Как составить уравнение плоскости перпендикулярной данной плоскости

Уравнение плоскости, проходящей через прямую перпендикулярно заданной плоскости онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости проходящей через прямую перпендикулярно заданной плоскости − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L

и плоскость α1:

Пусть плоскость α1 не перпендинулярно прямой L.

Задача заключается в построении уравнения плоскости α, проходящей через прямую L перпендикулярно плоскости α1 (Рис.1).

Решение. Уравнение прямой L проходит через точку M0(x0, y0, z0) и имеет направляющий вектор q={m, p, l}. Уравнение плоскости α1 и имеет нормальный вектор n1={A1, B1, C1}.

Запишем уравнение искомой плоскости α:

Искомая плоскость α проходит через прямую L, следовательно она проходит через точку M0(x0, y0, z0). Тогда справедливо следующее равенство:

и поскольку прямая L принадлежит этой плоскости, то нормальный вектор n={A, B, C} и направляющий вектор q={m, p, l} ортогональны:

Для того, чтобы плоскость α была перпендикулярна плоскости α1, нормальные векторы этих плоскостей должны быть ортогональными, т.е. скалярное произведение этих векторов должно быть равным нулю:

Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:

Решив однородную систему линейных уравнений (7) найдем частное решение. (Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L перпендикулярно плоскости α1.

Пример 1.Найти уравнение плоскости α, проходящей через прямую L:

перпендикулярно плоскости α1 :

Решение. Прямая L проходит через точку M0(x0, y0, z0)=M0(−4, 1, 2) и имеет направляющий вектор

Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 5}.

Уравнение искомой плоскости α можно записать следующей формулой:

где n={A, B, C} нормальный вектор плоскости.

Поскольку плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−4, 1, 2), тогда уравнение плоскости должна удовлетворять условию:

а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:

Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:

Подставим значения x0, y0, z0, m, p, l, A1, B1, C1, в (10),(11) и (12):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (16) отностительно A, B, C, D:

Таким образом искомая плоскость имеет нормальный вектор n={A, B, C}={9/43,−17/43,5/43}. Тогда подставляя в уравнение плоскости

значения A, B, C, D, получим:

Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:

Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (19).

Пример 2. Найти уравнение плоскости α, проходящей через прямую L:

перпендикулярно плоскости α1 :

Решение. Прямая L проходит через точку M0(x0, y0, z0)=M0(−3, 1, 5) и имеет направляющий вектор

Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={−1, 1, 2}.

Уравнение искомой плоскости α можно записать следующей формулой:

где n={A, B, C} нормальный вектор плоскости.

Так как плоскость α проходит через прямую L , то она проходит также через точку M0(x0, y0, z0)=M0(−3, 1, 5), тогда уравнение плоскости должна удовлетворять условию:

а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:

Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:

Подставим значения x0, y0, z0, m, p, l, A1, B1, C1, в (22),(23) и (24):

Представим эти уравнения в матричном виде:

Решим систему линейных уравнений (28) отностительно A, B, C, D:

Таким образом искомая плоскость имеет нормальный вектор n={A, B, C}={3/2,−1/2,1}. Тогда подставляя в уравнение плоскости

значения A, B, C, D, получим:

Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:

Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (31).



5.3.6. Как найти плоскость, перпендикулярную данной?

Очевидно, что к любой плоскости можно провести бесконечно много перпендикулярных плоскостей, и для того, чтобы зафиксировать конкретную перпендикулярную плоскость, нужно задать точку и вектор либо две точки:

Задача 142

Дана плоскость  (координаты декартовы). Найти плоскость , перпендикулярную данной и проходящую через точки .

Решение начнём с вопроса задачи: что мы знаем о плоскости ?

Известны две точки. Можно найти вектор , параллельный данной плоскости. Маловато. Было бы неплохо раздобыть ещё один подходящий вектор. Так как плоскости должны быть перпендикулярны, то подойдёт нормальный вектор  плоскости  (для лучшего понимания задачи отложите вектор нормали  от точки  в плоскости ).

