Как составить уравнение моментов для двухопорной балки

Пример решения задачи по расчету опорных реакций балки, закрепленной на двух шарнирных опорах и нагруженной сосредоточенной силой F, моментом m и равномерно распределенной нагрузкой q.

Задача

Для заданной двухопорной балки с консольной частью, нагруженной комплексом нагрузок: силой F, моментом m и распределенной нагрузкой q, определить величину и направление опорных реакций.

Расчетная схема балки показана на рис.1

Расчетная схема для определения реакций двухопорной балки

рис.1

Длина пролета балки 3м. Длина консольной части – 1,5м.

Другие примеры решений >
Помощь с решением задач >

Пример решения

Рекомендуем посмотреть наш видеоурок. В нем мы постарались подробно показать порядок расчета реакций в опорах балки.

Другие видео

Для решения задачи, обозначим характерные точки (сечения) балки (точки A, B, C и D) и определим положение системы координат y-z, выбрав ее начало например в т. A (рис.2)

Задаем для балки систему координат

рис.2

Обе опоры балки являются шарнирными, поэтому в каждой из них будет возникать только сила, обозначим их соответственно RA и RC

Видео про реакции в шарнирных опорах

Пример расчета реакций опор для консольной балки

Так как все заданные нагрузки раположены исключительно в вертикальной плоскости (плоский поперечный изгиб) и не дают проекций на ось z, то опорные реакции будут тоже только вертикальными.

Вообще говоря, реакции в опорах являются такими силами, которые необходимы для удержания балки с приложенными к ней нагрузками, в статичном (неподвижном) состоянии. В данном случае эти силы не позволяют ей вращаться и перемещаться в вертикальной плоскости.

Данная балка является статически определимой, т.к. уравнений равновесия достаточно для определения неизвестных усилий в опорах балки.

Для составления уравнений статики, опорные реакции RA и RC предварительно направляются произвольно, например, вверх (рис.3).

Указываем направление опорных реакций балки

рис.3

Для определения двух неизвестных реакций потребуется два уравнения.

Запишем уравнения статики:

  1. Балка не перемещается по вертикали, т.е. сумма проекций всех сил на ось y равна нулю:

    Уравнение суммы проекций сил на ось y

    Здесь, по правилу знаков для проекций сил на ось, нагрузки направление которых совпадает с положительным направлением оси y записываются положительными и наоборот.

  2. Тот факт, что балка не вращается, говорит о том, что сумма моментов относительно любой ее точки тоже равна нулю, т.е.:

    Уравнение суммы моментов относительно точки A

    В данном уравнении, согласно правила знаков для моментов, сосредоточенные силы, моменты и распределенные нагрузки стремящиеся повернуть балку против хода часовой стрелки относительно рассматриваемой точки A записываются положительными и наоборот.
    Как записывается момент распределенной нагрузки показано здесь.
    Сила приложенная в точке относительно которой рассматривается сумма моментов в уравнении не участвует, так как плечо момента для нее равно нулю.

Здесь сумму моментов лучше записывать относительно точки расположенной на опоре (например, A), т.к. в этом случае соответствующая реакция RA в уравнении не участвует.

Из выражения (2) определяем RC:

Расчет реакции на правой опоре

и подставив его в выражение (1) находим RA:

Определение реакции на левой опоре

Направление и величина реакций, как правило, необходимы для дальнейших расчетов балки на прочность и жесткость, поэтому во избежание возможных ошибок рекомендуется выполнять проверку найденных значений.

Проверка опорных реакций балки >
Построение эпюр Q и M для балки >
Другие примеры решения задач >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.

В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.

Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.

Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.

Поперечные силы и изгибающие моменты

При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).

Схема нагружения балки
Поперечные силы и изгибающие моменты в произвольном сечении балки

Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.

Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.

Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!

Обозначения поперечных сил и изгибающих моментов

Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.

Например, если выбрать следующие обозначения для координатных осей:

Обозначения поперечных сил и изгибающих моментов с привязкой к координатным осям

То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.

Расчётная схема балки

Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:

Простая схема балки, свободная от нагрузок

А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.

