Как составить уравнение гиперболы через асимптоты

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b — длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы — бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат — каноническое уравнение гиперболы:

Если — произвольная точка левой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Если — произвольная точка правой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где — расстояние от левого фокуса до точки любой ветви гиперболы, — расстояние от правого фокуса до точки любой ветви гиперболы и и — расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Что такое гипербола

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.

    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Каноническое уравнение гиперболы через асимптоты

    Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, равная 2 a .

    Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а сумму расстояний от произвольной точки эллипса до фокусов – через 2 a . По определению 2 a > 2 c , то есть a > c .

    Выберем систему координат так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпадало с серединой отрезка F 1 F 2 . Тогда фокусы имют координаты: F 1 (– c ;0) и F 2 ( c ;0) . Пусть M ( x ; y ) – произвольная точка эллипса (текущая точка). Тогда по определению эллипса можно записать

    По сути, мы получили уравнение эллипса. Упростим его с помощью ряда несложных математических преобразований:

    Это уравнение равносильно первоначальному. Оно называется каноническим уравнением эллипса – кривой второго порядка .

    Установим форму эллипса, пользуясь его каноническим уравнением.

    1. Уравнение (2.17) содержит x и y только в четных степенях, поэтому если точка ( x ; y ) принадлежит эллипсу, то ему также принадлежат точки (– x ; y ), ( x ;– y ), (– x ;– y ) . Отсюда: эллипс симметричен относительно осей 0 x и 0 y , а также относительно точки O (0;0), которую называют центром эллипса.

    2. Найдем точки пересечения эллипса с осями координат. Положив y = 0, найдем точки A 1 ( a ; 0) и A 2 (– a ; 0), в которых ось 0 x пересекает эллипс. Положив в уравнении (2.17) x = 0, находим точки пересечения эллипса с осью 0 y : B 1 (0; b ) и B 2 (0;– b ). Точки A 1 , A 2 , B 1 , B 2 называются вершинами эллипса. Отрезки А1А2, В1В2, а также их длины 2 a и 2 b – соответственно большая и малая оси эллипса (рис. 2.4).

    3. Из уравнения (2.17) следует, что каждое слагаемое в левой части не превосходит единицы, т.е.:

    Следовательно, все точки эллипса лежат внутри прямоугольника, ограниченного прямыми x = ± a и y = ± b .

    4. В уравнении (2.17) левая часть – сумма неотрицательных слагаемых, т.е. при возрастании одного слагаемого другое будет уменьшаться, если | x | возрастает, | y | уменьшается и наоборот.

    Из сказанного следует, что эллипс имеет форму овальной замкнутой кривой. Форма эллипса зависит от отношения . При a = b эллипс превращается в окружность, уравнение эллипса (2.17) принимает вид : x 2 + y 2 = a 2 . Отношение половины расстояния между фокусами к большой полуоси эллипса – эксцентриситет эллипса . Причем 0 ε 1, так как 0 c a .

    Отсюда видно, что чем меньше эксцентриситет эллипса, тем будет менее эллипс сплющенным; при ε = 0 эллипс превращается в окружность.

    Прямые директрисы эллипса.

    Если r – расстояние от произвольной точки до какого–нибудь фокуса, d – расстояние от этой же точки до соответствующей этому фокусу директрисы (рис. 2.5), то отношение есть величина постоянная, равная эксцентриситету эллипса: .

    Из равенства a 2 c 2 = b 2 следует, что a > b . Если же наоборот, то уравнение (2.17) определяет эллипс, большая ось которого 2 b лежит на оси 0 y , а малая ось 2 a – на оси 0 x . Фокусы такого эллипса находятся в точках F 1 (0; c ) и F 2 (0;– c ) , где . Данный эллипс будет растянут вдоль оси 0 y .

    Пример 2.5. Составить уравнение линии, для каждой точки которой отношение расстояний от нее до точки A (3;0) и до прямой x = 12, равно числу ε =0,5 . Полученное уравнение привести к простейшему виду .

    Решение . Пусть M ( x ; y ) – текущая (произвольная) точка искомого геометрического множества точек. Опустим перпендикуляр MB на прямую . Тогда точка B( 12;y) . По условию задачи .