Проводить подобные рассуждения здОрово помогает схематический чертёж! – повторю этот красный, а точнее, золотой совет :) Итак, задача «раскручена», и решение удобно оформить по пунктам (это совет серебряный:):

1) Найдём вектор .

2) Из уравнения  снимем вектор нормали: .

3) Уравнение плоскости  составим по точке  (можно взять ) и двум неколлинеарным векторам :

Ответ:

Проверка состоит из двух этапов:

1) Проверяем, действительно ли плоскости будут перпендикулярны. Если две плоскости перпендикулярны, то их векторы нормали будут ортогональны. Логично. Из полученного уравнения  снимаем вектор нормали  и рассчитываем скалярное произведение векторов:
, а значит,

К слову, здесь мы разобрали ещё одну задачу – проверили плоскости на перпендикулярность, и теперь вы знаете, как это сделать.

2) В уравнение плоскости  подставляем координаты точек . Обе точки должны «подойти».

И первый, и второй пункт можно выполнить устно. Но выполнить обязательно! И это уже даже не платиновый совет – это аксиома!

…Что-то не хочется мне вас сегодня отпускать…, наверное, хорошо себя вели и добросовестно прорешали все задачи =) Придётся рассказать что-нибудь ещё:

5.3.7. Взаимное расположение трёх плоскостей

5.3.5. Как найти угол между плоскостями?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Уравнение плоскости перпендикулярной плоскости xoy

Если A = B = 0, т. е. уравнение имеет вид Cz + D = 0, или .

то вектор нормали коллинеарен вектору k = (0, 0, 1). Поэтому плоскость перпендикулярна оси OZ, а значит параллельна плоскости XOY. Координатная плоскость XOY имеет уравнение z = 0.

Аналогично, x = 0 — уравнение координатной плоскости YOZ; x = а — уравнение плоскости, параллельной YOZ; y = 0 — уравнение плоскости XOZ; y = b — уравнение плоскости, параллельной XOZ.

Если равна нулю только одна из координат вектора нормали, то нормаль перпендикулярна, а плоскость, следовательно, параллельна соответствующей оси. Например, плоскость Ax + Cz + D = 0 параллельна оси OY (возможно, содержит эту ось).

Вопросы о взаимном расположении плоскостей решаются с помощью вектора нормали. Пусть две плоскости заданы своими уравнениями: A1x + B1y + C1z + D1 = 0 (плоскость P1), A2x + B2y + C2z + D2 = 0 (плоскость P2).

Запишем в краткой, символической форме условия параллельности и перпендикулярности плоскостей:

Угол между плоскостями равен углу между векторами нормали и находится с помощью скалярного произведения (см. раздел 4.2).

Пример 9. Найти угол между плоскостями 2x — 2y + z — 5 = 0, x — z + 7 = 0.

Решение. Найдём косинус угла между векторами нормали N1 = (2, —2, 1) и N2 = (1, 0, —1):

Используя таблицы или калькулятор, можно найти.

Как известно, через любые 3 точки, не лежащие на одной прямой, можно провести единственную плоскость. Научимся решать эту важную задачу в общем виде, а затем рассмотрим пример.

Пусть точки M1(x1, y1,z1), M2(x2,y2,z2), M3(x3,y3,z3) не лежат на одной прямой. Мы помним, что главное для записи уравнения плоскости — найти вектор нормали, т. е. какой-нибудь вектор, перпендикулярный плоскости. В качестве такого вектора можно взять векторное произведение:

Общее уравнение плоскости

В данной статье мы рассмотрим общее уравнение плоскости в пространстве. Определим понятия полного и неполного уравнения плоскости. Для построения общего уравнения плоскости пользуйтесь калькулятором уравнение плоскости онлайн.

Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение вида:

где A, B, C, D − некоторые постоянные, причем хотя бы один из элементов A , B и C отлично от нуля.

Мы покажем, что линейное уравнение (1) в пространстве определяет плоскость и любой плоскость в пространстве можно представить линейным уравнением (1). Докажем следующую теорему.

Теорема 1. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением (1). Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.

Доказательство. Достаточно доказать, что плоскость α определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.