К примеру, балка может иметь прямоугольное поперечное сечение:

Балки имеющая прямоугольную форму поперечного сечения

Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.

Правила знаков для поперечных сил и изгибающих моментов

В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).

Расчётная схема

Расчётная схема консольной балки загруженная сосредоточенным усилием

Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).

Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.

Правило знаков для поперечных сил

Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
ПО часовой стрелке, то её нужно учесть с «плюсом»;

Правило – положительное значение поперечной силы

ПРОТИВ часовой стрелки — учитываем её с «минусом».

Правило – отрицательное значение поперечной силы

Таким образом, для нашего случая, поперечная сила в сечении A будет равна:

Правило знаков для изгибающих моментов

Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.

Схема показывающая верхние и нижние волокна консольной балки

Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.

Схема деформированной балки с указанием растянутых и сжатых волокон

В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.

На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
верхние волокна, то учитываем его с «минусом»

Правило – отрицательное значение изгибающего момента

нижние волокна, то нужно учесть его с «плюсом».

Правило – положительное значение изгибающего момента

Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.

Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:

Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:

Отрицательное значение изгибающего момента – правило
Положительное значение изгибающего момента – правило

Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:

Как построить эпюры поперечных сил и изгибающих моментов ?

В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.

Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉

Построение эпюр для консольной балки

В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:

Расчётная схема — консольной балки, загруженной силами и моментом

Будем рассчитывать балку справа налево.

Рассмотрим первый участок

Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.

Указание расчётного сечения на первом участке

Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.

Поперечные силы на первом участке

Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:

Как видишь, поперечная сила будет постоянна на первом участке:

Уже можем отразить это на эпюре поперечных сил:

Построение эпюры поперечных сил на первом участке

Изгибающие моменты на первом участке

Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:

Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:

Откладываем полученные значения:

Построение эпюры изгибающих моментов на первом участке

Расчёт второго участка

Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.

Указание второго расчётного сечения

Поперечные силы на втором участке

Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:

Теперь можем показать окончательную эпюру поперечных сил:

Построение окончательной эпюры поперечных сил

Изгибающие моменты на втором участке

Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:

Вычисляем значения на границах второго участка:

Показываем окончательную эпюру изгибащих моментов:

Построение окончательной эпюры изгибающих моментов

Проверка построенных эпюр

Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.

Определение реакций в жёсткой заделке

Первым делом, нам потребуется определить реакции в заделке:

Обозначение реакций в жёсткой заделке на расчётной схеме

Расчёт эпюр поперечных сил и изгибающих моментов

Рассчитываем все участки теперь слева направо:

Обозначение расчётных сечений для участков балки

Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:

Построение эпюр изгибающих моментов для расчёта балки слева направо

Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:

Схема демонстрирующая, что расчёт балки можно выполнять с двух сторон

Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.

Эпюра моментов со стороны растянутых или сжатых волокон

По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.

Причем сама эпюра была построенна со стороны растянутых волокон:

Эпюра изгибающих моментов построенная со стороны растянутых волокон

Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:

Эпюра изгибающих моментов построенная со стороны сжатых волокон

Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.

Учёт распределённой нагрузки

Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.

Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:

Расчётная схема консольной балки, загруженной распределённой нагрузкой

Определение поперечной силы и изгибающего момента в сечении A

Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.

После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:

Сворачивание распределённой нагрузки до сосредоточенной силы

Тогда поперечная сила QA будет равна:

Изгибающий момент Mизг, A будет равен:

Расчёт эпюр поперечных сил и изгибающих моментов

Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:

Обозначение расчётного сечения для написания уравнений

Уравнение для поперечных сил будет следующее:

Рассчитаем значения на эпюре поперечных сил:

Построение эпюры поперечных сил для консольной балки от распределённой нагрузки

Уравнение для изгибающих моментов будет следующее:

Тогда значения на эпюре будут такими:

Откладывание ординат для построения эпюры изгибающих моментов

На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.

Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:

Построение эпюры изгибающих моментов со стороны растянутых волокон для консольной балки от распределённой нагрузки

Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:

Построение эпюры изгибающих моментов со стороны сжатых волокон для консольной балки от распределённой нагрузки

Построение эпюр для двухопорной балки

А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:

Расчётная схема двухопорной балки

Определим реакции опор:

Расчётная схема двухопорной балки с обозначением реакций в опорах

Рассчитываем первый участок:

Строим эпюры на первом участке:

Построение эпюр сил и моментов на первом участке

Определение экстремума на эпюре моментов

Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.

Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:

Отсюда найти значение координаты:

Затем подставить это значение в уравнение для изгибающих моментов:

Теперь можем указать экстремум на эпюре:

Указание экстремума на эпюре изгибающих моментов

Расчет эпюр на остальных участках

Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:

Определение экстремума:

Построение эпюр поперечных сил и изгибающих моментов для двухопорной балки

Оценка правильности построенных эпюр поперечных сил и изгибающих моментов

И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.

Вот несколько признаков, правильно построенных эпюр:

  • На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
  • На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
  • Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
  • Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.

Содержание:

  1. Пример решения задачи
  2. Составляем уравнения изменения поперечных сил и изгибающих моментов для каждого участка балки.
  3. Двутавровое поперечное сечение.
  4. Поперечное сечение из двух швеллеров.

Исходные данные: Двухопорная балка

Заданная расчетная схема:

Двухопорная балка

Пример решения задачи

1. Определяем опорные реакции (рис.2.1). Двухопорная балка

Рассматриваемая двухопорная балка является статически определимой. Это означает, что для определения неизвестных опорных реакций Двухопорная балка и Двухопорная балка в наложенным внешних связях (двухсвязный шарнир Двухопорная балка и односвязный шарнир Двухопорная балка достаточно только уравнений равновесия (независимыми уравнениями для плоской системы являются Двухопорная балка

Наиболее рациональной является следующая схема определения опорных реакций в двухопорных балках. Из уравнения Двухопорная балка определяется горизонтальная реакция Двухопорная балка Как правило, в балках она равна нулю (при отсутствии продольной внешней нагрузки, которая не является характерной нагрузкой при изгибе).

Поскольку в этих уравнениях реакции Двухопорная балка будут единственными неизвестными, при таком подходе каждая из этих реакций может быть получена в виде дроби, в знаменателе которой будет расстояние между опорами, а в числителе — сумма моментов всей внешней активной нагрузки относительно противоположной опоры, взятых со знаками, противоположными знаку выбранного

направления искомой реакции. Уравнения Двухопорная балка являются зависимыми, то есть являются по сути одним и тем же уравнением. Поэтому всегда необходимо проверять правильность определения опорных реакций, используя для этого оставшееся независимое уравнение равновесия Двухопорная балка

Возможно вам будут полезны данные страницы:

Таким образом, рациональный алгоритм определения опорных реакций в двухопорных балках имеет следующий вид:

Двухопорная балка

1.1. Определяем опорную реакцию Двухопорная балка

Двухопорная балка

1.2. Определяем опорную реакцию Двухопорная балка

Двухопорная балка

1.3. Проверяем правильность определения опорных реакций:

Двухопорная балка

Знак «-» у полученных опорных реакций показывает, что они направлены в сторону, противоположную выбранной (не вверх, а вниз).

Составляем уравнения изменения поперечных сил и изгибающих моментов для каждого участка балки.

Поперечная сила и изгибающий момент являются внутренними усилиями (внутренними силовыми факторами) и, как и при других видах напряженного состояния, определяются при помощи метода сечений. Суть метода заключается в том, что балка мысленно рассекается в заданном сечении на две части, отбрасывается одна из частей (как правило, большая), для восстановления равновесия действие отброшенной части на оставшуюся заменяется (компенсируется) внутренними усилиями, которые определяются из уравнений равновесия оставшейся (рассматриваемой) части балки.

  • Однако, в таком общем виде внутренние усилия при изгибе обычно не определяются. Как правило, для составления уравнений достаточно математических определений поперечной силы и изгибающего момента и правила знаков для учета внешней нагрузки.

