ординатой того же знака. Тогда отношение ординат соответствующих точек равно (b/a). Итак, эллипс получается из окружности таким сжатием ее к оси абсцисс, при котором ординаты всех точек уменьшаются в одном и том же отношении (b/a) (рис. 8.2).

преобразование окружности к эллипсу

Рис. 8.2. Сжатие окружности к эллипсу. Ординаты всех точек уменьшаются в отношении (b/a).

Фокусы, эксценриситет и директрисы эллипса.

У эллипса есть две замечательные точки, которые называются его фокусами.

Определение.

Пусть по определению
$$
c^{2}=a^{2}-b^{2}label{ref2}
$$
и (c geq 0).

Фокусами называются точки (F_{1}) и (F_{2}) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат (рис. 8.3).

фокусы эллипса

Рис. 8.3. Фокусы эллипса.

Для окружности (c=0), и оба фокуса совпадают с центром. Ниже мы будем предполагать, что эллипс не является окружностью.

Определение.

Отношение
$$
varepsilon=frac{c}{a}label{ref3}
$$
называется эксцентриситетом эллипса.

Отметим, что (varepsilon < 1).

Утверждение 2.

Расстояние от произвольной точки (M(x, y)), лежащей на эллипсе, до каждого из фокусов (рис. 8.3) является линейной функцией от ее абсциссы (x):
$$
r_{1}=|F_{1}M|=a-varepsilon x, r_{2}=|F_{2}M|=a+varepsilon x.label{ref4}
$$

Доказательство.

Очевидно, что (r_{1}^{2}=(x-c)^{2}+y^{2}). Подставим сюда выражение для (y^{2}), найденное из уравнения эллипса. Мы получим
$$
r_{1}^{2}=x^{2}-2cx+c^{2}+b^{2}-frac{b^{2}x^{2}}{a^{2}}.nonumber
$$

Учитывая равенство eqref{ref2}, это можно преобразовать к виду
$$
r_{1}^{2}=a^{2}-2cx+frac{c^{2}x^{2}}{a^{2}}=(a-varepsilon x)^{2}.nonumber
$$
Так как (x leq a) и (varepsilon < 1), отсюда следует, что справедливо первое из равенств eqref{ref4}: (r_{1}=a-varepsilon x). Второе равенство доказывается аналогично.

Утверждение 3.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса (2a).

Доказательство.

Необходимость. Если мы сложим равенства eqref{ref4} почленно, то увидим, что
$$
r_{1}+r_{2}=2a.label{ref5}
$$
Достаточность. Пусть для точки (M(x, y)) выполнено условие eqref{ref5}, то есть
$$
sqrt{(x-c)^{2}+y^{2}}=2a-sqrt{(x+c)^{2}+y^{2}}.nonumber
$$
Возведем обе части равенства в квадрат и приведем подобные члены:
$$
xc+a^{2}=asqrt{(x+c)^{2}+y^{2}}.label{ref6}
$$
Это равенство также возведем в квадрат и приведем подобные члены, используя соотношение eqref{ref2}. Мы придем к (b^{2}x^{2}+a^{2}y^{2}=a^{2}b^{2}), равносильному уравнению эллипса eqref{ref1}.

С эллипсом связаны две замечательные прямые, называемые его директрисами. Их уравнения в канонической системе координат (рис. 8.4)
$$
x=frac{a}{varepsilon},\ x=-frac{a}{varepsilon}.label{ref7}
$$
Директрису и фокус, которые лежат по одну сторону от центра, будем считать соответствующими друг другу.

фокусы и директрисы эллипса

Рис. 8.4. Фокусы и директрисы эллипса.

Утверждение 4.

Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету эллипса (varepsilon).

Доказательство.

Докажем это предложение для фокуса (F_{2}(-c, 0)). Пусть (M(x, y)) — произвольная точка эллипса. Расстояние от (M) до директрисы с уравнением (x=-a/varepsilon) по формуле (9) §3 гл. II равно
$$
d_{2}=|x+frac{a}{varepsilon}|=frac{1}{varepsilon}(varepsilon x+a).nonumber
$$
Из формулы eqref{ref4} мы видим теперь, что (r_{2}/d_{2}=varepsilon).