    По формуле расстояния между двумя точками получаем:

    Эксцентриситет эллипса

    Примечание. Если эллипс (окружность) вращать вокруг одной из его осей, то описываемая им поверхность будет эллипсоидом вращения (сферой)

    Пример 2.6. В геодезии используется система географических координат, основанная на понятии геоида. Геоид – поверхность Земли, ограниченная уровенной поверхностью, продолженной под континенты. Поверхность геоида отличается от физической поверхности Земли, на которой резко выражены горы и океанические впадины.

    Тело, поверхность которого более всего соответствует поверхности геоида, имеет определенные размеры и ориентирована соответственно в теле Земли, называется референц–эллипсоидом. В нашей стране с 1946 года для всех геодезических работ принят референц–эллипсоид Красовского с параметрами a = 6 378 245 м, b = 6 356 863 м, α = 1: 298,3.

    Линия, проходящая вертикально через центр эллипсоида является полярной осью. Линия, проходящая через центр эллипсоида, перпендикулярно к полярной оси, – экваториальной осью. При пересечении поверхности эллипсоида плоскостью, проходящей через его центр, перпендикулярно к полярной оси, образуется окружность, называемая экватором. Окружность, полученная от пересечения поверхности эллипсоида плоскостью, параллельной плоскости экватора, называется параллелью. Линия пересечения поверхности эллипсоида с плоскостью, проходящей через заданную точку и полярную ось, называется меридианом данной точки. Положение точки на земной поверхности определяется пересечением параллели и меридиана, проходящих через нее. Угол φ между плоскостью экватора и отвесной линией называется географической широтой. Для определения долгот точек один из меридианов (Гринвичский) принимают за начальный или нулевой. Угол λ, составленный плоскостью меридиана, проходящего через данную точку, и плоскостью начального меридиана, называется географической долготой

    Гипербола – геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости – фокусов, есть величина постоянная, равная 2 a .

    Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а модуль разности расстояний от каждой точки гиперболы до фокусов через 2 a . По определению 2 a 2 c , то есть a c .

    Выберем систему координат x 0 y так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпало с серединой отрезка F 1 F 2 . Тогда фокусы будут иметь координаты F 1( c ;0 ) и F 2 (– c ;0 ). На этой основе выведем уравнение гиперболы. Пусть M ( x ; y ) – ее произвольная точка . Тогда по определению | MF 1 MF 2 |= 2 a , то есть . Проведя преобразования, аналогичные упрощениям уравнения эллипса, получим каноническое уравнение гиперболы:

    где b 2 = a 2 – c 2 . Гипербола линия 2–го порядка.

    Установим форму гиперболы, исходя из ее канонического уравнения.

    1. Уравнение (2.18) содержит x и y только в четных степенях. Следовательно, гипербола симметрична относительно осей координат 0 x и 0 y , и относительно точки O (0;0) – центра гиперболы.

    2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (2.18) y =0 , находим две точки пересечения гиперболы с осью 0 x : A 1 ( a ; 0) и A 2 (– a ; 0).

    Положив в (2.18) x = 0, получаем y 2 = – b 2 , чего быть не может. Т.е. гипербола ось 0 y не пересекает.

    3. Из уравнения (2.18) следует, что уменьшаемое . Это означает, что точки гиперболы расположены справа от прямой x = a (правая ветвь гиперболы) и слева от прямой x =– a (левая ветвь) (рис. 2.6).

    4. Из уравнения (2.18) гиперболы видно, что когда | x | возрастает, то | y | также возрастает . Это следует из того, что разность – сохраняет значение, равно e единице. Следовательно, гипербола имеет форму, состоящую из двух неограниченных ветвей.

    Прямая L называется асимптотой некоторой неограниченной кривой , если расстояние d от точки M этой кривой до прямой L стремится к нулю при неограниченном удалении т очки M вдоль кривой от начала координат.

    Покажем, что гипербола имеет две асимптоты: . Так как данные прямые и гипербола (2.18) симметричны относительно координатных осей, то достаточно рассмотреть только точки, расположенные в первой четверти.

    Возьмем на прямой точку N , имеющую ту же абсциссу, что и точка M ( x ; y ) на гиперболе . Найдем разность | MN | :

    Очевидно: так как числитель есть величина постоянная, а знаменатель дроби увеличивается с возравстанием переменной х, то длина отрезка | MN | стремится к нулю. Так как | MN | больше расстояния d от точки M до прямой L, то d стремится к нулю тем более ( и подавно) . Следовательно, прямые – есть асимптоты гиперболы (рис. 2.7).