Пусть в пространстве задана плоскость α. Выберем оси Ox и Oy так, чтобы они располагались на плоскости α, а ось Oz направим перпендикулярно к этой плоскости. Тогда линейное уравнение z=0 будет уравнением плоскости, т.к. координаты любой точки, принадлежащей этой плоскости удовлетворяют уравнению z=0, а координаты любой точки, не лежащей на этой плоскости − нет. Первая часть теоремы доказана.

Пусть фиксирована произвольная декартова прямоугольная система координат Oxyz. Рассмотрим линейное уравнение (1), где хотя бы один из элементов A , B и C отлично от нуля. Тогда уравнение (1) имеет хотя бы одно решение x0, y0, z0. Действительно. Пусть из коэффициентов A≠0. Возьмем произвольные числа y0, z0. Тогда

.

Таким образом, существует точка M0(x0, y0, z0), координаты которой удовлетворяют уравнению (1):

Вычитая из уравнения (1) тождество (2), получим

A(xx0)+B(yy0)+С(zz0)=0, (3)

которая эквивалентна уравнению (1).

Покажем, что (3) определяет некоторую плоскость, проходящую через точку M0(x0, y0, z0) и перпендикулярную вектору n=<A,B,C> (n≠0, так как хотя бы один из чисел A,B,C отлично от нуля).

Если точка M0(x0, y0, z0) принадлежит плоскости α, то ее координаты удовлетворяют уравнению (3), т.к. векторы n=<A,B,C> и перпендикулярны (Рис.1) и их скалярное произведение равно нулю:

Если же точка M(x, y, z) не лежит на плоскости α, то векторы n=<A,B,C> и не ортогональны. Тогда их скалярное произведение не равно нулю, т.е. координаты точки M(x, y, z) не удовлетворяют условию (3). Теорема доказана.

Одновременно с доказательством теоремы 1 мы получили следующее утверждение.

Утверждение 1. В декартовой прямоугольной системе координат вектор с компонентами (A,B,C) перпендикулярен плоскости Ax+By+Cz+D=0.

Вектор n=(A,B,C) называется нормальным вектором плоскости , определяемой линейным уравнением (1).

Утверждение 2. Если два общих уравнения плоскости

определяют одну и ту же плоскость, то найдется такое число λ, что выпонены равенства

A2=A1λ, B2=B1λ, C2=C1λ, D2=D1λ. (6)

Умножая уравнение (7) на λ и вычитая из него уравнение (8) получим:

(A1λA2)x0+(B1λB2)y0+(C1λC2)z0+(D1λD2)=0.

Так как выполнены первые три равенства из выражений (6), то D1λD2=0. Т.е. D2=D1λ. Утверждение доказано.

Неполные уравнения плоскости

Определение 1. Общее уравнение плоскости (1) называется полным , если все коэффициенты A, B, C, D отличны от нуля. Если же хотя бы один из коэффициентов A, B, C, D равен нулю, то общее уравнение плоскости называется неполным .

Рассмотрим все возможные варианты неполных уравнений плоскости:

При D=0, имеем уравнение плоскости Ax+By+Cz=0, проходящей через начало координат (Рис.2). Действительно, точка O(0,0,0) удовлетворяет этой системы линейных уравнений.

При A=0, имеем уравнение плоскости By+Cz+D=0, которая параллельна оси Ox (Рис.3). В этом случае нормальный вектор плоскости n=<0,B,C> лежит на координатной плоскости Oyz.

При B=0, имеем уравнение плоскости Ax+Cz+D=0, которая параллельна оси Oy (Рис.4).

При C=0, имеем уравнение плоскости Ax+By+D=0, которая параллельна оси Oz (Рис.5).

При A=0,B=0 имеем уравнение плоскости Cz+D=0, которая параллельна координатной плоскости Oxy (Рис.6).

При B=0,C=0 имеем уравнение плоскости Ax+D=0, которая параллельна координатной плоскости Oyz (Рис.7).

При A=0,C=0 имеем уравнение плоскости By+D=0, которая параллельна координатной плоскости Oxz (Рис.8).

При A=0,B=0,D=0 имеем уравнение плоскости Cz=0, которая совпадает с координатной плоскостью Oxy (Рис.9).

