Как составить уравнение плоскости проходящей через одну точку

Пусть даны точка и прямая, заданная уравнением

. Требуется найти уравнение проходящей через них плоскости. (Точка не лежит на данной прямой). Из уравнения данной прямой находим координаты точки .

Пусть — произвольная точка плоскости . При любом ее выборе направляющий вектор прямой и векторы

и

лежат в одной плоскости и поэтому их смешанное произведение равно нулю:

Раскрывая определитель, получим уравнение искомой плоскости.

Совершенно так же найдем уравнение плоскости, проходящей через две параллельные или пересекающиеся прямые: на одной из них берется любая точка (не лежащая на другой прямой), и плоскость проводится через вторую прямую и точку .

Пример. Провести плоскость через прямую и точку .

Решение. Убедимся, что точка не лежит на прямой, данной в условии

Из уравнения данной прямой следует, что точка лежит на этой прямой. Пусть — произвольная точка искомой плоскости, тогда векторы , и компланарны. Следовательно,

Раскроем определитель:

Таким образом искомая плоскость имеет уравнение

< Предыдущая   Следующая >

Уравнение плоскости, проходящей через точку и прямую онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и через данную прямую (точка не лежит на этой прямой). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через точку и прямую − теория, примеры и решения

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L:

и точка M0(x0, y0, z0), которая не находится на этой прямой.

Задача заключается в построении уравнения плоскости α, проходящей через точку M0 и и через прямую L(Рис.1).

Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n={A, B, C} имеет следующий вид:

Направляющий вектор прямой L имеет вид q={m, p, l}. Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n={A, B, C} должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

Вычитая уравнение (3) из уравнения (2), получим:

Решая совместно уравнения (4) и (5) отностительно коэффициентов A, B, C получим такие значения A, B, C, при которых уравнение (2) проходит через точку M0 и через прямую (1). Для решения систему уравнений (4), (5), запишем их в матричном виде:

Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн.

Получив частное решение уравнения (6) и подставив полученные значения A, B, C в (2), получим решение задачи.

Пример 1.Найти уравнение плоскости α, проходящей через точку M0(x0, y0, z0)=M0(1, 2, 5) и через заданную прямую L:

Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0)=M0(1, 2, 5) и имеющий нормальный вектор n={A, B, C} представляется формулой (2).

Уравнение плоскости α, проходящей через точку M1(x1, y1, z1)=M1(2, 1, −3) и имеющий нормальный вектор n={A, B, C} представляется формулой (3).

Вычитая уравнение (3) из уравнения (2), получим:

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n={A, B, C} должен быть ортогональным направляющему вектору q прямой L, т.е. скалярное произведение этих векторов должен быть равным нулю:

Подставим значения m, p, l, x0, y0, z0, x1, y1, z1 в (8) и (9):

Решим систему линейных уравнений (10) и (11) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

Решив однородную систему линейных уравнений (12) используя метод Гаусса, найдем следующее частное решение:

Подставляя значения коэффициентов A, B, C в уравнение плоскости (2), получим:

Упростим уравнение (13):

Ответ: Уравнение плоскости, проходящей через точку M0(1, 2, 5) и через прямую (7) имеет вид (14).

Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и через прямую L, заданной параметрическим уравнением:

Решение. Приведем параметрическое уравнение (15) к каноническому виду:

Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n={A, B, C} представляется формулой:

Поскольку плоскость проходит через прямую L, то она проходит также через точку M1(x1, y1, z1)=(0, 2, 4). Тогда уравнение плоскости, проходящей через точку M1(x1, y1, z1) имеет вид:

Вычитая уравнение (18) из уравнения (17), получим:

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы плоскость проходила через прямую L, нормальный вектор плоскости n должен быть ортогональным направляющему вектору прямой L :

Подставим значения m, p, l, x0, y0, z0, x1, y1, z1 в (19) и (20):

Решим систему линейных уравнений (21) и (22) отностительно A, B, C. Для этого представим эти уравнения в матричном виде:

Решив однородную систему линейных уравнений (23) используя метод Гаусса, найдем следующее частное решение:

Подставляя значения коэффициентов A, B, C в уравнение плоскости (17), получим:

Упростим уравнение (24):

Уравнение плоскости можно представить более упрощенном виде, умножив на число 23.