    Построение гиперболы начинают с нанесения ее основного прямоугольника на координатную плоскость. Далее проводят диагонали этого прямоугольника, которые являются асимптотами гиперболы, затем отмечают ее вершины, фокусы и строят ветви гиперболы .

    Эксцентриситет гиперболы отношение расстояния между фокусами к величине её действительной оси, обозначается ε : . Так как у гиперболы c > a , то эксцентриситет ее больше единицы. Эксцентриситет характеризует форму гиперболы. Так как . Видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

    Эксцентриситет равносторонней гиперболы равен . Действительно, . Фокальные радиусы , для точек правой ветви гиперболы имеют вид: r 1 = εx + a , r 2 = εx – a ; для точек левой ветви: r 1 =–( εx + a ), r 2 =–( εx – a ) .

    Прямые называются директрисами гиперболы. Тот факт, что для гиперболы ε > 1, то означает : правая директриса расположена между центром и правой вершиной гиперболы, левая – между центром и левой вершиной. Директрисы гиперболы имеют тоже свойство , что и директрисы эллипса.

    Уравнение определяет гиперболу с действительной осью 2 b , расположенной на оси 0 y , и мнимой осью 2 a, расположенной на оси абсцисс (подобная гипербола изображена на рисунке 2.7 пунктиром).

    Значит , гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.

    Примечание. Если у кривой 2–го порядка смещен центр в некоторую точку O ( x 0 ; y 0 ) , то она называется нецентральной кривой. Уравнение такой кривой имеет вид:

    Примечание. При вращении гиперболы вокруг ее действительной оси образуется двуполостный гиперболоид, вокруг ее мнимой оси – однополостный гиперболоид

    Подробно данные уравнения рассмотрены в теме: «Исследование общего уравнения 2–ой степени» (смотри схему 10), частными случаями которого являются данные формулы.

    источники:

    http://skysmart.ru/articles/mathematic/chto-takoe-giperbola

    http://www.sites.google.com/site/vyssaamatem/kupit-ucastok/ii-3-kanoniceskie-uravnenia-ellipsa-i-giperboly

    Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

    Математическая гипербола.

    Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
    Определение гиперболы.
    График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

    Что нужно знать, чтобы построить гиперболу?
    Теперь обсудим свойства гиперболы:

    1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
    гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

    гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

    2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
    Пример №1:
    $$y=frac{1}{x}$$
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
    $$yneqcolor{red} {frac{1}{x}}+0$$
    (frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
    Остается простое число
    y≠0 это вторая асимптота.
    И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
    k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
    Построим примерный график гиперболы.
    гипербола y=1/x

    Пример №2:
    $$y=frac{1}{x+2}-1$$
    Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
    х+2≠0
    х≠-2 это первая асимптота

    Находим вторую асимптоту.

    $$y=color{red} {frac{1}{x+2}}-1$$

    Дробь (color{red} {frac{1}{x+2}}) отбрасываем
    Остается y≠ -1 это вторая асимптота.

    Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
    построим гиперболу

    построить гиперболу

    Пример №3:

    $$begin{align*}
    &y=frac{2+x}{1+x} \\
    &y=frac{color{red} {1+1}+x}{1+x} \\
    &y=frac{1}{1+x}+frac{1+x}{1+x}\\
    &y=frac{1}{1+x}+1\\
    &y=frac{1}{color{red} {1+x}}+1
    end{align*}$$

    Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
    1+х≠0
    х≠-1 это первая асимптота.

    Находим вторую асимптоту.

    $$y=color{red}{frac{1}{1+x}}+1$$

    (color{red}{frac{1}{1+x}}) Дробь убираем.

    Остается y≠1 это вторая асимптота.

    Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
    построить гиперболу

    построить гиперболу

    3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

    $$y=frac{1}{x}$$

    Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
    гипербола 1/х

    4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

    $$y=frac{1}{x}$$

    Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

    Вторая ось симметрии это прямая y=-x.

    оси симметрии гиперболы

    5. Гипербола нечетная функция.

    $$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

    6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

    $$y=frac{-1}{x-1}-1$$

    а) Находим первую асимптоту.
    Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
    x-1≠0
    х≠1 это первая асимптота.