Математические определений внутренних усилий при изгибе:

Поперечная сила Двухопорная балка в заданном поперечном сечении балки равна сумме проекций всей внешней нагрузки, действующей с одной стороны от сечения (или в рассматриваемой части балки), на вертикальную ось Двухопорная балка

Изгибающий момент Двухопорная балка в заданном поперечном сечении равен сумме моментов относительно оси Двухопорная балка от всей внешней нагрузки, действующей с одной стороны от сечения (или в рассматриваемой части балки).

Правило знаков необходимо использовать для учета направлений действия внешней нагрузки в математических определениях внутренних усилий. На рис.2.2 показано правило знаков для поперечных сил и изгибающих моментов при изгибе балок. На схемах указаны направления действия внешней нагрузки, вызывающей положительные значения внутренних усилий в указанном поперечном сечении рассматриваемой левой (правило знаков слева) или правой (правило знаков справа) части балки.

Систематизируя правило знаков слева и справа, можно сформулировать следующие общие определения правила знаков при изгибе:

  • Правило знаков для поперечной силы — если внешняя нагрузка стремится повернуть рассматриваемую часть балки по ходу часовой стрелки, то она вызывает в заданном поперечном сечении положительную поперечную силу.
  • Правило знаков для изгибающего момента — если внешняя нагрузка стремится поднять рассматриваемую часть балки вверх, то она вызывает в заданном поперечном сечении положительный изгибающийся момент.

Составление уравнений изменения внутренних усилий при изгибе для каждого участка сопровождается такими обязательными комментариями:

Конечной целью определения внутренних усилий является построение эпюр. Для этого необходимо знать значение внутренних усилий в характерных точках участков. Такими точками являются поперечные сечения в начале и конце участка, а также сечения с возможными экстремальными значениями внутренних усилий. Экстремальные (отличные от соседних) значения могут возникать в случае, если уравнение изменения внутренних усилий имеет форму полинома второго и выше порядка.

Двухопорная балка

Для заданной балки уравнения изменения внутренних усилий и их значения в характерных точках для трех участков имеют вид (рис.2.3):

Двухопорная балка

Уравнение изменения изгибающего момента Двухопорная балка для первого участка имеет форму полинома второй степени и, следовательно, изгибающий момент в пределах первого участка может иметь экстремум. Координату экстремума можно определить, приравняв первую производную функции Двухопорная балка к нулю. Для этого удобно использовать первую теорему Журавского (2.1). Определяем координату экстремума

Двухопорная балка

Определяем значение экстремального изгибающего момента

Двухопорная балка

Двухопорная балка

Уравнение изменения изгибающего момента Двухопорная балка для второго участка также имеет форму полинома второй степени. Однако, поперечная сила в пределах участка не меняет свой знак, и, следовательно, ввиду линейности функции Двухопорная балка в пределах участка не может быть равной нулю. Поэтому экстремального значения изгибающего момента на втором участке не будет.

Двухопорная балка

Уравнение изменения изгибающего момента Двухопорная балка для третьего участка имеет форму полинома второй степени, а поперечная сила Двухопорная балка пределах участка меняет свой знак. Следовательно, нужно определять положение экстремума

Двухопорная балка

Определяем значение экстремального изгибающего момента

Двухопорная балка

3. Строим эпюры поперечных сил Двухопорная балка и изгибающих моментов Двухопорная балка

Эпюрой в сопротивлении материалов называется график, отражающий характер изменения какого-либо параметра вдоль оси одноосного элемента. Эпюры строятся для каждого участка в отдельности. В пределах участка все расчетные параметры изменяются по определенному закону в виде неразрывной функции. Для построения эпюры на каждом участке необходимо знать характер изменения заданного параметра в пределах участка (его математическое выражение) и значения в нескольких характерных точках (как правило, в начале и конце участка и, если необходимо, в точках экстремальных значений параметра).

Согласно полученных ранее уравнений, графиком эпюры поперечных сил на всех участках будет прямая наклонная линия, а графиком эпюры изгибающих моментов — квадратная парабола.