Ответ: Уравнение плоскости, проходящей через точку M0(4, 3, −6) и через прямую (16) имеет вид (26).

913 Составить уравнение плоскости,
которая проходит через точку М
1(2;
1; -1) и имеет нормальный вектор n={1;
-2; 3}.
914 Составить
уравнение плоскости, которая проходит через
начало координат и имеет нормальный вектор n={5; 0;
-3}.
915 Точка Р(2; -1; -1)
служит основанием перпендикуляра, опущенного из
начала координат на плоскость. Составить
уравнение этой плоскости.
916 Даны точки M1(3; -1; 2), M2(4; -2; -1). Составить
уравнение плоскости, проходящей через точку М
1
перпендикулярно вектору .
917 Составить
уравнение плоскости, проходящей через точку М
1(3; 4; -5) параллельно
векторам a
1={3; 1; -1) и a2={1;
-2; 1}.
918  

Доказать,
что уравнение плоскости, проходящей через точку
М
0(x0, y0, z0) параллельно векторам a1={l1,
m1, n1} и a2={l2;
m2; n2}, может быть
представлено в следующем виде:

.

919 Составить
уравнение плоскости, проходящей через точки M
1(2; -1; 3), M2(3; 1; 2) параллельно
вектору a={3; -1; 4}.
920  

Доказать,
что уравнение плоскости, проходящей через точки M
1(x1; y1; z1), M2(x2,
y2, z2) параллельно
вектору a={l; m; n}, может быть представлено в
следующем виде:

.

921 Составить
уравнение плоскости, проходящей через точки М
1(3; -1; 2), М2(4; -1;
-1), М3(2; 0; 2).
922  

Доказать,
что уравнение плоскости, проходящей через точки M
1(x1; y1; z1), M2(x2,
y2, z2), M3(x3; y3; z3),
может быть представлено в
следующем виде:

.

923 Определить
координаты какого-нибудь нормального вектора
каждой из следующих плоскостей. В каждом случае
написать общее выражение координат
произвольного нормального вектора:
923.1 ; 923.2 ; 923.3 ; 923.4 ; 923.5 ; 923.6 . 924 Установить, какие
из следующих пар уравнений определяют
параллельные плоскости:
924.1  , ; 924.2 , ; 924.3 , . 925 Установить, какие
из следующих пар уравнений определяют
перпендикулярные плоскости:
925.1 , ; 925.2 , ; 925.3  , . 926 Определить, при
каких значениях l и m следующие пары уравнений
будут определять параллельные плоскости:
926.1 , ; 926.2 , ; 926.3 , . 927 Определить, при
каких значениях l и m следующие пары уравнений
будут определять перпендикулярные плоскости:
927.1 , ; 927.2 , ; 927.3 , . 928 Определить
двугранные углы, образованные пересечением
следующих пар плоскостей:
928.1 , ; 928.2 , ; 928.3 , ; 928.4 , . 929 Составить
уравнение плоскости, которая проходит через
начало координат параллельно плоскости
. 930 Составить
уравнение плоскости, которая проходит через
точку М
1(3; -2; -7) параллельно
плоскости
.
931 Составить
уравнение плоскости, которая проходит через
начало координат перпендикулярно к двум
плоскостям
, .
932 Составить
уравнение плоскости, которая проходит через
точку М
1(2; -1; 1) перпендикулярно
к двум плоскостям
, .
933

Доказать,
что уравнение плоскости, проходящей через точку
М
0(x0; y0; z0) перпендикулярно к плоскостям , , может быть
представлено в следующем виде:

.

934 Составить
уравнение плоскости, которая проходит через две
точки М
1(1; -1; -2), M2(3; 1; 1) перпендикулярно к плоскости . 935

Доказать,
что уравнение плоскости, проходящей через две
точки M
1(x1; y1; z1),
M2(x2, y2, z2) перпендикулярно
к плоскости
, может быть представлено в следующем
виде:

.