    Находим вторую асимптоту.

    $$y=color{red} {frac{-1}{x-1}}-1$$

    Дробь (color{red} {frac{-1}{x-1}}) удаляем.

    Остается y≠ -1 это вторая асимптота.

    б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

    в) Возьмем несколько дополнительных точек и отметим их на графике.
    х=0 y=0
    x=-1 y=-0,5
    x=2 y=-2
    x=3 y=-1,5

    г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
    х ∈ (-∞;1)U(1;+∞).

    д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
    y ∈ (-∞;-1)U(-1;+∞).

    е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
    график гиперболы

    построить гиперболу

    7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

    8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

    Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
    реклама


    Загрузить PDF


    Загрузить PDF

    Асимптоты гиперболы – это прямые, проходящие через центр гиперболы. Гипербола приближается к асимптотам, но никогда не пересекает (и даже не касается) их. Найти уравнения асимптот можно двумя способами, которые помогут понять саму концепцию асимптот.

    1. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 1

      1

      Запишите каноническое уравнение гиперболы. Рассмотрим простейший пример – гиперболу, центр которой расположен в начале координат. В этом случае каноническое уравнение гиперболы имеет вид: x2/a2y2/b2 = 1 (когда ветви гиперболы направлены вправо или влево) или y2/b2x2/a2 = 1 (когда ветви гиперболы направлены вверх или вниз).[1]
      Имейте в виду, что в этом уравнении «х» и «у» – это переменные, а «а» и «b» – постоянные (то есть числа).

      • Пример 1: x2/9y2/16 = 1
      • Некоторые преподаватели и авторы учебников меняют местами постоянные «а» и «b».[2]
        Поэтому изучите данное вам уравнение, чтобы понять, что к чему. Не стоит просто запоминать уравнение – в этом случае вы ничего не поймете, если переменные и/или постоянные будут обозначены другими символами.
    2. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 2

      2

      Приравняйте каноническое уравнение к нулю (а не к единице). Новое уравнение описывает обе асимптоты, но чтобы получить уравнение каждой асимптоты, придется приложить некоторые усилия.[3]

      • Пример 1: x2/9y2/16 = 0
    3. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 3

      3

      Разложите на множители новое уравнение. Разложите на множители левую часть уравнения. Вспомните, как раскладывать на множители квадратное уравнение, и читайте дальше.

      • Конечное уравнение (то есть уравнение, разложенное на множители) будет иметь вид (__ ± __)(__ ± __) = 0.
      • При перемножении первых членов (внутри каждой пары скобок) должен получиться член x2/9, поэтому из этого члена извлеките квадратный корень, и результат запишите вместо первого пробела внутри каждой пары скобок:(x/3 ± __)(x/3 ± __) = 0
      • Аналогично извлеките квадратный корень из члена y2/16, и результат запишите вместо второго пробела внутри каждой пары скобок: (x/3 ± y/4)(x/3 ± y/4) = 0
      • Вы нашли все члены уравнения, поэтому внутри одной пары скобок между членами напишите знак плюс, а внутри второй – знак минус, чтобы при перемножении соответствующие члены сокращались: (x/3 + y/4)(x/3y/4) = 0
    4. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 4

      4

      Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y». Так вы найдете два уравнения, которые описывают каждую асимптоту.

      • Пример 1: Так как (x/3 + y/4)(x/3y/4) = 0, то x/3 + y/4 = 0 и x/3y/4 = 0
      • Перепишите уравнение следующим образом: x/3 + y/4 = 0y/4 = — x/3y = — 4x/3
      • Перепишите уравнение следующим образом: x/3y/4 = 0y/4 = — x/3y = 4x/3
    5. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 5

      5

      Выполните описанные действия с гиперболой, уравнение которой отличается от канонического. В предыдущем шаге вы нашли уравнения асимптот гиперболы с центром в начале координат. Если центр гиперболы находится в точке с координатами (h,k), то она описывается следующим уравнением: (x — h)2/a2(y — k)2/b2 = 1 или (y — k)2/b2(x — h)2/a2 = 1. Это уравнение также можно разложить на множители. Но в этом случае не трогайте двучлены (x — h) и (y — k) до тех пор, пока не придете к последнему шагу.

