Как составить уравнение химической реакции железа

Железо Fe: химические свойства, способы получения железа, взаимодействие с простыми веществами (кислород, сера) и со сложными веществами (кислоты, вода, сильные окислители). Оксид железа (II) FeO, оксид железа (III) Fe2O3, железная окалина (Fe3O4) — способы получения и химические свойства. Гидроксид железа (II) Fe(OH)2, гидроксид железа (III) Fe(OH)3 — способы получения и химические свойства.

Положение железа в периодической системе химических элементов
Электронное строение железа
Физические свойства
Нахождение в природе
Способы получения
Качественные реакции
Химические свойства
1. Взаимодействие с простыми веществами
1.1. Взаимодействие с галогенами
1.2. Взаимодействие с серой
1.3. Взаимодействие с фосфором
1.4. Взаимодействие с азотом
1.5. Взаимодействие с углеродом
1.6. Горение
2. Взаимодействие со сложными веществами
2.1. Взаимодействие с водой
2.2. Взаимодействие с минеральными кислотами
2.3. Взаимодействие с серной кислотой
2.4. Взаимодействие с азотной кислотой
2.5. Взаимодействие с сильными окислителями
2.6. Взаимодействие с оксидами и солями

Оксид железа (II)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотными оксидами
2. Взаимодействие с кислотами
3. Взаимодействие с водой
4. Взаимодействие с окислителями
5. Взаимодействие с кислотами
6. Взаимодействие с восстановителями

Оксид железа (III)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотными оксидами и кислотами 
2. Взаимодействие с щелочами и основными оксидами
3. Взаимодействие с водой
4. Взаимодействие с окислителями
5. Окислительные свойства оксида железа (III)

6. Взаимодействие с солями более летучих кислот

Оксид железа (II, III)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотными оксидами и кислотами 
2. Взаимодействие с сильными кислотами-окислителями
3. Взаимодействие с водой
4. Взаимодействие с окислителями
5. Окислительные свойства оксида железа (II, III)

Гидроксид железа (II)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотами
2. Взаимодействие с кислотными оксидами
3. Восстановительные свойства 
4. Разложение при нагревании

Гидроксид железа (III)
 Способы получения
 Химические свойства
1. Взаимодействие с кислотами
2. Взаимодействие с кислотными оксидами
3. Взаимодействие с щелочами 
4. Разложение при нагревании

Соли железа

Железо

Положение в периодической системе химических элементов

Элемент железо расположен в побочной подгруппе VIII группы  (или в 8 группе в современной форме ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение атома железа 

Электронная конфигурация  железа в основном состоянии:

+26Fe 1s22s22p63s23p64s23d6

Железо проявляет ярко выраженные магнитные свойства.

Физические свойства 

Железо – металл серебристо-белого цвета, с высокой химической активностью и высокой ковкостью. Обладает высокой тепло- и электропроводностью.

(изображение с портала vchemraznica.ru)

Температура плавления 1538оС, температура кипения 2861оС.

Нахождение в природе

Железо довольно распространено в земной коре (порядка 4% массы земной коры). По распространенности на Земле железо занимает 4-ое место среди всех элементов и 2-ое место среди металлов. Содержание в земной коре  — около 8%.

В природе железо в основном встречается в виде соединений:

Красный железняк Fe2O3 (гематит).

(изображение с портала karatto.ru)

Магнитный железняк Fe3O4 или FeO·Fe2O3 (магнетит).

(изображение с портала emchi-med.ru)

В природе также широко распространены сульфиды железа, например,  пирит FeS2.

(изображение с портала livemaster.ru)

Встречаются и другие минералы, содержащие железо.

Способы получения 

Железо в промышленности получают из железной руды, гематита Fe2O3  или магнетита (Fe3O4или FeO·Fe2O3).

1. Один из основных способов производства железа – доменный процесс. Доменный процесс основан на восстановлении железа из оксида углеродом в доменной печи.

В печь загружают руду, кокс и флюсы.

Шихта  смесь исходных материалов, а в некоторых случаях и топлива в определённой пропорции, которую обрабатывают в печи.

Каменноугольный кокс  это твёрдый пористый продукт серого цвета, получаемый путем коксования каменного угля при температурах 950—1100 °С без доступа воздуха. Содержит 96—98 % углерода.

Флюсы  это неорганические вещества, которые добавляют к руде при выплавке металлов, чтобы снизить температуру плавления и легче отделить металл от пустой породы.

Шлак  расплав (а после затвердевания стекловидная масса), покрывающий поверхность жидкого металла. Шлак состоит из всплывших продуктов пустой породы с флюсами и предохраняет металл от вредного воздействия газовой среды печи, удаляет примеси.

В печи кокс окисляется до оксида углерода (II):

2C   +  O  →  2CO

Затем нагретый угарный газ восстанавливает оксид железа (III):

3CO   +  Fe2O3    →   3CO2    +   2Fe

Процесс получения железа – многоэтапный и зависит от температуры.

Наверху, где температура обычно находится в диапазоне между 200 °C и 700 °C, протекает следующая реакция:

3Fe2O3    +   CO   →    2Fe3O4      +    CO2

Ниже в печи, при температурах приблизительно 850 °C, протекает восстановление смешанного оксида железа (II, III)  до оксида железа (II):

Fe3O4   +   CO   →   3FeO   +   CO2

Встречные потоки газов разогревают шихту, и происходит разложение известняка:

CaCO3    →    CaO    +       CO2

Оксид железа (II) опускается в область с более высоких температур (до 1200oC), где протекает следующая реакция:

FeO   +   CO   →   Fe   +   CO2

Углекислый газ поднимается вверх и реагирует с коксом, образуя угарный газ:

CO2   +    C   →    2CO

(изображение с портала 900igr.net)

2. Также железо получают прямым восстановлением из оксида водородом:

Fe2O3    +   3H2   →    2Fe      +    3H2O

При этом получается более чистое железо, т.к.  получаемое железо не загрязнено серой и фосфором, которые являются примесями в каменном угле.

3. Еще один способ получения железа в промышленности – электролиз растворов солей железа.