936 Установить, что три
плоскости
, , имеют
общую точку, и вычислить ее координаты.
937 Доказать, что три
плоскости
, , проходят
через одну прямую.
938 Доказать, что три
плоскости
, , пересекаются
по трем различным параллельным прямым.
939 Определить, при
каких значениях a и b плоскости
, , : 939.1 имеют одну общую
точку;
939.2 проходят через одну
прямую;
939.3 пересекаются по
трем различным параллельным прямым.

1. Общее уравнение плоскости

Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0 , где А, В, С – координаты вектора

N = Ai + Bj + Ck -вектор нормали к плоскости. Возможны следующие частные случаи:

A = 0 – плоскость параллельна оси Ох

B = 0 – плоскость параллельна оси Оу C = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

A = B = 0 – плоскость параллельна плоскости хОу A = C = 0 – плоскость параллельна плоскости хОz B = C = 0 – плоскость параллельна плоскости yOz A = D = 0 – плоскость проходит через ось Ох

B = D = 0 – плоскость проходит через ось Оу C = D = 0 – плоскость проходит через ось Oz

A = B = D = 0 – плоскость совпадает с плоскостью хОу A = C = D = 0 – плоскость совпадает с плоскостью xOz B = C = D = 0 – плоскость совпадает с плоскостью yOz

2. Уравнение поверхности в пространстве

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

3. Уравнение плоскости, проходящей через три точки

Для того, чтобы через три какиелибо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе

координат.

Для того, чтобы произвольная точка M (x, y, z)

лежала в одной плоскости с точками

M1, M2 , M3 необходимо, чтобы векторы M1M 2 , M1M 3 , M1M были компланарны, т.е

M1M = {x x1 ; y y1 ; z z1}

( M1M 2 , M1M 3 , M1M ) = 0. Таким образом, M1M 2

= {x2 x1 ; y2

y1 ; z2 z1}

M1M 3

= {x3 x1 ; y3 y1 ; z3 z1}

x x1

y y1

z z1

Уравнение плоскости, проходящей через три точки:

x2 x1

y2 y1

z2 z1

= 0

x3 x1

y3 y1

z3 z1

35

4. Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и векторa = (a1, a2 , a3 ) .

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную

точку М(х, у, z) параллельно вектору a .

Векторы M1M = {x x1 ; y y1 ; z z1}

и вектор a = (a , a

2

, a

3

)

должны быть

M1M 2 = {x2 x1 ; y2 y1 ; z2 z1}

1

x x1

y y1

z z1

компланарны, т.е. ( M1M , M1M 2 , a ) = 0.Уравнение плоскости:

x2 x1

y2 y1

z2 z1

= 0

a1

a2

a3

5. Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости

Пусть заданы два вектора a = (a1, a2 , a3 ) и b = (b1,b2 ,b3 ) , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы a,b, MM1 должны быть компланарны.

x x1

y y1

z z1

Уравнение плоскости:

a1

a2

a3

= 0 .

b1

b2

b3

6. Уравнение плоскости по точке и вектору нормали

Теорема. Если в пространстве задана точка M0 (x0 , y0 , z0 ) , то уравнение плоскости, проходящей через точку M0 перпендикулярно вектору нормали N ( A, B,C) имеет вид: A(x x0 ) + B ( y y0 ) + C (z z0 ) = 0 .

7. Уравнение плоскости в отрезках

Если в общем уравнении Ax + By + Cz + D = 0 поделить обе части на (-D)

A

x

B

y

C

z 1 = 0 , заменив

D

= a,

D

= b,

D

= c , получим уравнение плоскости

A

B

C

D

D

D

в отрезках:

x

+

y

+

z

= 1 . Числа a, b, c являются точками пересечения плоскости соответственно

a

b

c

с осями х, у, z.