      • Пример 2: (x — 3)2/4(y + 1)2/25 = 1
      • Приравняйте это уравнение к 0 и разложите его на множители:
      • ((x — 3)/2 + (y + 1)/5)((x — 3)/2(y + 1)/5) = 0
      • Приравняйте каждый двучлен (то есть выражение внутри каждой пары скобок) к нулю и вычислите «y», чтобы найти уравнения асимптот:
      • (x — 3)/2 + (y + 1)/5 = 0 → y = —5/2x + 13/2
      • ((x — 3)/2(y + 1)/5) = 0 → y = 5/2x — 17/2

      Реклама

    1. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 6

      1

      Обособьте член y2 на левой стороне уравнения гиперболы. Применяйте этот метод в том случае, когда уравнение гиперболы дано в квадратичной форме. Даже если дано каноническое уравнение гиперболы, этот метод позволит лучше понять концепцию асимптот. Обособьте y2 или (y — k)2 на левой стороне уравнения.

      • Пример 3: (y + 2)2/16(x + 3)2/4 = 1
      • К обеим частям уравнения прибавьте «х», а затем умножьте обе части на 16:
      • (y + 2)2 = 16(1 + (x + 3)2/4)
      • Упростите полученное уравнение:
      • (y + 2)2 = 16 + 4(x + 3)2
    2. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 7

      2

      Извлеките квадратный корень из каждой части уравнения. При этом не упрощайте правую часть уравнения, так как при извлечении квадратного корня получаются два результата – положительный и отрицательный (например, -2 * -2 = 4, поэтому √4 = 2 и √4 = -2). Чтобы привести оба результата, используйте символ ±.

      • √((y + 2)2) = √(16 + 4(x + 3)2)
      • (y+2) = ± √(16 + 4(x + 3)2)
    3. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 8

      3

      Уясните понятие асимптоты. Сделайте это до того, как перейти к следующему шагу. Асимптота – это прямая, к которой приближается гипербола с ростом значений «х». Гипербола никогда не пересечет асимптоту, но с увеличением «х» гипербола приблизится к асимптоте на бесконечно малое расстояние.

    4. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 9

      4

      Преобразуйте уравнение с учетом больших значений «х». Как правило, при работе с уравнениями асимптот учитываются только большие значения «х» (то есть такие значения, которые стремятся к бесконечности). Поэтому в уравнении можно пренебречь определенными константами, так как по сравнению с «х» их вклад невелик. Например, если переменная «х» равна нескольким миллиардам, то прибавление числа (константы) 3 окажет мизерное влияние на значение «х».

      • В уравнении (y+2) = ± √(16 + 4(x + 3)2) при стремлении «x» к бесконечности постоянной 16 можно пренебречь.
      • При больших значениях «х» (y+2) ≈ ± √(4(x + 3)2)
    5. Изображение с названием Find the Equations of the Asymptotes of a Hyperbola Step 10

      5

      Вычислите «у», чтобы найти уравнения асимптот. Избавившись от констант, можно упростить подкоренное выражение. Помните, что в ответе нужно записать два уравнения – одно со знаком плюс, а второе со знаком минус.

      • y + 2 = ±√(4(x+3)^2)
      • y + 2 = ±2(x+3)
      • y + 2 = 2x + 6 и y + 2 = -2x — 6
      • y = 2x + 4 и y = -2x — 8

      Реклама

    Советы

    • Помните, что уравнение гиперболы и уравнения ее асимптот всегда включают постоянные (константы).
    • Равносторонняя гипербола – это гипербола, в уравнении которой а = b = с (константа).
    • Если дано уравнение равносторонней гиперболы, сначала преобразуйте его в каноническую форму, а затем найдите уравнения асимптот.

    Реклама

    Предупреждения

    • Помните, что ответ не всегда записывается в канонической форме.

    Реклама

    Об этой статье

    Эту страницу просматривали 91 875 раз.

    Была ли эта статья полезной?

    Установим
    форму гиперболы, пользуясь ее каноническим
    уравнением.

    1. 
    Уравнение (11.9) содержит x и у только в
    четных степенях. Сле­довательно,
    гипербола симметрична относительно
    осей Ох и Оу,
    а также относительно точки О(0;0),
    которую называют центром
    гиперболы.