Качественные реакции

Качественные реакции на ионы железа +2.

– взаимодействие солей железа (II) с щелочами. При этом образуется серо-зеленый студенистый осадок гидроксида железа (II).

Например, хлорид железа (II) реагирует с гидроксидом натрия:

2NaOH  +   FeCl2    →    Fe(OH)2   + 2NaCl

Видеоопыт взаимодействия раствора сульфата железа (II) с раствором гидроксида натрия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Гидроксид железа (II) на воздухе буреет, так как окисляется до гидроксида железа (III):

4Fe(OH)2   +    O2   +   2H2O    →   4Fe(OH)3

– ионы железа +2 окрашивают раствор в светлый желто-зеленый цвет.

– взаимодействие с красной кровяной солью K3[Fe(CN)6] – также качественная реакция на ионы железа +2. При этом образуется синий осадок «турнбулева синь».

Видеоопыт взаимодействия раствора хлорида железа (II) с раствором гексацианоферрата (III) калия (качественная реакция на ионы железа (II)) можно посмотреть здесь.

Качественные реакции на ионы железа +3

– взаимодействие солей железа (III) с щелочами. При этом образуется бурый осадок гидроксида железа (III).

   

Например, хлорид железа (III) реагирует с гидроксидом натрия:

3NaOH  +   FeCl3    →    Fe(OH)3   + 3NaCl

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гидроксида натрия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

– ионы железа +3 окрашивают раствор в светлый желто-оранжевый цвет.

– взаимодействие с желтой кровяной солью K4[Fe(CN)6] ионы железа +3. При этом образуется синий осадок «берлинская лазурь».

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором гексацианоферрата (II) калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

В последнее время получены данные, которые свидетельствуют, что молекулы берлинской лазури идентичны по строению молекулам турнбулевой сини. Состав молекул обоих этих веществ можно выразить формулой Fe4[Fe2(CN)6]3.

–  при взаимодействии солей железа (III) с роданидами раствор окрашивается в кроваво-красный цвет.

Например, хлорид железа (III) взаимодействует с роданидом натрия:

FeCl3   +    3NaCNS   →   Fe(CNS)3   +  3NaCl

Видеоопыт взаимодействия раствора хлорида железа (III) с раствором роданида калия (качественная реакция на ионы железа (III)) можно посмотреть здесь.

Химические свойства

1. При обычных условиях железо малоактивно, но при нагревании, в особенности в мелкораздробленном состоянии, оно становится активным и реагирует почти со всеми неметаллами.

1.1. Железо реагирует с галогенами с образованием галогенидов. При этом активные неметаллы (фтор, хлор и бром) окисляют железо до степени окисления +3:

2Fe  +  3Cl2  → 2FeCl3

Менее активный йод окисляет железо до степени окисления +2:

Fe  +  I2  →  FeI2

1.2. Железо реагирует с серой с образованием сульфида железа (II):

Fe  +  S   →  FeS

1.3. Железо реагирует с фосфором. При этом образуется бинарное соединения – фосфид железа:

Fe  +  P   →   FeP

1.4. С азотом железо реагирует в специфических условиях.

1.5. Железо реагирует с углеродом и кремнием с образованием карбида и силицида.

1.6. При взаимодействии с кислородом железо образует окалину – двойной оксид железа (II, III):

3Fe  +  2O2  →  Fe3O4

При пропускании кислорода через расплавленное железо возможно образование оксида железа (II):

2Fe  +  O2  →  2FeO

2. Железо взаимодействует со сложными веществами.

2.1. При обычных условиях железо с водой практически не реагирует. Раскаленное железо может вступать в реакцию при температуре 700-900оС с водяным паром:

3Fe0 + 4H2+O  →  Fe+33O4 + 4H20

В воде в присутствии кислорода или во влажном воздухе железо медленно окисляется (корродирует):

4Fe  +  3O2   +   6H2O    →   4Fe(OH)3

2.2. Железо взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль железа со степенью окисления +2 и водород.

Например, железо бурно реагирует с соляной кислотой:

Fe + 2HCl   →   FeCl2  +  H2

2.3. При обычных условиях железо не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат железа (III) и вода:

2Fe + 6H2SO4(конц.)   →  Fe2(SO4)3 + 3SO2 + 6H2O

2.4. Железо не реагирует при обычных условиях с концентрированной азотной кислотой также из-за пассивации. При нагревании реакция идет с образованием нитрата железа (III), оксида азота (IV) и воды:

Fe  +  6HNO3(конц.)   →   Fe(NO3)3  +  3NO2↑   +  3H2O

С разбавленной азотной кислотой железо реагирует с образованием оксида азота (II):

Fe   +  4HNO3(разб.гор.)  →   Fe(NO3)3  +  NO  +  2H2O

При взаимодействии железа с очень разбавленной азотной кислотой образуется нитрат аммония:

8Fe  +  30HNO3(оч. разб.)  →  8Fe(NO3)3   +   3NH4NO3   +  9H2O

2.5. Железо может реагировать с щелочными растворами или расплавами сильных окислителей. При этом железо окисляет до степени окисления +6, образуя соль (феррат).

Например, при взаимодействии железа с расплавом нитрата калия в присутствии гидроксида калия железо окисляется до феррата калия, а азот восстанавливается либо до нитрита калия, либо до аммиака:

Fe  +  2KOH  +  3KNO3  →   3KNO2   +  K2FeO4  +  H2O

2.6. Железо восстанавливает менее активные металлы из оксидов и солей.

Например, железо вытесняет медь из сульфата меди (II). Реакция экзотермическая:

Fe  +  CuSO4  →   FeSO4  +  Cu

Еще пример: простое вещество железо восстанавливает железо до степени окисления +2  при взаимодействии с соединениями железа +3:

2Fe(NO3)3   +  Fe  → 3Fe(NO3)2  

2FeCl3  +  Fe  → 3FeCl2

Fe2(SO4)3   +  Fe  →   3FeSO4

Оксид железа (II)

Оксид железа (II) – это твердое, нерастворимое в воде вещество черного цвета.