При B=0,C=0,D=0 имеем уравнение плоскости Ax=0, которая совпадает с координатной плоскостью Oyz (Рис.10).

При A=0,C=0,D=0 имеем уравнение плоскости By=0, которая совпадает с координатной плоскостью Oxz (Рис.11).

Рассмотрим примеры построения общего уравнения плоскости.

Пример 1. Построить общее уравнение плоскости, проходящей через точку M(4,−1,2) параллельной координатной плоскости Oxy.

Решение. Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя координаты точки M в (3), получим:

A(x−4)+B(y−(−1))+C(z−2)=0 (9)

Так как плоскость параллельна координатной плоскости Oxy, то направляющий вектор имеет следующий вид n=<A,B,C>=<0,0,1>, т.е. A=0, B=0, C=1.

Подставляя коэффициенты A,B,C в (9), получим:

0(x−4)+0(y−(−1))+1(z−2)=0 (9)

Пример 2. Построить общее уравнение плоскости, проходящей через начало координат и имеющий нормальный вектор n==<2,3,1>.

Решение. Начало координат имеет коэффициенты (0,0,0). Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя коэффициенты начальной точки в (3), получим:

A(x−0)+B(y−0)+C(z−0)=0 (10)

Так как плоскость имеет нормальный вектор n=<A,B,C>=<2,3,1>, т.е. A=2, B=3, C=1, подставляя коэффициенты A,B,C в (10), получим:

2(x−0)+3(y−0)+1(z−0)=0 (9)

Онлайн калькулятор для построения общего уравнения плоскости находится здесь. Там же вы найдете примеры построения общего уравнения плоскости, если известны три точки этой плоскости или если известна одна точка и нормальный вектор этой плоскости.

1.3.2. Аналитическая геометрия в пространстве

1. Всякая плоскость в координатном пространстве OXYZ имеет векторное уравнение следующего вида: r ¦ п = p. Здесь

r = xi + yj + zk — радиус-вектор текущей точки плоскости

M(x, у, z); п = i cosa + j cos b + k cosg — единичный вектор, имеющий направление перпендикуляра, опущенного на плоскость из начала координат, a, b, g — углы, образованные этим перпендикуляром с осями координат OX, OY, OZ, и р — длина этого перпендикуляра.

При переходе к координатам это уравнение принимает вид xcos a + ycos b + zcos g — p = 0 (нормальное уравнение плоскости).

2. Уравнение всякой плоскости может быть записано также в виде Ах + Ву +Cz + D = 0 (общее уравнение). Здесь А, B, C можно рассматривать как координаты некоторого вектора

N = Ai + Bj + Ck, перпендикулярного к плоскости. Для приведения общего уравнения плоскости к нормальному виду все члены уравнения надо умножить на нормирующий множитель

где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.

3. Частные случаи расположения плоскости, определяемой уравнением Ах + Ву +Cz + D = 0:

А = 0; плоскость параллельна оси ОХ;

В = 0; плоскость параллельна оси О^

C = 0; плоскость параллельна оси ОZ;

D = 0; плоскость проходит через начало координат;

А = В = 0; плоскость перпендикулярна оси ОZ (параллельна плоскости ХОY);

А = C = 0; плоскость перпендикулярна оси ОY (параллельна плоскости ХОZ);

В = C = 0; плоскость перпендикулярна оси ОХ (параллельна плоскости YОZ);

А = D = 0; плоскость проходит через ось ОХ;

В = D = 0; плоскость проходит через ось OY;

C = D = 0; плоскость проходит через ось OZ;

А = В = D = 0; плоскость совпадает с плоскостью XOY (z = 0);

А = C = D = 0; плоскость совпадает с плоскостью XOZ (у = 0);

B = C = D = 0; плоскость совпадает с плоскостью YOZ (х = 0).

Если в общем уравнении Ах + By +Cz + D = 0 коэффициент D ф 0, то, разделив все члены уравнения на — D, можно уравнение

плоскости привести к виду^ здесь

. Это уравнение плоскости называется уравнением в отрезках: в нем а — абсцисса точки пересечения плоскости с осью OX, b и с — соответственно ордината и аппликата точек пересечения плоскости с осями OY и OZ.