    2. 
    Найдем точки пересечения гиперболы с
    осями координат. Положив у=0  в
    уравнении (11.9), находим две точки
    пересечения гиперболы с
    осью Ох: А1(a;0) и A2(-a;0).
    Положив x=0 в
    (11.9), получаем y^2=-b^2,
    чего быть не может. Следовательно,
    гипербола ось Оу не пересекает.

    Точки A1(a;0) и A2(-a;0) называются вершинами гиперболы,
    а отрезок A1A2=2a

    действительной
    осью
    ,
    отрезок OA1=OA2=a — действительной
    полуосью
    гиперболы.

    Отрезок B1B2(B1B2=2b),
    соединяющий точки B1(0;b) и B2(0;-b) называется мнимой
    осью
    ,
    число b  —  мнимой
    полуосью
    .
    Прямоугольник со сторонами 2a и 2b называется
    основным
    прямоугольником гиперболы
    .

    3. 
    Из уравнения (11.9) следует, что
    уменьшаемое x^2/a^2 не
    меньше единицы  т. е. что 1<=x^2/a^2   или 
    a<=|x|
    .
    Это означает, что точки гиперболы
    расположены справа от прямой x=a (правая
    ветвь гиперболы) и слева от прямой x=-a (левая
    ветвь гиперболы).

    4.
    Из уравнения (11.9) гиперболы видно, что
    когда |x| возрастает,
    то и |y| воз­растает.
    Это следует из того,  что
    разность x^2/a^2 –y^2/b^2 сохраняет  
    постоянное   значение, равное
    единице.

    Из
    сказанного следует, что гипербола имеет
    форму, изображенную на рисунке 54 (кривая,
    состоящая из двух неограниченных
    ветвей). Как раз таки график оптического
    свойства

    для гиперболы выглядит также:

    Продолжение
    отраженного луча света, исходящего из
    одного фокуса гиперболы, попадает во
    второй фокус.

    1.3 Асимптоты гиперболы

    Прямая
    L называется асимптотой неограниченной
    кривой K, если расстояние d от точки M
    кривой K  до этой прямой стремится к
    ну­лю при неограниченном удалении
    точки M вдоль кривой K от начала координат.
    На рисунке 55 приведена иллюстрация
    понятия асимптоты: прямая L является
    асимптотой для кривой К.

    Покажем,
    что гипербола x^2/a^2-y^/b^2 имеет
    две асимптоты:


      (11.11)

    Так
    как прямые (11.11) и гипербола (11.9) симметричны
    относительно координатных осей, то
    достаточно рассмотреть только те точки
    указанных линий, которые расположены
    в первой четверти.

    Возьмем
    на прямой y=bx/a точку
    N имеющей ту же абсциссу х, что и точка
    M(x;y) на
    гиперболе y=b(x^2-a^2)^1/2/a
     (см.рис.
    56), и найдем разность ΜΝ между ордина­тами
    прямой и ветви гиперболы:

    Как
    видно, по мере возрастания х знаменатель
    дроби увеличивается; числитель — есть
    постоянная величина.

    Стало
    быть, длина отрезка ΜΝ стремится к нулю.
    Так как ΜΝ больше расстояния d от точки
    Μ до прямой, то d и подавно стремится к
    ну­лю. Итак, прямые  y=+bx/a являются
    асимптотами гиперболы (11.9).

    При
    построении гиперболы (11.9) целесообразно
    сначала построить ос­новной прямоугольник
    гиперболы (см. рис. 57), провести прямые,
    проходящие через противоположные
    вершины этого прямоугольника, — асимптоты
    гиперболы и отметить вершины A1 и A2,
    гиперболы.

    Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    1. Гипербола и её форма.

      Начать изучение

    2. Фокусы, эксцентриситет и директрисы гиперболы.

      Начать изучение

    3. Точки гиперболы и их свойства.

      Начать изучение

    4. Уравнение касательной к гиперболе.

      Начать изучение

    Гипербола и её форма.