Способы получения

Оксид железа (II) можно получить различными методами:

1. Частичным восстановлением оксида железа (III).

Например частичным восстановлением оксида железа (III) водородом:

 Fe2O3   +   H2   →   2FeO   +  H2O

Или частичным восстановлением оксида железа (III) угарным газом:

 Fe2O3   +   CO   →   2FeO   +  CO2

Еще один пример: восстановление оксида железа (III) железом:

 Fe2O3   +   Fe   →   3FeO

2. Разложение гидроксида железа (II) при нагревании:

Fe(OH)2   →   FeO   +  H2O

Химические свойства

Оксид железа (II) — типичный основный оксид.

1. При взаимодействии оксида железа (II) с кислотными оксидами образуются соли.

Например, оксид железа (II) взаимодействует с оксидом серы (VI):

FeO  +  SO3   →   FeSO4

2. Оксид железа (II) взаимодействует с растворимыми кислотами. При этом также образуются соответствующие соли.

Например, оксид железа (II) взаимодействует с соляной кислотой:

FeO  +  2HCl  → FeCl+  H2O

3. Оксид железа (II) не взаимодействует с водой.

4. Оксид железа (II) малоустойчив, и легко окисляется до соединений железа (III).

Например, при взаимодействии с концентрированной азотной кислотой образуются нитрат железа (III), оксид азота (IV) и вода

FeO  +  4HNO3(конц.)   →   NO2  +  Fe(NO3)3  +  2H2O

При взаимодействии с разбавленной азотной кислотой образуется оксид азота (II). Реакция идет при нагревании:

3FeO  +  10HNO3(разб.)   →   3Fe(NO3)3  +  NO  +  5H2O

5. Оксид железа (II) проявляет слабые окислительные свойства.

Например, оксид железа (II) реагирует с угарным газом при нагревании:

FeO   +   CO  →   Fe   +  CO2

Оксид железа (III)

Оксид железа (III) – это твердое, нерастворимое в воде вещество красно-коричневого цвета.

Способы получения

Оксид железа (III) можно получить различными методами:

1. Окисление оксида железа (II) кислородом.

 4FeO   +   O2   →   2Fe2O3

2. Разложение гидроксида железа (III) при нагревании:

2Fe(OH)3   →   Fe2O3   +  3H2O

Химические свойства

Оксид железа (III) – амфотерный.

1. При взаимодействии оксида железа (III) с кислотными оксидами и кислотами образуются соли.

Например, оксид железа (III) взаимодействует с азотной кислотой:

Fe2O3  +  6HNO3   →  2Fe(NO3)3  +  3H2O

2. Оксид железа (III) взаимодействует с щелочами и основными оксидами. Реакция протекает в расплаве, при этом образуется соответствующая соль (феррит).

Например, оксид железа (III) взаимодействует с гидроксидом натрия:

Fe2O3  +  2NaOH   →   2NaFeO2  +  H2O

3. Оксид железа (III) не взаимодействует с водой.

4. Оксид железа (III) окисляется сильными окислителями до соединений железа (VI).

Например, хлорат калия в щелочной среде окисляет оксид железа (III) до феррата

Fe2O3  +  KClO3  +  4KOH   →  2K2FeO4  +  KCl  +  2H2O

Нитраты и нитриты в щелочной среде также окисляют оксид железа (III):

Fe2O3  +  3KNO3  +  4KOH   →  2K2FeO4  +  3KNO2  +  2H2O

5. Оксид железа (III) проявляет окислительные свойства.

Например, оксид железа (III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II) или железной окалины:

Fe2O3  +  3СO  →  2Fe  +  3CO2

Также оксид железа (III) восстанавливается водородом:

Fe2O3  +  3Н2  →  2Fe  +  3H2O

Железом можно восстановить оксид железа только до оксида железа (II):

Fe2O3  +  Fe   →  3FeO 

Оксид железа (III) реагирует с более активными металлами.

Например, с алюминием (алюмотермия):

Fe2O3  +  2Al  →  2Fe  +  Al2O3

Оксид железа (III) реагирует также с некоторыми другими сильными восстановителями.

Например, с гидридом натрия:

Fe2O3  +  3NaH  →  3NaOH  +  2Fe

6. Оксид железа (III) – твердый, нелетучий  и амфотерный. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например, из карбоната натрия:

Fe2O3  +  Na2CO3 → 2NaFeO+  CO2

Оксид железа (II, III)

Оксид железа (II, III) (железная окалина, магнетит) – это твердое, нерастворимое в воде вещество черного цвета.

Фото с сайта wikipedia.ru

Способы получения

Оксид железа (II, III) можно получить различными методами:

1. Горение железа на воздухе:

3Fe  +  2O2  →  Fe3O4

2. Частичное восстановление оксида железа (III) водородом или угарным газом:

3Fe2O3  +  Н2  →  2Fe3O4  +  H2O

3. При высокой температуре раскаленное железо реагирует с водой, образуя двойной оксид железа (II, III):

3Fe  +  4H2O(пар)  → Fe3O4  +  4H2

Химические свойства

Свойства оксида железа (II, III) определяются свойствами двух оксидов, из которых он состоит: основного оксида железа (II) и амфотерного оксида железа (III).

1. При взаимодействии оксида железа (II, III) с кислотными оксидами и кислотами образуются соли железа (II) и железа (III).

Например, оксид железа (II, III) взаимодействует с соляной кислотой. При это образуются две соли – хлорид железа (II) и хлорид железа (III):

Fe3O4  +  8HCl  →   FeCl2  +  2FeCl3  +  4H2O

Еще пример: оксид железа (II, III) взаимодействует с разбавленной серной кислотой.

Fe3O4   +  4H2SO4(разб.)  →  Fe2(SO4)3  +  FeSO4  +  4Н2О

2. Оксид железа (II, III) взаимодействует с сильными кислотами-окислителями (серной-концентрированной и азотной). 