4. Угол j между плоскостями А1х + В1У + Qz + D1 = 0 и А2х + В2У +C2z + D2 = 0 определяется по формуле

Условие параллельности плоскостей:

Условие перпендикулярности плоскостей:

5. Расстояние от точки М0(х0; у0; z0) до плоскости, определяемой уравнениемНаходится по формуле

Оно равно взятому по абсолютной величине результату подстановки координат точки в нормальное уравнение плоскости; знак результата этой подстановки характеризует взаимное расположение точки M0 и начала координат относительно данной плоскости: этот знак положителен, если точка M0 и начало координат расположены по разные стороны от плоскости, и отрицателен, если они расположены по одну сторону от плоскости.

6. Уравнение плоскости, проходящей через точку М0(х0; у0; z0)

и перпендикулярной к вектору N = Ai + Bj + Ck, имеет вид А(х — х0) + B(y — у0) + C(z — z0) = 0. При произвольных А, В и C последнее уравнение определяет некоторую плоскость, принадлежащую к связке плоскостей, проходящих через точку М0. Его часто поэтому называют уравнением связки плоскостей.

7. Уравнение А1х + B1y +C1z + D1 + А(А2х + B^y +C2z + D2) = 0 при произвольном I определяет некоторую плоскость, проходящую через прямую, по которой пересекаются плоскости, определяемые уравнениями

некоторую плоскость, принадлежащую пучку плоскостей, проходящих через эту прямую (в силу чего такое уравнение часто называют уравнением пучка плоскостей). Если плоскости, определяемые уравнениями I и II, параллельны, то пучок плоскостей превращается в совокупность плоскостей, параллельных этим плоскостям.

8. Уравнение плоскости, проходящей через три заданные точки M1(r 1Х M1(Jj), M3(r 3) (Л = x1i + yd + z1k; r2 = x2i + У2 j + z2k; r3 = x3i + y3 j + z3 к), проще всего найти из условия компланарности векторов r — T1, r2 — rl, r3 — rl, где r = xi + yj+zk — радиус-вектор текущей точки искомой плоскости M:

или в координатной форме:

Пример 1.21. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + у + 5z — 1 = 0, 2x + 3у — z + 2 = 0 и через точку М(3, 2, 1).

Решение. Воспользуемся уравнением пучка плоскостей

Значение I определяем из условия, что координаты точки М должны удовлетворять этому уравнению:

Получаем искомое уравнение в виде:

или, умножая на 13 и приводя подобные члены, в виде:

Пример 1.22. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + 3у + 5z — 4 = 0 и X — у — 2z + 7 = 0 и параллельной оси оу.

Решение. Воспользуемся уравнением пучка x + 3у + 5z — 4 + + l(x — у — 2z + 7) = 0, преобразуем уравнение к виду (1 + Х)х + (3 -1)у + (5 — 2l)z + (71 — 4) = 0.

Так как искомая плоскость параллельна оси ординат, то коэффициент при у должен равняться нулю, т. е. 3 — l = 0, I = 3. Подставив значение I в уравнение пучка, получаем

Пример 1.23. Найти уравнение плоскости, проходящей через точки М (2; -1; 4) и N(3; 2; -1) перпендикулярно к плоскости X + у + z — 3 = 0.

Решение. Воспользуемся уравнением плоскости, проходящей через первую из данных точек:

Условие прохождения этой плоскости через вторую точку и условие перпендикулярности определяются равенствами:

Исключая коэффициенты А, В и C из системы уравнений

получаем искомое уравнение в виде:

Пример 1.24. Из точки P(2; 3; -5) на координатные плоскости опущены перпендикуляры. Найти уравнение плоскости, проходящей через их основания.

Решение. Основаниями перпендикуляров, опущенных на координатные плоскости, будут следующие точки М1(2; 3; 0), М2(2; 0; -5), М3(0; 3; -5). Напишем уравнение плоскости, проходящей через точки М1, М2, М3, для чего воспользуемся уравнением

Пример 1.25. Составить уравнение плоскости, проходящей через точку M (2; 3; 5) и перпендикулярной к вектору

Решение. Достаточно воспользоваться уравнением плоскости, проходящей через данную точку и перпендикулярной к данному вектору:

1. Прямая может быть задана уравнениями 2-х плоскостей

пересекающихся по этой прямой.