При построении эпюр необходимо соблюдать следующие правила:

а) название эпюры обычно приводится справа или сверху от нее, при этом, если все значения на эпюре поперечных сил приведены в Двухопорная балка а на эпюре изгибающих моментов — в Двухопорная балка то размерность не указывается;

б) построение эпюры не требует точного соблюдения масштаба, однако примерная видимая пропорциональность между значениями параметров должна соблюдаться;

в) знаки параметров указываются или в «теле эпюры», или слева от нее;

г) «тело эпюры» заштриховывается поперечной (перпендикулярной по отношению к продольной оси одноосного элемента) штриховкой, при этом величина каждого штриха характеризует значение расчетного параметра в соответствующем сечении.

Под «телом эпюры» понимаются плоские фигуры, ограниченные продольной осью одноосного элемента и графиком уравнений изменения расчетных параметров.

Эпюра поперечных сил Двухопорная балка для заданной двухопорной балки приведена на рис.2.3г, изгибающих моментов Двухопорная балка — на рис.2.3г).

Если положительные значения изгибающих моментов на эпюре Двухопорная балка откладываются вверх, такая эпюра называется «эпюрой по сжатым волокнам». В такой эпюре «тело» эпюры располагается с той стороны балки (вверху или внизу), волокна которой сжаты. Такая эпюра характерна для машиностроителей. Если положительные значения откладываются вниз — эпюра называется «по растянутым волокнам». Она характерна для строителей. а) скачки (резкие изменения значений параметра в одном и том же поперечном сечении) на эпюре поперечных сил должны соответствовать по координате, величине и знаку внешним сосредоточенным силам;

б) скачки на эпюре изгибающих моментов должны соответствовать по координате, величине и знаку внешним сосредоточенным моментам;

в) в соответствии с первой теоремой Журавского (2.1) в поперечных сечениях, в которых поперечная сила Двухопорная балка равна нулю, изгибающий момент Двухопорная балка принимает экстремальные значения;

г) в соответствии со второй теоремой Журавского (2.2) при Двухопорная балка графиком эпюры поперечных сил при движении слева направо будет восходящая прямая линия, справа налево — нисходящая.

д) в соответствии с (2.3) при Двухопорная балка в поперечных сечениях, в которых поперечная сила Двухопорная балка равна нулю, экстремумами на эпюре изгибающих моментов будут минимумы, а при Двухопорная балка — максимумы.

Для построенных эпюр (рис.2.3) все указанные признаки выполняются.

Подбираем поперечное сечение балки из условия прочности в форме двутавра, прямоугольника Двухопорная балка круга и из двух швеллеров

Для заданной балки максимальный изгибающий момент в опасном сечении равен Двухопорная балка (рис.2.3г)).

Согласно (2.6) минимально допустимый осевой момент сопротивления поперечного сечения балки определяется зависимостью

Двухопорная балка

Двутавровое поперечное сечение.

Двутавр является стандартным прокатным профилем, все геометрические характеристики которого приводятся в справочных таблицах. Согласно (2.8) минимальное значение момента сопротивления будет равно:

Двухопорная балка

Из справочных таблиц (ГОСТ 8239-86) выбираем двутавр с ближайшим большим значением момента сопротивления. Это двутавр № 36, для которого Двухопорная балка

Поперечное сечение в форме прямоугольника.

Прямоугольник является сечением простой геометрической формы, для которого все геометрические характеристики определяются по известным аналитическим зависимостям. Осевой момент сопротивления прямоугольного сечения с соотношением высоты и основания Двухопорная балка равен

Двухопорная балка

Тогда, согласно (2.6), минимальная ширина Двухопорная балка прямоугольного сечения балки будет определяется зависимостью Двухопорная балка При Двухопорная балка Двухопорная балка

Для заданной балки Двухопорная балка

Площадь прямоугольника с основанием Двухопорная балка равна:

Двухопорная балка

Поперечное сечение в форме круга. Для заданной балки Круг также является сечением простой геометрической формы. Осевой момент сопротивления круга диаметром Двухопорная балка равен: Двухопорная балка

Тогда, согласно (2.6) минимальный диаметр Двухопорная балка круглого поперечного сечения будет определяется зависимостью

Двухопорная балка

Для заданной балки Двухопорная балка Площадь круга диаметром Двухопорная балка 18,7 см равна:

Двухопорная балка

Поперечное сечение из двух швеллеров.