Например, железная окалина окисляется концентрированной азотной кислотой:

Fe3O4  +  10HNO3(конц.) →  NO2↑  +  3Fe(NO3)3  +  5H2O

Разбавленной азотной кислотой окалина окисляется при нагревании:

 3Fe3O4   +  28HNO3(разб.) →  9Fe(NO3)3   +   NO   +  14H2O

Также оксид железа (II, III) окисляется концентрированной серной кислотой:

2Fe3O4   +  10H2SO4(конц.)  →  3Fe2(SO4)3  +  SO2   +   10H2O

Также окалина окисляется кислородом воздуха:

4Fe3O4  +  O2(воздух)  →  6Fe2O3

3. Оксид железа (II, III) не взаимодействует с водой.

4. Оксид железа (II, III) окисляется сильными окислителями до соединений железа (VI), как и прочие оксиды железа (см. выше).

5. Железная окалина проявляет окислительные свойства.

Например, оксид железа (II, III) реагирует с угарным газом при нагревании. При этом возможно восстановление как до чистого железа, так и до оксида железа (II):

Fe3O4  +  4CO  →  3Fe  +  4CO2

Также железная окалина восстанавливается водородом:

Fe3O4   +  4H2  →  3Fe   +   4H2O

Оксид железа (II, III) реагирует с более активными металлами.

Например, с алюминием (алюмотермия):

3Fe3O4  +  8Al  →  9Fe  +  4Al2O3

Оксид железа (II, III) реагирует также с некоторыми другими сильными восстановителями (йодидами и сульфидами).

Например, с йодоводородом:

Fe3O4  +  8HI  →  3FeI2  +  I2  +  4H2O

Гидроксид железа (II)

Способы получения

1. Гидроксид железа (II) можно получить действием раствора аммиака на соли железа (II).

Например, хлорид железа (II) реагирует с водным раствором аммиака с образованием гидроксида железа (II) и хлорида аммония:

FeCl2   +   2NH3   +   2H2O  →  Fe(OH)2   +   2NH4Cl

2. Гидроксид железа (II) можно получить действием щелочи на соли железа (II).

Например, хлорид железа (II) реагирует с гидроксидом калия с образованием гидроксида железа (II) и хлорида калия:

FeCl2 + 2KOH  →  Fe(OH)2↓ + 2KCl

Химические свойства

1. Гидроксид железа (II) проявляется основные свойства, а именно реагирует с кислотами. При этом образуются соответствующие соли.

Например, гидроксид железа (II) взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe(OH)2  +  2HCl →  FeCl2  +  2H2O

Fe(OH)2  +  H2SO4  → FeSO4  +  2H2O

Fe(OH)2  +  2HBr →  FeBr2  +  2H2O

2. Гидроксид железа (II) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид железа (II) взаимодействует с оксидом серы (VI) с образованием сульфата железа (II):

Fe(OH)2 + SO3  →   FeSO4 + 2H2O

3. Гидроксид железа (II) проявляет сильные восстановительные свойства, и реагирует с окислителями. При этом образуются соединения железа (III).

Например, гидроксид железа (II) взаимодействует с кислородом в присутствии воды:

4Fe(OH)2  +  O2  +  2H2O  →   4Fe(OH)3

Гидроксид железа (II) взаимодействует с пероксидом водорода:

2Fe(OH)2   +  H2O  →  2Fe(OH)3

При растворении Fe(OH)2  в азотной или концентрированной серной кислотах образуются соли железа (III):

2Fe(OH)2  +  4H2SO4(конц.)  → Fe2(SO4)3  +  SO2  +  6H2O

4. Гидроксид железа (II) разлагается при нагревании:

Fe(OH)2  →  FeO  +  H2O

Гидроксид железа (III)

Способы получения

1. Гидроксид железа (III) можно получить действием раствора аммиака на соли железа (III).

Например, хлорид железа (III) реагирует с водным раствором аммиака с образованием гидроксида железа (III) и хлорида аммония:

FeCl3 + 3NH3 + 3H2O = Fe(OH)3 + 3NH4Cl

2. Окислением гидроксида железа (II) кислородом или пероксидом водорода:

4Fe(OH)2  +  O2  +  2H2O  →   4Fe(OH)3

2Fe(OH)2   +  H2O  →  2Fe(OH)3

3. Гидроксид железа (III) можно получить действием щелочи на раствор соли железа (III).

Например, хлорид железа (III) реагирует с раствором гидроксида калия с образованием гидроксида железа (III) и хлорида калия:

FeCl3 + 3KOH    →   Fe(OH)3↓ + 3KCl

Видеоопыт получения гидроксида железа (III) взаимодействием хлорида железа (III) и гидроксида калия можно посмотреть здесь.

4. Также гидроксид железа (III) образуется при взаимодействии растворимых солей железа (III) с растворами карбонатов и сульфитов. Карбонаты и сульфиты железа (III) необратимо гидролизуются в водном растворе.

Например: бромид железа (III) реагирует с карбонатом натрия. При этом выпадает осадок гидроксида железа (III), выделяется углекислый газ и образуется бромид натрия:

2FeBr3  +  3Na2CO3  + 3H2O  =  2Fe(OH)3↓  +  CO2↑ +  6NaBr

Но есть исключение! Взаимодействие солей железа (III) с сульфитами в ЕГЭ по химии — окислительно-восстановительная реакция. Соединения железа (III) окисляют сульфиты, а также сульфиды и иодиды.

Взаимодействие хлорида железа (III) с сульфитом, например, калия — очень интересная реакция. Во-первых, в некоторых источниках указывается, что в ней таки может протекать необратимый гидролиз. Но для ЕГЭ лучше считать, что при этом протекает ОВР. Во-вторых, ОВР можно записать в разных видах:

2FeCl3  +  Na2SO3  + H2O =  2FeCl2  +  Na2SO4  + 2HCl

Также допустима такая запись:

2FeCl3  +  Na2SO3 + H2O =  FeSO4  +  2NaCl  + FeCl2 + 2HCl

Химические свойства

1. Гидроксид железа (III) проявляет слабовыраженные амфотерные свойства, с преобладанием основных. Как основание, гидроксид железа (III) реагирует с растворимыми кислотами.