2. Исключив поочередно х и у из предыдущих уравнений, получим уравнения х = аz + с, у = bz + d. Здесь прямая определена двумя плоскостями, проектирующими ее на плоскости хoz и yoz.

3. Если даны две точки M(x1, у1, z1) и N(x2, у2, z2), то уравнения прямой, проходящей через них, будут иметь вид:

4. Так называемые канонические уравнения

определяют прямую, проходящую через точку M(x1, у1, z1)

и параллельную вектору S = li + mj + nk. В частности, эти уравнения могут быть записаны в виде:

где a, b и g — углы, образованные прямой с осями координат.

5. От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям прямой:

6. Угол между двумя прямыми, заданными их каноническими


деляется по формуле

перпендикулярности двух прямых:

условие параллельности двух прямых:

7. Необходимое и достаточное условие расположения двух прямых, заданных их каноническими уравнениями, в одной плоскости (условие компланарности двух прямых):

Если величины /1, т, П1 непропорциональны величинам /2, m2, «2, то указанное соотношение является необходимым и достаточным условием пересечения двух прямых в пространстве.

условие параллельности прямой и плоскости: условие перпендикулярности прямой и плоскости:

Определяется по формуле

9. Для определения точки пересечения прямой

С плоскостью Ах + Ву + Cz + D = 0 нужно решить совместно их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой x = /t + X0, у = mt + у0, z = nt + z0:

а) если А/ + Вт + Cn ф 0, то прямая пересекает плоскость в одной точке;

б) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D ф 0, то прямая параллельна плоскости;

в) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D = 0, то прямая лежит в плоскости.

Пример 1.26. Привести к каноническому виду уравнения прямой 2х — у + 3z — 1 = 0 и 5х + 4у — z — 7 = 0.

Решение. Исключив вначале у, а затем z, получим:

Если разрешим каждое из уравнений относительно х, то будем иметь:

отсюда

Второй способ: найдем вектор S = li + mj + nk, параллельный искомой прямой. Так как он должен быть перпендикулярен к нормальным векторам заданных плоскостей N1 = 2i — j + 3k и N2= 5i + 4 j — k, то за него можно принять векторное произведение векторов N1 и N2.

Таким образом, l = -11; m = 17; n = 13.

За точку M1(x1, у1, z1), через которую проходит искомая прямая, можно принять точку пересечения ее с любой из координатных плоскостей, например с плоскостью yoz. Т ак как при этом x1 = 0, то координаты y1 и z1 этой точки определятся из системы уравнений заданных плоскостей, если в них положить х = 0:

Решая эту систему, находим у1 = 2; z1 = 1.

Итак, искомая прямая определяется уравнениями:

Мы получили прежний ответ.

Пример 1.27. Построить прямую

Решение. Искомую прямую можно построить как линию пересечения плоскостей. Для этого напишем уравнения плоскостей, которыми определена прямая, в отрезках на осях:

Пример 1.28. Из начала координат опустить перпендикуляр на прямую

Решение. Составим уравнение плоскости, проходящей через начало координат и перпендикулярной заданной прямой: 2х + 3у + z = 0. (Для этой плоскости можно принять А = l; B = m; C = n; D = 0; использовано условие перпендикулярности прямой и плоскости, см. п. 8 введения к настоящему разделу).

Найдем точку пересечения этой плоскости и данной прямой. Параметрические уравнения прямой имеют вид:

Построив данные плоскости, мы получим искомую прямую как линию пересечения этих плоскостей (рис. 20).

Для определения t имеем уравнение:

Остается составить уравнения прямой, проходящей через начало координат и через точку М (см. п. 3 введения к настоящему разделу):

Пример 1.29. В уравнениях прямойОпределить

параметр n так, чтобы эта прямая пересекалась с прямой

, и найти точку их пересечения.