    Гиперболой мы назвали линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
    $$
    frac{x^{2}}{a^{2}}-frac{y^{2}}{b^{2}}=1.label{ref9}
    $$

    Из этого уравнения видно, что для всех точек гиперболы (|x| geq a), то есть все точки гиперболы лежат вне вертикальной полосы ширины (2a) (рис. 8.6). Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами ((a, 0)) и ((-a, 0)), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух не связанных между собой частей. Они называются ее ветвями. Числа (a) и (b) называются соответственно вещественной и мнимой полуосями гиперболы.

    гипербола

    Рис. 8.6. Гипербола.

    Утверждение.

    Для гиперболы оси канонической системы координат являются осями симметрии, а начало канонической системы — центром симметрии.

    Доказательство.

    Доказательство аналогично доказательству соответствующего утверждения для эллипса.

    Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде (y=kx), поскольку мы уже знаем, что прямая (x=0) не пересекает гиперболу. Абсциссы точек перечения находятся из уравнения
    $$
    frac{x^{2}}{a^{2}}-frac{k^{2}x^{2}}{b^{2}}=1.
    $$
    Поэтому, если (b^{2}-a^{2}k^{2} > 0), то
    $$
    x=pm frac{ab}{sqrt{b^{2}-a^{2}k^{2}}}.
    $$
    Это позволяет указать координаты точек пересечения ((ab/v, abk/v)) и ((-ab/v, -abk/v)), где обозначено (v=(b^{2}-a^{2}k^{2})^{1/2}). В силу симметрии достаточно проследить за движением первой из точек при изменении (k) (рис. 8.7).

    пересечение прямой и гиперболы

    Рис. 8.7. Пересечение прямой и гиперболы.

    Числитель дроби (ab/v) постоянен, а знаменатель принимает наибольшее значение при (k=0). Следовательно, наименьшую абсциссу имеет вершина ((a, 0)). С ростом (k) знаменатель убывает, и (x) растет, стремясь к бесконечности, когда (k) приближается к числу (b/a). Прямая (y=bx/a) с угловым коэффициентом (b/a) не пересекает гиперболу, и прямые с большими угловыми коэффициентами ее тем более не пересекают. Любая прямая с меньшим положительным угловым коэффициентом пересекает гиперболу.

    Если мы будем поворачивать прямую от горизонтального положения по часовой стрелке, то (k) будет убывать, (k^{2}) расти, и прямая будет пересекать гиперболу во все удаляющихся точках, пока не займет положения с угловым коэффициентом (-b/a).

    К прямой (y=-bx/a) относится все, что было сказано о (y=bx/a): она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из приведенных рассуждений вытекает, что гипербола имеет вид, изображенный на рис. 8.7.

    Определение.

    Прямые с уравнениями (y=bx/a) и (y=-bx/a) в канонической системе координат называются асимптотами гиперболы.

    Запишем уравнения асимптот в виде (bx-ay=0) и (bx+ay=0). Расстояния от точки (M(x, y)) до асимптот равны соответственно
    $$
    h_{1}=frac{|bx-ay|}{sqrt{a^{2}+b^{2}}}, h_{2}=frac{|bx+ay|}{sqrt{a^{2}+b^{2}}}.nonumber
    $$
    Если точка (M) находится на гиперболе, то (b^{2}x^{2}-a^{2}y^{2}=a^{2}b^{2}), и
    $$
    h_{1}h_{2}=frac{|b^{2}x^{2}-a^{2}y^{2}|}{a^{2}+b^{2}}=frac{a^{2}b^{2}}{a^{2}+b^{2}}.nonumber
    $$

    Утверждение.

    Произведение расстояний от точки гиперболы до асимптот постоянно и равно (a^{2}b^{2}/(a^{2}+b^{2})).

    Отсюда следует важное свойство асимптот.

    Свойство.

    Если точка движется по гиперболе так, что ее абсцисса по абсолютной величине неограниченно возрастает, то расстояние от точки до одной из асимптот стремится к нулю.

    Доказательство.

    Действительно, хотя бы одно из расстояний (h_{1}) или (h_{2}) при этих условиях должно неограниченно возрастать, и, если бы предложение было неверно, произведение не было бы постоянно.


    Фокусы, эксцентриситет и директрисы гиперболы.

    Определение.

    Введем число (c), положив
    $$
    c^{2}=a^{2}+b^{2}label{ref10}
    $$
    и (c > 0). Фокусами гиперболы называются точки (F_{1}) и (F_{2}) с координатами ((c, 0)) и ((-c, 0)) в канонической системе координат.