Например, гидроксид железа (III) взаимодействует с азотной кислотой с образованием нитрата железа (III):

Fe(OH)3 + 3HNO3 → Fe(NO3)3 + 3H2O

Fe(OH)3  +  3HCl →  FeCl3  +  3H2O

2Fe(OH)3  +  3H2SO4  → Fe2(SO4)3  +  6H2O

Fe(OH)3  +  3HBr →  FeBr3  +  3H2O

2. Гидроксид железа (III) взаимодействует с кислотными оксидами сильных кислот.

Например, гидроксид железа (III) взаимодействует с оксидом серы (VI) с образованием сульфата железа (III):

2Fe(OH)3 + 3SO3 → Fe2(SO4)3 + 3H2O

3. Гидроксид железа (III) взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются солиферриты, а в растворе реакция практически не идет. При этом гидроксид железа (III) проявляет кислотные свойства.

Например, гидроксид железа (III) взаимодействует с гидроксидом калия в расплаве с образованием феррита калия и воды:

KOH  +  Fe(OH)3  → KFeO+ 2H2O

4. Гидроксид железа (III) разлагается при нагревании:

2Fe(OH)3 → Fe2O3 + 3H2O

Видеоопыт взаимодействия гидроксида железа (III) с соляной кислотой можно посмотреть здесь.

Соли железа

Нитраты железа

Нитрат железа (II) при нагревании разлагается на оксид железа (III), оксид азота (IV)  и кислород:

4Fe(NO3)2 → 2Fe2O3  +  8NO2  +   O2

Нитрат железа (III) при нагревании разлагается также на оксид железа (III), оксид азота (IV)  и кислород:

4Fe(NO3)3 → 2Fe2O3  +  12NO2  +   3O2

Гидролиз солей железа

Растворимые соли железа, образованные кислотными остатками сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. частично:

I ступень: Fe3+ +  H2O  ↔  FeOH2+ + H+

II ступень: FeOH2+ + H2O ↔ Fe(OH)2+ + H+

III ступень: Fe(OH)2+ + H2O ↔ Fe(OH)+ H+

Однако  сульфиты и карбонаты железа (III) и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Fe2(SO4)3  +  6NaHSO3  → 2Fe(OH)3  +  6SO2  +  3Na2SO4

2FeBr3  +  3Na2CO3  + 3H2O →  2Fe(OH)3↓  +  CO2↑ +  6NaBr

2Fe(NO3)3  +  3Na2CO3  +  3H2O →  2Fe(OH)3↓  +  6NaNO3  +  3CO2

2FeCl3  +  3Na2CO3  +  3H2O → 2Fe(OH)3↓  +  6NaCl  +  3CO2

Fe2(SO4)3  +  3K2CO3  +  3H2O →  2Fe(OH)3↓  +  3CO2↑  +  3K2SO4

При взаимодействии соединений железа (III) с сульфидами протекает ОВР:

2FeCl3  +  3Na2S  →  2FeS  +  S  +  6NaCl

Более подробно про гидролиз можно прочитать в соответствующей статье.

Окислительные свойства железа (III)

Соли железа (III) под проявляют довольно сильные окислительные свойств. Так, при взаимодействии соединений железа (III) с сульфидами протекает окислительно-восстановительная реакция.

Например: хлорид железа (III) взаимодействует с сульфидом натрия. При этом образуется сера, хлорид натрия и либо черный осадок сульфида железа (II) (в избытке сульфида натрия), либо хлорид железа (II) (в избытке хлорида железа (III)):

2FeCl3  +  3Na2S  →   2FeS  +  S  +  6NaCl

2FeCl3  +  Na2S  →   2FeCl2  +  S   +  2NaCl

По такому же принципу соли железа (III) реагируют с сероводородом:

2FeCl3  +  H2S  →   2FeCl2  +  S   +  2HCl

Соли железа (III) также вступают в окислительно-восстановительные реакции с йодидами.

Например, хлорид железа (III) взаимодействует с йодидом калия. При этом образуются хлорид железа (II), молекулярный йод и хлорид калия:

2FeCl3  +  2KI    →   2FeCl2  +  I2   +  2KCl

Интерес представляют также реакции солей железа (III) с металлами. Мы знаем, что более активные металлы вытесняют из солей менее активные металлы. Иначе говоря, металлы, которые стоят в электрохимическом ряду левее, могут взаимодействовать с солями металлов, которые расположены в этом ряду правее. Исходя из этого правила, соли железа могут взаимодействовать только с металлами, которые расположены до железа. И они взаимодействуют.

Однако, соли железа со степенью окисления +3 в этом ряду являются небольшим исключением. Ведь для железа характерны две степени окисления: +2 и +3. И железо со степенью окисления +3 является более сильным окислителем. Таким образом, условно говоря, железо со степенью окисления +3 расположено в ряду активности после меди. И соли железа (III) могут реагировать еще и с металлами, которые расположены правее железа! Но до меди, включительно. Вот такой парадокс.

И еще один момент. Соединения железа (III) с этими металлами реагировать будут, а вот соединения железа (II) с ними реагировать не будут. Таким образом, металлы, расположенные в ряду активности между железом и медью (включая медь) при взаимодействии с солями железа (III) восстанавливают железо до степени окисления +2. А вот металлы, расположенные до железа в ряду активности, могут восстановить железо и до простого вещества.

Например, хлорид железа (III) взаимодействует с медью. При этом образуются хлорид железа (II) и хлорид меди (II):

2FeCl3   +  Cu  →   2FeCl2   +   CuCl2

А вот реакция нитрата железа (III) с цинком протекает уже по привычному механизму. И железо восстанавливается до простого вещества:

2Fe(NO3)3   +   3Zn  →  2Fe  +   3Zn(NO3)2

Реакции, взаимодействие железа. Уравнения реакции железа с веществами.

Железо реагирует, взаимодействует с неметаллами, оксидами, кислотами, основаниями, солями и пр. веществами.