Решение. Для нахождения параметра n используем условие пересечения 2-х прямых:

Следовательно, уравнения пересекающихся прямых таковы: искомой:

Для вычисления координат точки пересечения этих прямых выразим из первого уравнения х и у через z: х = 2z, у = -3z. Подставляя их значения в равенствоИмеем,

отсюда z = 1. Зная z, находим х и у: х = 2z = 2, у = -3z = -3. Следовательно M(2; -3; 1).

Пример 1.30. Прямая задана каноническими уравнениями

Составить общие уравнения этой прямой.

Решение. Канонические уравнения прямой можно записать в виде системы двух независимых уравнений:

Получили общие уравнения прямой, которая теперь задана пересечением 2-х плоскостей, одна из которых 5х — 3у — 13 = 0 параллельна оси Oz, а другая х + 3z — 11 = 0 параллельна оси Oy.

Пример 1.31. Найти координаты точки M, делящей попалам отрезок прямой

заключенный между плоскостями хoz и xoy.

Решение. Найдем точку А пересечения прямой с плоскостью хoz, полагая в уравнениях прямой у = 0. Тогда получим:

отсюда x = 2,6; z = 2,8. Тогда А(2,6; 0; 2,8).

отсюда X = 11, у = 14, или В(11; 14; 0).

Определяем координаты точки М, делящей отрезок АВ пополам:

Следовательно, координаты искомой точки М будут: М(6,8; 7; 1,4).

Пример 1.32. Составить уравнение плоскости, проходящей через прямую

Решение. Составим уравнение пучка плоскостей, проходящих через первую из данных прямых:

которое делим на а ф 0, и пусть b /а = I:

Аналогично, полагая в уравнениях прямой z = 0, найдем координаты точки В пересечения прямой с плоскостью хоу:

В этом пучке нужно выбрать плоскость, параллельную 2-й данной прямой. Из условия параллельности плоскости и прямой, имеем:

Подставляя I = 1 в уравнение пучка плоскостей, получим: Тогда искомое уравнение плоскости будет:

Пример 1.33. Дана прямая Найти ее проекцию на плоскость

Решение. Нужно найти плоскость, которая проходит через данную прямую перпендикулярно к данной плоскости; тогда искомая проекция определится как пересечение этой плоскости с данной.

Составим уравнение пучка плоскостей, проходящих через данную прямую:

Эта плоскость должна быть перпендикулярной к данной плоскости, что можно записать как:

Тогда уравнение плоскости, проходящей через данную прямую и перпендикулярной данной плоскости, будет:

Проекция данной прямой на данную плоскость определяется как прямая пересечения плоскостей:

Запишем эту прямую в каноническом виде. Найдем на прямой какую-либо точку. Для этого положим, например х0 = 1, и система запишется в виде:

Отсюда, у0 = 1, z0 = 0, т. е. точка M(1; 1; 0) принадлежит искомой прямой.

Направляющий вектор прямой S = (l; m; n) найдем из того условия, что он перпендикулярен нормальным векторам

N1 = (2; -3; -2) и N2 = (5; 2; 2) плоскостей, определяющих искомую прямую.

В качестве S берем векторное произведение векторов N1 и N2 , т. е.

Тогда искомое уравнение в каноническом виде будет:

источники:

http://matworld.ru/analytic-geometry/obshchee-uravnenie-ploskosti.php

http://matica.org.ua/metodichki-i-knigi-po-matematike/a-s-shapkin-zadachi-po-vysshei-matematike-teorii-veroiatnostei-matematicheskoi-statistike-matematicheskomu-programmirovaniiu-s-resheniiami/1-3-2-analiticheskaia-geometriia-v-prostranstve

уравнение плоскости проходящей через прямую и перпендикулярна к плоскости

математика ВУЗ
13849

Каноническое уравнение плоскости
Ax+By+Cz+D=0

⇒ координаты нормального вектора плоскости vector{n}=(A;B;C)

Значит из уравнения плоскости
3x+4y-5z-6=0
получаем vector{n}=(3;4;-5) — нормальный вектор это плоскости.