8. Уравнение плоскости в векторной форме

r n = p, где r = xi + yj + zk — радиусвектор текущей точки M (x, y, z) ,

n = i cosα + j cos β + k cosγ — единичный вектор, имеющий направление, перпендикуляра,

опущенного на плоскость из начала координат. α, β и γ — углы, образованные этим вектором с осями х, у, z. p – длина этого перпендикуляра. В координатах это уравнение имеет вид:

x cosα + y cos β + z cosγ p = 0

36

9. Расстояние от точки до плоскости

Расстояние от произвольной точки M0 (x0 , y0 , z0 ) до плоскости Ax + By + Cz + D = 0 равно:

d = Ax0 + By0 + Cz0 + D

A2 + B2 + C 2

Пример. Найти уравнение плоскости, проходящей через точки А(2,-1,4) и В(3,2,-1) перпендикулярно плоскости x + y + 2z 3 = 0 .

Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0 , вектор нормали к этой плоскости n1 (A,B,C). Вектор AB (1,3,-5) принадлежит плоскости. Заданная нам плоскость,

перпендикулярная искомой имеет вектор нормали n2 (1,1,2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

n = AB × n

i

j

k

= i

3

5

j

1

5

+ k

1

3

= 11i 7 j 2k.

2

=

1

3

5

1

1

2

1

2

1

1

1

1

2

Таким образом, вектор нормали n1 (11,-7,-2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е.

11.2+ 7.12.4 + D = 0; D = −21. Итого, получаем уравнение плоскости: 11x 7 y 2z 21 = 0

10.Уравнение линии в пространстве

Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе координат удовлетворяют уравнению:

F(x, y, z) = 0 . Это уравнение называется уравнением линии в пространстве.

Кроме того, линия в пространстве может быть определена и иначе. Ее можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана какимлибо уравнением.

Пусть F(x, y, z) = 0 и Ф(x, y, z) = 0 – уравнения поверхностей, пересекающихся по линии L.

F(x, y, z) = 0

Тогда пару уравнений Ф(x, y, z) = 0 назовем уравнением линии в пространстве.

11. Уравнение прямой в пространстве по точке и направляющему вектору

Возьмем произвольную прямую и вектор S (m, n, p), параллельный данной прямой. Вектор S называется направляющим вектором прямой.

На прямой возьмем две произвольные точки M0 (x0 , y0 , z0 ) и M (x, y, z) .

z

37

z

S M1

M0

r0 r

Обозначим радиусвекторы этих точек как r0 и r , очевидно, что r r0 = M0 M .

Т.к. векторы М0 М и S коллинеарны, то верно соотношение М0 М = St , где t – некоторый параметр. Итого, можно записать: r = r0 + St .

Т.к. этому уравнению удовлетворяют координаты любой точки прямой, то полученное уравнение – параметрическое уравнение прямой.

x = x0 + mt

Это векторное уравнение может быть представлено в координатной форме: y = y0 + nt

z = z0 + pt

Преобразовав эту систему и приравняв значения параметра t, получаем канонические

уравнения прямой в пространстве:

x x0

=

y y0

=

z z0

.

m

n

p

Определение. Направляющими косинусами прямой называются направляющие косинусы вектора S , которые могут быть вычислены по формулам:

cosα =

m

; cos β =

n

; cosγ =

p

.

+ n2

+ p2

+ n2 + p2

m2 + n2 + p2

m2

m2

Отсюда получим: m : n : p = cosα : cos β : cosγ .

Числа m , n , p называются угловыми коэффициентами прямой. Т.к. S — ненулевой вектор, то m, n и p не могут равняться нулю одновременно, но одно или два из этих чисел могут равняться нулю. В этом случае в уравнении прямой следует приравнять нулю соответствующие числители.

12. Уравнение прямой в пространстве, проходящей через две точки

Если на прямой в пространстве отметить две произвольные точки M1 (x1, y1, z1 ) и

M2 (x2 , y2 , z2 ), то координаты этих точек должны удовлетворять полученному выше уравнению прямой:

x2 x1

=

y2 y1

=

z2 z1

.

m

n

p

38

Понравилась статья? Поделить с друзьями:
  • Нашла карту тинькофф как вернуть владельцу
  • Как в сайте исправить шапку
  • Как составить рефлекторную дугу коленного рефлекса
  • Как найти кабана видео
  • Есть имеил как найти телефон