    фокусы гиперболы

    Рис. 8.8. Фокусы гиперболы.

    Отношение (varepsilon=c/a), как и для эллипса, называется эксцентриситетом. У гиперболы (varepsilon > 1).

    Утверждение 9.

    Расстояния от произвольной точки (M(x, y)) на гиперболе до каждого из фокусов следующим образом зависят от ее абсциссы (x):
    $$
    r_{1}=|F_{1}M|=|a-varepsilon x|, r_{2}=|F_{2}M|=|a+varepsilon x|.label{ref11}
    $$

    расстояние от точки гиперболы до фокуса

    Рис. 8.9. Расстояние от точки на гиперболе до ее фокусов.

    Доказательство.

    Доказательство этого утверждения почти дословно совпадает с доказательством аналогичного утверждения для эллипса.

    Заметим, что равенства eqref{ref11} можно подробнее записать так:

    • для правой ветви гиперболы ((x geq a))
      $$
      r_{1}=varepsilon x-a, r_{2}=varepsilon x+a;nonumber
      $$
    • для левой ветви гиперболы ((x leq -a))
      $$
      r_{1}= a-varepsilon x, r_{2}=-varepsilon x-a;nonumber
      $$

    Итак, для правой ветви (r_{2}-r_{1}=2a), а для левой ветви (r_{1}-r_{2}=2a). В обоих случаях
    $$
    |r_{2}-r_{1}|=2a.label{ref12}
    $$

    Директрисами гиперболы называются прямые, задаваемые в канонической системе координат уравнениями
    $$
    x=frac{a}{varepsilon}, x=-frac{a}{varepsilon}.label{ref13}
    $$

    Директрисы лежат ближе к центру, чем вершины, и, следовательно, не пересекают гиперболу. Директриса и фокус, лежащие по одну сторону от центра, считаются соответствующими друг другу.


    Точки гиперболы и их свойства.

    Утверждение 10.

    Для того чтобы точка (M) лежала на гиперболе, необходимо и достаточно, чтобы разность ее расстояний до фокусов по абсолютной величине равнялась вещественной оси гиперболы (2a).

    Доказательство.

    Необходимость условия уже доказана. Для доказательства достаточности условия его нужно представить в виде
    $$
    sqrt{(x-c)^{2}+y^{2}}=pm 2a+sqrt{(x+c)^{2}+y^{2}}nonumber
    $$
    Дальнейшее отличается от доказательства соответствующего утверждения для эллипса только тем, что нужно воспользоваться равенством (c^{2}=a^{2}+b^{2}), а не (c^{2}=a^{2}-b^{2}).

    Утверждение 11.

    Для того чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету (varepsilon) (рис. 8.10).

    эксцентриситет и фокусы гиперболы

    Рис. 8.10.

    Доказательство.

    Доказательство повторяет доказательство предложения 4. Докажем, например, необходимость условия для фокуса (F_{2}(-c, 0)). Пусть (M'(x, y)) — точка гиперболы. Расстояние от (M’) до директрисы с уравнением (x=-a/varepsilon) по формуле (9) § 3 гл. II равно
    $$
    d’=left|x+frac{a}{varepsilon}right|=frac{1}{varepsilon}|varepsilon x+a|.nonumber
    $$

    Из формулы eqref{ref11} мы видим теперь, что (r’/d’=varepsilon).


    Уравнение касательной к гиперболе.

    Уравнение касательной к гиперболе в точке (M_{0}(x_{0}, y_{0})), лежащей на ней, выводится так же, как соответствующее уравнение касательной для эллипса. Оно имеет вид
    $$
    frac{xx_{0}}{a^{2}}-frac{yy_{0}}{b^{2}}=1.label{ref14}
    $$

    Утверждение 12.

    Касательная к гиперболе в точке (M_{0}(x_{0}, y_{0})) есть биссектриса угла между отрезками, соединяющими эту точку с фокусами.

    Доказательство.

    Доказательство почти не отличается от доказательства соответствующего утверждения для эллипса.

    Понравилась статья? Поделить с друзьями:
  • Как найти айди приемника триколор
  • Как найти авто по номеру лота
  • Как найти денег на малый бизнес
  • Как составить резюме если работала не официально
  • Как найти ложь в словах