[m] frac{x-0,5}{-2}=frac{y+3}{1}=frac{z+2,5}{3}[/m]

vector{s}=(-2;1;3) — направляющий вектор прямой

P(0,5; -3;-2,5) — точка, лежащая на прямой и стало быть на искомой плоскости

Пусть М (x;y;z) — произвольная точка плоскости.

Тогда
vector {PM}=(x-0,5; y+2;z+2,5)
vector{s}=(-2;1;3)
vector{n}=(3;4;-5)

компланарны.

Условием компланарности трех векторов является равенство нулю определителя третьего порядка,
составленного из координат этих векторов

[m]begin{vmatrix}
x-0,5&y+2 &z+2,5 \
-2&1 &3 \
3&4 & 5
end{vmatrix}=0[/m]

Раскрываем определитель:
5*(x-0,5)+9(y+2)-8*(z+2,5)-3*(z+2,5)-12(x-0,5)+10(y+2)=0

-7x+3,5+19y+38-20z-50=0

7x-19y+20z+8,5=0

[b]14x-38y+40z+17=0[/b]

Уравнение плоскости, проходящей через прямую перпендикулярно плоскости

Материал из Циклопедии

Перейти к навигации
Перейти к поиску

Уравнение плоскости, проходящей через прямую перпендикулярно плоскости, задаётся равенством нулю смешанного произведения вектора-разности радиусов-векторов точек, направляющего вектора прямой и нормали к плоскости.

Обозначения[править]

Введём обозначения:

{displaystyle {bar {r}}=(x,y,z)} — радиус-вектор точки плоскости;

{displaystyle {bar {r}}_{1}=(x_{1},y_{1},z_{1})} — радиус-вектор точки прямой;

{displaystyle {bar {s}}_{1}=(l_{1},m_{1},n_{1})} — направляющий вектор прямой;

{displaystyle {bar {n}}_{2}=(A_{2},B_{2},C_{2})} — нормаль к плоскости;

{displaystyle A_{2}x+B_{2}y+C_{2}z+D_{2}=0} — уравнение плоскости.

Формулы:[править]

Векторная форма: {displaystyle left({bar {r}}-{bar {r}}_{1}right){bar {s}}_{1}{bar {n}}_{2}=0}.

Координатная форма:

{displaystyle {begin{vmatrix}x-x_{1}&y-y_{1}&z-z_{1}\l_{1}&m_{1}&n_{1}\A_{2}&B_{2}&C_{2}end{vmatrix}}=0Leftrightarrow }
{displaystyle Leftrightarrow {begin{vmatrix}m_{1}&n_{1}\B_{2}&C_{2}end{vmatrix}}(x-x_{1})-{begin{vmatrix}l_{1}&n_{1}\A_{2}&C_{2}end{vmatrix}}(y-y_{1})+{begin{vmatrix}l_{1}&m_{1}\A_{2}&B_{2}end{vmatrix}}(z-z_{1})=0}

Уравнения плоскости:[править]

  • уравнение плоскости, проходящей через три точки;
  • уравнение плоскости, равноудалённой от двух точек;
  • уравнение плоскости, проходящей через две точки параллельно прямой;
  • уравнение плоскости, проходящей через две точки перпендикулярно плоскости;
  • уравнение плоскости, проходящей через точку и прямую;
  • уравнение плоскости, проходящей через точку перпендикулярно прямой;
  • уравнение плоскости, проходящей через точку параллельно плоскости;
  • уравнение плоскости, проходящей через точку параллельно двум прямым;
  • уравнение плоскости, проходящей через точку перпендикулярно двум плоскостям;
  • уравнение плоскости, проходящей через прямую параллельно прямой;
  • уравнение плоскости, проходящей через прямую перпендикулярно плоскости.

Литература[править]

  • Корн Г., Корн Т. Справочник по математике для научных работников и инженеров — М.: Наука, 1970.

Понравилась статья? Поделить с друзьями:
  • Как правильно составить график влажной уборки в детском саду
  • Как найти среднее число в массиве python
  • Как в контакте найти удаленного человека
  • Как найти бейкер стрит
  • Как найти периметр прямоугольника зная его площадь