Швеллер является стандартным прокатным профилем. Поскольку выбираемое сечение состоит из двух швеллеров, согласно (б) минимальное значение момента сопротивления одного швеллера будет равно

Двухопорная балка

Из справочных таблиц (ГОСТ 8239-86) выбираем швеллер №30, для которого Двухопорная балка

Площадь поперечного сечения из двух швеллеров будет равна

Двухопорная балка

Все выбранные поперечные сечения являются равнопрочными так как способны воспринимать без разрушения одинаковую внешнюю нагрузку.

6. Сравним выбранные поперечные сечения по металлоемкости.

Поскольку балка является одноосным элементом, ее металлоемкость зависит от площади поперечного сечения. Сведем в таблицу площади выбранных поперечных сечений различной формы и сравним их с площадью двутавра Двухопорная балка Двухопорная балка

Сравнение площадей выбранных поперечных сечений показывает, что наиболее экономичным является двутавровое сечение. Площадь, Двухопорная балка следовательно, погонный вес и металлоемкость прямоугольного сечения в 3,103, круглого — в 4,431, а сечения из двух швеллеров — в 1,308 раза больше площади равнопрочного двутаврового сечения. Поэтому наиболее рациональной формой поперечного сечения при изгибе является двутавровое поперечное сечение.

Определение опорных реакций

Построение эпюр поперечных сил и моментов

Просмотр хода решения

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия:
Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Пример решения балки:

  Основной вид задач в разделе статика — это определение реакций опор. Есть много видов опор, но мы рассмотрим три основные которые и встречаются при решении задач.

ЗАКАЗАТЬ ПОМОЩЬ

Шарнирно подвижная опора

  Такая опора имеет связь только в одном направлении (сила R показывает направление ограничения движения), возможно вращение в шарнире и движение вдоль одной из осей. Шарнирно подвижная опора имеет два вида схемотческих изображений на рисунках А и Б показаны виды изображения.

Шарнирно неподвижная опора

У данного вида опоры две реакции связи (обозначены R и Ха), возможно вращение только в шарнире, освые перемещения не возможны.

Пример схематического изображения шарнирно неподвижной опоры:

  Жесткая заделка

  Данный вид опор не имеет степеней поэтому имеет три реакции: две осевых и один реактивный момент. Такую опору еще называют консольной.

Определение реакций опор

  Для определения реакций опор используют три уравнения статики и правило моментов. Самое интересное что правило моментов для термеха отличается от правила моментов в сопромате. Если в термехе момент по часовой стрелке считается со знаком «-«, то в сопромате по часовой это знак «+».

Три уравнения статики

1) Сумма сил по оси Х
2) Сумма сил по оси У
3) Сумма моментов вокруг точки

  Рассмотрим на примере определение реакций опор в двухопорной балке:

Рассмотрим балку: балка на двух опорах, опора «А» шарнирно неподвижная, следовательно в ней возникает две реакции опоры по оси У и по оси Х, опора «В» шарнирно подвижная, в ней возникает одна реакции в вертикальной плоскости Уа. Всего получается три неизвестных следовательно балка статически определима и для определения нам достаточно трёх уравнений статики.

По оси Х нет действующих сил, следовательно реакция Ха=0

Для определения реакции опоры «В» составим уравнение моментов вокруг точки «А».  Вокруг точки «А» действуют три момента — это  сила F умноженная на плечо (знак минус т.к. вращает по часовой стрелке), момент М который (вращает против часовой стрелки следовательно знак «+») и реакция Rb умноженная на плечо (направить можно в любую сторону, направим вверх, если получится со знаком «+» значит направили верно, если со знаком «-» начальное направление нужно направить в противоположную сторону). Составим уравнение и выразим Rb.

Для определения вертикальной реакции опоры А воспользуемся уравнением суммы сил по оси У:

  Реакции опор определены!!!

Понравилась статья? Поделить с друзьями:
  • Как найти цифру в строке эксель
  • Как найти утечку в скрытой проводке
  • Как найти рентабельность продаж в рублях
  • Как найти номер чека в эвоторе
  • Как составить цель делового совещания