Реакции, взаимодействие железа с неметаллами

Реакции, взаимодействие железа с оксидами

Реакции, взаимодействие железа с солями

Реакции, взаимодействие железа с кислотами

Реакции, взаимодействие железа с основаниями

Реакции, взаимодействие железа с водородсодержащими соединениями

Реакции, взаимодействие железа с неметаллами. Уравнения реакции: 

1. Реакция взаимодействия железа и серы:

Fe + S → FeS (t = 600-950 °C),

Fe + 2S → FeS2 (t < 689 °C).

Реакция взаимодействия железа и серы происходит с образованием в первом случае – сульфида железа (II), во втором – дисульфида железа (II).

2. Реакция взаимодействия железа и красного фосфора:

Fe + 3P → Fe3P (t = 600-700 °C).

Реакция взаимодействия железа и красного фосфора происходит с образованием фосфида железа. Также образуются Fe2P, FeP, FeP2.

3. Реакция взаимодействия железа и селена:

Fe + Se → FeSe (t = 600-950 °C).

Реакция взаимодействия железа и селена происходит с образованием селенида железа.

4. Реакция взаимодействия железа и кремния:

2Si + Fe → FeSi2 (to).

Реакция взаимодействия железа и кремния происходит с образованием силицида железа. Реакция протекает при сплавлении реакционной смеси.

5. Реакция взаимодействия железа, кремния и кислорода:

2Fe + Si + 2O2 → Fe2SiO4 (t = 1100-1300 °C),

2Fe + 2Si + 3O2 → 2FeSiO3 (t = 1100-1300 °C).

Реакция взаимодействия железа, кремния и кислорода происходит в первом случае – с  образованием ортосиликата железа, во втором – метасиликата железа.

6. Реакция взаимодействия железа и кислорода:

3Fe + 2O2 → Fe3O4 (t = 150-500 °C),

2Fe + O2 → 2FeO (to),

4Fe + 3O2 → 2Fe2O3 (t = 150-500 °C).

Реакция взаимодействия железа и кислорода происходит в первом случае – с образованием оксида железа (II, III), во втором – оксида железа (II), в третьем – оксида железа (III). Первая и третья реакции представляют собой сгорание железа на воздухе. Вторая реакция происходит при продувании воздуха через расплавленный чугун.

7. Реакция взаимодействия железа и углерода:

3Fe + C → Fe3C (t°).

Реакция взаимодействия железа и углерода происходит с образованием карбида железа.

8. Реакция взаимодействия железа и фтора:

2Fe + 3F2 → 2FeF3 (t > 300 °C).

Реакция взаимодействия железа и фтора происходит с образованием фторида железа.

9. Реакция взаимодействия железа и хлора:

2Fe + 3Cl2 → 2FeCl3 (t > 250 °C).

Реакция взаимодействия железа и хлора происходит с образованием хлорида железа.

10. Реакция взаимодействия железа и брома:

Fe + Br2 → FeBr2 (t = 600-700 °C).

Реакция взаимодействия железа и брома происходит с образованием бромида железа.

11. Реакция взаимодействия железа и йода:

Fe + I2  FeI2 (t = 500 °C).

Реакция взаимодействия железа и йода происходит с образованием йодида железа.

12. Реакция взаимодействия железа и бора:

Fe + B → FeB.

Реакция взаимодействия железа и бора происходит с образованием борида железа.

Реакции, взаимодействие железа с оксидами. Уравнения реакции:

1. Реакция взаимодействия железа и воды:

3Fe + 4H2O → Fe3O4 + 4H2 (t < 570 °C).

Реакция взаимодействия железа и воды происходит с образованием оксида железа (II, III). Данная реакция представляет собой исторически первый способ получения водорода.

2. Реакция взаимодействия железа, воды и кислорода:

2Fe + 2H2O + O2 → 2Fe(OH)2.

Реакция взаимодействия железа, воды и кислорода происходит с образованием гидроксида железа. Реакция протекает медленно и представляет собой коррозию железа.

3. Реакция взаимодействия железа, воды и пероксида калия:

Fe + 3K2O2 + 2H2O → K2FeO4 + 4KOH.

Реакция взаимодействия железа, воды и пероксида калия происходит с образованием феррата железа и гидроксида калия. Реакция протекает медленно в концентрированном растворе гидроксида калия.

4. Реакция взаимодействия железа и оксида железа (II, III):

Fe3O4 + Fe → 5FeO (t = 900-1000 °C).

Реакция взаимодействия железа и оксида железа (II, III) происходит с образованием оксида железа (II).

5. Реакция взаимодействия железа и оксида железа (III):

Fe2O3 + Fe → 3FeO (t = 900 °C).

Реакция взаимодействия железа и оксида железа (III) происходит с образованием оксида железа (II).

6. Реакция взаимодействия железа и оксида углерода (II):

Fe + 5CO → [Fe(CO)5] (t = 150-200 °C, р = 1·107-2·107 Па).

Реакция взаимодействия железа и оксида углерода (II) происходит с образованием пентакарбонилжелеза. В ходе реакции железо нагревается в струе СО.

7. Реакция взаимодействия железа и оксида серы:

2Fe + 3SO2 → FeSO3 + FeS2O3.

Реакция взаимодействия железа и оксида серы происходит с образованием сульфита железа и тиосульфата железа.  Реакция медленно протекает при комнатной температуре.

Реакции, взаимодействие железа с солями. Уравнения реакции:

1. Реакция взаимодействия железа и нитрата меди:

Cu(NO3)2 + Fe → Fe(NO3)2 + Cu.

Реакция взаимодействия нитрата меди и железа происходит с образованием нитрата железа и меди.

2. Реакция взаимодействия железа и нитрата серебра:

2AgNO3 + Fe → Fe(NO3)2 + 2Ag.

Реакция взаимодействия нитрата серебра и железа происходит с образованием нитрата железа и серебра.

3. Реакция взаимодействия железа и сульфата меди:

Fe + CuSO4 → FeSO4 + Cu.

Реакция взаимодействия сульфата меди и железа происходит с образованием сульфата железа и меди.