Обратно, пусть для какой-то точки плоскости (r_{2}/d_{2}=varepsilon), то есть
$$
sqrt{(x+c)^{2}+y^{2}}=varepsilon left(x+frac{a}{varepsilon}right).nonumber
$$
Так как (varepsilon=c/a), это равенство легко приводится к виду eqref{ref6}, из которого, как мы знаем, следует уравнение эллипса.

Уравнение касательной к эллипсу.

Выведем уравнение касательной к эллипсу, заданному каноническим уравнением. Пусть (M_{0}(x_{0}, y_{0})) — точка на эллипсе и (y_{0} neq 0). Через (M_{0}) проходит график некоторой функции (y=f(x)), который целиком лежит на эллипсе. (Для (y_{0} > 0) это график (f_{1}(x)=bsqrt{1-x^{2}/a^{2}}), для (y_{0} < 0) — график (f_{2}(x)=-bsqrt{1-x^{2}/a^{2}}). Не уточняя знака (y_{0}), обозначим подходящую функцию (f(x)).) Для нее выполнено тождество
$$
frac{x^{2}}{a^{2}}+frac{(f(x))^{2}}{b^{2}}=1.nonumber
$$
Дифференцируем его по (x):
$$
frac{2x}{a^{2}}+frac{2ff’}{b^{2}}=0.nonumber
$$
Подставляя (x=x_{0}) и (f(x_{0}=y_{0})), находим производную от (f) в точке (x_{0}), равную угловому коэффициенту касательной:
$$
f'(x_{0})=frac{b^{2}}{a^{2}} frac{x_{0}}{y_{0}}.nonumber
$$
Теперь мы можем написать уравнение касательной:
$$
y-y_{0}=-frac{b^{2}}{a^{2}} frac{x_{0}}{y_{0}}(x-x_{0}).nonumber
$$
Упрощая это уравнение, учтем, что (b^{2}x_{0}^{2}+a^{2}y_{0}^{2}=a^{2}b^{2}), так как (M_{0}) лежит на эллипсе. Результату можно придать вид
$$
frac{xx_{0}}{a^{2}}+frac{yy_{0}}{b^{2}}=1.label{ref8}
$$

При выводе уравнения eqref{ref8} мы исключили вершины эллипса ((a, 0)) и ((-a, 0)), положив (y_{0} neq 0). Для этих точек оно превращается, соответственно, в уравнения (x=a) и (x=-a). Эти уравнения определяют касательные в вершинах. Проверить это можно, заметив, что в вершинах ж как функция от у достигает экстремума. Предоставим читателю проделать это подробно и показать тем самым, что уравнение eqref{ref8} определяет касательную для любой точки (M_{0}(x_{0}, y_{0})) на эллипсе.

Утверждение 5.

Касательная к эллипсу в точке (M_{0}(x_{0}, y_{0})) есть биссектриса угла, смежного с углом между отрезками, соединяющими эту точку с фокусами.

Доказательство.

Нам надо сравнить углы (varphi_{1}) и (varphi_{2}), составленные векторами (overrightarrow{F_{1}M_{0}}) и (overrightarrow{F_{2}M_{0}}) с вектором (boldsymbol{n}), перпендикулярным касательной (рис. 8.5). Из уравнения eqref{ref8} находим, что (boldsymbol{n}(x_{0}/a^{2}, y_{0}/b^{2})), и потому
$$
(overrightarrow{F_{1}M_{0}}, boldsymbol{n})=frac{x_{0}}{a^{2}}(x_{0}-c)+frac{y_{0}}{b^{2}}y_{0}=1-frac{x_{0}c}{a^{2}}=frac{a-varepsilon x_{0}}{a}.nonumber
$$
Используя eqref{ref4}, мы получаем отсюда, что (cos varphi_{1}=1/(a|boldsymbol{n}|)). Аналогично находим (cos varphi_{2}=1/(a|boldsymbol{n}|)). Утверждение доказано.

Рис. 8.5.

Рис. 8.5.

Понравилась статья? Поделить с друзьями:
  • Как найти карточную игру паук
  • Как исправить ошибку game for windows live
  • Как состояние девочки которую нашли изнасилованную
  • Как найти на кого зарегистрировано имущество
  • Mfc120u dll что это за ошибка как исправить windows 10