4. Реакция взаимодействия железа и хлорида меди:

CuCl2 + Fe → FeCl2 + Cu.

Реакция взаимодействия хлорида меди и железа происходит с образованием меди и хлорида железа.

5. Реакция взаимодействия железа и хлорида железа (III):

2FeCl3 + Fe → 3FeCl2 (tо).

Реакция взаимодействия хлорида железа (III) и железа происходит с образованием хлорида железа (II). Реакция протекает при кипении в тетрагидрофуране.

Реакции, взаимодействие железа с кислотами. Уравнения реакции:

1. Реакция взаимодействия железа и азотной кислоты:

Fe + 6HNO3 → Fe(NO3)3 + 3NO2 + 3H2O (to).

Реакция взаимодействия железа и азотной кислоты происходит с образованием нитрата железа, оксида азота и воды. В ходе реакции  используется концентрированная азотная кислота.

2. Реакция взаимодействия железа и ортофосфорной кислоты:

4Fe + 3H3PO4 → FeHPO4 + Fe2(PO4)2 + 4H2.

Реакция взаимодействия железа и ортофосфорной кислоты происходит с образованием гидроортофосфата железа, ортофосфата железа и водорода. В ходе реакции  используется разбавленный раствор ортофосфорной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

Реакции, взаимодействие железа с основаниями. Уравнения реакции:

1. Реакция взаимодействия железа, гидроксида натрия и воды:

Fe + 2NaOH + 2H2O → Na2[Fe(OH)4] + H2 (to).

Реакция взаимодействия железа, гидроксида натрия и воды происходит с образованием тетрагидроксоферрата натрия и водорода. Реакция протекает при кипении раствора в атмосфере азота.

2. Реакция электролиза железа, водного раствора гидроксида калия:

Fe + 2KOH + 2H2O → 3H2 + K2FeO4.

Реакция взаимодействия железа и водного раствора гидроксида калия происходит с образованием феррата калия и водорода.

Реакции, взаимодействие железа с водородсодержащими соединениями. Уравнения реакции:

1. Реакция взаимодействия железа и бромоводорода:

Fe + 2HBr → FeBr2 + H2 (t = 800-900 °C).

Реакция взаимодействия железа и бромоводорода происходит с образованием бромида железа и водорода.

2. Реакция взаимодействия железа и фтороводорода:

Fe + 2HF → FeF2 + H2.

Реакция взаимодействия железа и фтороводорода происходит с образованием фторида железа и водорода. В ходе реакции  используется разбавленный раствор фтороводорода.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Коэффициент востребованности
9 942

Железо — металл с умеренной химической активностью.

При обычной температуре железо не взаимодействует даже с сильными окислителями, но при нагревании его активность повышается.

Железо взаимодействует при нагревании с простыми веществами:

  • кислородом
3Fe+2O2⟶tFe3O4(FeO⋅Fe2O3)

;

  • галогенами
  • серой

При обычных условиях железо не реагирует с водой и растворами щелочей.

Концентрированные растворы азотной и серной кислот пассивируют поверхность железа, и оно в них не растворяется. При нагревании железо реагирует с концентрированными кислотами. 

При высокой температуре раскалённое железо реагирует с парами воды:

При растворении железа в кислотах могут образовываться соли железа((II)) и железа((III)).

Обрати внимание!

Если в результате реакции взаимодействия железа с раствором кислоты выделяется водород, то образуется соль двухвалентного железа:

Железо вытесняет малоактивные металлы из растворов их солей:

Ниже даны описания двух химических превращений с участием веществ.

(1) железо + хлороводород → хлорид железа(II) + водород;

(2) хлорид бария + сульфат натрия → сульфат бария + хлорид натрия.

1) Составьте уравнения указанных реакций.

2) В зависимости от числа и состава веществ, вступающих в химическую реакцию и образующихся в результате неё, различают реакции соединения, разложения, замещения и обмена. Выберите ЛЮБУЮ реакцию (1) или (2) и укажите её тип.

3) Из приборов, изображённых на рисунках, выберите тот, с помощью которого можно разделить смесь железных опилок и порошка сульфата бария. Какой метод разделения веществ при этом используется? Почему прибор, изображённый на другом рисунке, не может быть использован для разделения смеси железных опилок и порошка сульфата бария?

1) Сначала по описанию составляем схемы реакций, потом расставляем коэффициенты, чтобы уравнять левую и правую части и получить уравнения реакций:

2) Рассмотрим первую реакцию. Здесь атомы простого вещества железа замещают атомы водорода в сложном веществе хлороводороде. Это реакция замещения.

Смотрим на вторую реакцию. Здесь сложные вещества обмениваются между собой составными частями и получаются новые сложные вещества. Это реакция обмена.

3) Для разделения смеси железных опилок и порошка сульфата бария нужно использовать магнит, изображённый на рисунке 2. Магнит притянет к себе все железные опилки, а порошок сульфата бария останется. На первом рисунке изображён способ разделения смеси фильтрованием. Для этого одно из веществ должно растворяться в воде, тогда раствор этого вещества пройдёт через фильтровальную бумагу, а второе вещество останется на ней. Но сульфат бария нерастворим в воде, а железные опилки тем более. Этот способ не подойдёт.

Simpl­e Ein
[193K]

более месяца назад 

Для начала запишем предоставленные химические реакции при помощи химических формул.

Существует 4 типа химических реакций: соединение, разложения, замещения и обмена.

В первой формуле описана реакция замещения.

Во второй формуле представлена реакция обмена. Два сложных вещества обмениваются частями.

Железные опилки — твердое вещество, магнитится.

Порошок сульфата бария — твердое вещество, не магнитится.

Для разделения двух веществ необходимо воспользоваться магнитом, как показано на втором рисунке.

На первом рисунке изображен прибор, который поможет отделить примесь от некой жидкости.

Знаете ответ?

Смотрите также:

ВПР по обществознанию 8 класс 2021, задания, ответы, демоверсии, где найти?

ВПР по биологии 8 класс 2021, задания, ответы, демоверсии, где найти?

ВПР по физике 8 класс 2021, задания, ответы, демоверсии, где найти?

ВПР по физике 8 класс 2020, задания, ответы, демоверсии, где найти?

ВПР по истории 8 класс 2020, задания, ответы, демоверсии, где найти?

ВПР по географии 8 класс 2020, задания, ответы, демоверсии, где найти?

ВПР по математике 8 класс 2020, задания, ответы, демоверсии, где найти?

ВПР по обществознанию 8 класс 2020, задания, ответы, демоверсии, где найти?

ВПР по биологии 8 класс 2020, задания, ответы, демоверсии, где найти?

ВПР по истории 8 класс 2023 года с решениями какие есть варианты?

5. Химические свойства соединений железа с точки зрения изменения степеней окисления

В данном разделе реакции выходят за рамки С части ЕГЭ, но могут встретиться в тестовой части экзамена.

Все основные правила составления ОВР для С части, представлены в другом разделе.

Потренироваться составлять реакции онлайн (в рамках ЕГЭ) можно тут.

Кратко:

Окисление Примеры окислителей
Fe+2 → Fe+3 С солями-окислителями в кислой или щелочной среде.
O2, Cl2, KMnO4, K2Cr2O7, HNO3, KNO2
Fe0, Fe+2, Fe+3 → Fe+6 В щелочной среде.
KNO3, растворы Cl2, Br2, NaClO3 и др.
Восстановление Примеры восстановителей
Fe+3 → Fe+2 Соединения I, S2–, SO32–, SO2, Cu, Fe и др.
Fe+6 → Fe+3 Аммиак и др.

Правила с примерами реакций:

Правило 5.1. Соединения Fe+3 восстанавливаются до Fe+2 в реакциях с такими восстановителями как I, S–2, S+4 и некоторыми металлами:

Fe+3 и I :

Fe2O3 + 6HI →  2FeI2 + I2 + 3H2O

2FeCl3 + 2HI  →  2FeCl2 + I2 + 2HCl

2FeCl3 + 2KI  →  2FeCl2 + I2 + 2KCl

Fe2(SO4)3 + KI →  2FeSO4 + I2 + K2SO4

Fe+3 и S–2:

2FeCl3 + 3Na2S →  2FeS + S + 6NaCl

2FeCl3 + H2S → 2FeCl2 + S + 2HCl
(первоначально образующийся осадок FeS реагирует с HCl с образованием растворимого хлорида железа (II))

Fe+3 и S+4:

2FeCl3 + Na2SO3 +H2O →  2FeCl2 + Na2SO4 + 2HCl

2FeCl3 + SO2 + 2H2O →  2FeCl2 + H2SO4 + 2HCl

Fe2(SO4)3 + Na2SO3 +H2O →  2FeSO4 + Na2SO4 + H2SO4

Fe+3 и металл:

2FeCl3 + Cu →   CuCl2 + 2FeCl2

2Fe(NO3)3 + Fe →  3Fe(NO3)2

Правило 5.2. Соединений Fe+6 восстанавливаются до Fe+3 в реакции с аммиаком:

2K2FeO4 + 2NH3 + 5H2SO4 →  Fe2(SO4)3 + 2K2SO4 + N2­ + 8H2O

Правило 5.3. Соединений Fe+2 окисляются до Fe+3 такими окислителями как оксид азота (IV), перманганат калия, нитриты металлов, азотная кислота и др.:

FeI2 + 6NO2 →  Fe(NO3)3 + I2 + 3NO

2FeCl2 + Cl2 → 2FeCl3

В щелочной среде образуется гидроксид железа (III):

FeCl2 + KMnO4 + 3KOH →  K2MnO4 + Fe(OH)3 + 2KCl

2FeSO4 + 2KMnO4 + 6NaOH →  K2MnO4 + 2Fe(OH)3 + Na2MnO4 + 2Na2SO4

В кислой среде образуется соль, соответствующая кислоте:

6FeCl2 + 2KNO2 + 4H2SO4 →  4FeCl3 + Fe2(SO4)3 + K2SO4 + N2­ + 4H2O

6FeSO4 + 2HNO3(разб.) + 3H2SO4 →  3Fe2(SO4)3 + 2NO­ + 4H2O

FeSO4 + HNO3(конц.) →  Fe(NO3)3 + NO2­ + H2SO4 + H2O

FeCl2 + 4HNO3(конц.) → Fe(NO3)3 + NO2 + 2HCl + H2O

10FeSO4 + 2KMnO4 + 8H2SO4 → 5Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O

6FeSO4 + K2Cr2O7 + 7H2SO4 → 3Fe2(SO4)3 + K2SO4 + Cr2(SO4)3 + 7H2O

Fe3O4 + 10HNO3(конц.)  →  3Fe(NO3)3 + NO2 + H2O

Правило 5.4. Окисление соединений железа до степени окисления +6 (с образованием ферратов) возможно более сильными окислителями, такими как нитраты щелочных металлов в щелочной среде, хлораты в щелочной среде, раствор брома в щелочи и др:

Fe + 2KOH + 3KNO3 → K2FeO4 + 3KNO2 + H2O

Fe2O3 + 3KNO3 + 4KOH → 2K2FeO4 + 3KNO2 + 2H2O (t)

Fe2O3 + KClO3 + 4KOH → 2K2FeO4 + KCl + 2H2O (t)

2Fe(OH)3 + 3Br2 + 10KOH →  2K2FeO4 + 6KBr + 8H2O

3FeSO4 + 2NaClO3 + 12NaOH → 3Na2FeO4 + 2NaCl + 3Na2SO4 + 6H2O

2NaFeO2 + 3Na2O2 → 2Na2FeO4 + 2Na2O

2NaFeO2 + 3Br2 + 8NaOH(конц) → 2Na2FeO4 + 6NaBr + 4H2O.

Понравилась статья? Поделить с друзьями:
  • Как найти положительное среднее геометрическое
  • Крышка радиатора не сбрасывает давление как исправить
  • Как найти валентность hcl
  • Ошибка h6 на кондиционере gree как исправить
  • Wow как исправить баг