Как составить уравнение по методу гаусса

Высшая математика. Метод Гаусса для чайников

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее метода Крамера, он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

решение системы с помощью крамера

Метод Гаусса состоит из двух этапов – прямого и обратного.

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

решение методом гаусса для чайников

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

решить систему способом гаусса

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн. Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Пример решения системы уравнений методом Гаусс

А теперь — пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

решить систему матрицы методом гаусса

Сначала запишем расширенную матрицу:

решить систему уравнений методом исключения неизвестных гаусса

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

исследовать и решить систему уравнений методом гаусса

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

метод гаусса как решать подробно

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

 Пример решения системы уравнений методом Гаусс

Вуаля — система приведена к соответствующему виду. Осталось найти неизвестные:

решить систему уравнений методом гаусса примеры

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набьете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! Заказать недорого  реферат вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Карл Фридрих Гаусс - немецкий математик, основатель одноименного метода решения СЛАУ

Карл Фридрих Гаусс – немецкий математик, основатель одноименного метода решения СЛАУ

Карл Фридрих Гаусс – был известным великим математиком и его в своё время признали «королём математики». Хотя название «метод Гаусса» является общепринятым, Гаусс не является его автором: метод Гаусса был известен задолго до него. Первое его описание имеется в китайском трактате «Математика в девяти книгах», который составлен между II в. до н. э. и I в. н. э. и представляет собой компиляцию более ранних трудов, написанных примерно в X в. до н. э.

Метод Гаусса – последовательное исключение неизвестных. Этот метод используется для решения квадратных систем линейных алгебраических уравнений. Хотя уравнения при помощи метода Гаусса решаются легко, но всё же студенты часто не могут найти правильное решение, так как путаются в знаках (плюсы и минусы). Поэтому во время решения СЛАУ необходимо быть предельно внимательным и только тогда можно легко, быстро и правильно решить даже самое сложное уравнение.

У систем линейных алгебраических уравнений есть несколько преимуществ: уравнение не обязательно заранее на совместность; можно решать такие системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равняется нулю; есть возможность при помощи метода Гаусса приводить к результату при сравнительно небольшом количестве вычислительных операций.

Определения и обозначения

Как уже говорилось, метод Гаусса вызывает у студентов некоторые сложности. Однако, если выучить методику и алгоритм решения, сразу же приходит понимание в тонкостях решения.

Для начала систематизируем знания о системах линейных уравнений.

СЛАУ в зависимости от её элементов может иметь:

  1. Одно решение;
  2. много решений;
  3. совсем не иметь решений.

В первых двух случаях СЛАУ называется совместимой, а в третьем случае – несовместима. Если система имеет одно решение, она называется определённой, а если решений больше одного, тогда система называется неопределённой.

Метод Крамера и матричный способ не подходят для решения уравнений, если система имеет бесконечное множество решений. Вот поэтому нам и нужен метод Гаусса, который поможет нам в любом случае найти правильное решение. К элементарным преобразованиям относятся:

  • перемена мест уравнений системы;
  • почленное умножение обеих частей на одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами;
  • сложение к обеим частям одного из уравнений определённых частей другого уравнения.

Итак, когда мы знаем основные правила и обозначения, можно приступать к решению.

Теперь рассмотрим, как решаются системы методом Гаусса на простом примере:

    [left{ begin{aligned} a_{1}x + b_{1}y + c_{1}z = d_{1}\ a_{2}x + b_{2}y + c_{2}z = d_{2}\ a_{3}x + b_{3}y + c_{3}z = d_{3} end {aligned} right.]

где а, в, с  – заданные коэффициенты, d – заданные свободные члены, x, y, z – неизвестные. Коэффициенты и свободные члены уравнения можно называть его элементами.

Если d_1 = d_2 = d_3 = 0, тогда система линейных алгебраических уравнений называется однородной, в другом случае – неоднородной.

Множественные числа x_0, y_0, z_0 называются решением СЛАУ, если при подстановке x=x_0, y=y_0, z=z_0 в СЛАУ получим числовые тождества.

Система, которую мы написали выше имеет координатную форму. Если её переделать в матричную форму, тогда система будет выглядеть так:

A = begin{pmatrix} a_{11}&a_{12}&a_{31}\ a_{12}&a_{22}&a_{32}\ a_{13}&a_{23}&a_{33} end{pmatrix} right

– это основная матрица СЛАУ.

X = begin{pmatrix} x\ y\ z end{pmatrix} right

– матрица столбец неизвестных переменных.

B = begin{pmatrix} b_{1}\ b_{2}\ b_{3} end{pmatrix} right

– матрица столбец свободных членов.

Если к основной матрице A добавить в качестве (n + 1) – ого столбца матрицу-столбец свободных членов, тогда получится расширенная матрица систем линейных уравнений. Как правило, расширенная матрица обозначается буквой T, а столбец свободных членов желательно отделить вертикальной линией от остальных столбцов. То есть, расширенная матрица выглядит так:

T = begin{pmatrix} a_{11}&a_{12}&a_{31}vert{b_{1}}\ a_{12}&a_{22}&a_{32}vert{b_{2}}\ a_{13}&a_{23}&a_{33}vert{b_{3}} end{pmatrix} right

Если квадратная матрица равна нулю, она называется вырожденная, а если |A|neq{0} – матрица невырожденная.

Если с системой уравнений:           A = begin{pmatrix} a_{11}&a_{12}&a_{31}\ a_{12}&a_{22}&a_{32}\ a_{13}&a_{23}&a_{33} end{pmatrix} right

Произвести такие действия:

тогда получается эквивалентная система, у которой такое же решение или нет решений совсем.

Теперь можно перейти непосредственно к методу Гаусса.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать работу

Простейшие преобразования элементов матрицы

Мы рассмотрели основные определения и уже понимаем, чем нам поможет метод Гаусса в решении системы. Теперь давайте рассмотрим простую систему уравнений. Для этого возьмём самое обычное уравнение, где и используем решение методом Гаусса:

left{ begin{aligned} 2x - y = -4\ 6x + y = -6 end {aligned} уравненияright.

Из уравнения запишем расширенную матрицу:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right

Из данной матрицы видно, по какому принципу она записана. Вертикальную черту не обязательно ставить, но просто так удобнее решать систему.

Матрица системы – это матрица, которая составляется исключительно с коэффициентами при неизвестных. Что касается расширенной матрицы системы, так, это такая матрица, в которой кроме коэффициентов записаны ещё и свободные члены. Любую из этих матриц называют просто матрицей.

На матрице, которая написана выше рассмотрим, какие существуют элементарные преобразования:

1. В матрице строки можно переставлять местами. Например, в нашей матрице спокойно можно переставить первую и вторую строки:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right.to begin{pmatrix} 6&1&vert{-6}\ 2&-1&vert{-4} end{pmatrix} right

2. Если в матрице имеются (или появились) пропорциональные строки (одинаковые), тогда необходимо оставить всего лишь одну строку, а остальные убрать (удалить).

3. Если в ходе преобразований в матрице появилась строка, где находятся одни нули, тогда такую строку тоже нужно удалять.

4. Строку матрицы можно умножать (делить) на любое число, которое отличное от нуля. Такое действие желательно проделывать, так как в будущем проще преобразовывать матрицу.

5. Сейчас рассмотрим преобразование, которое больше всего вызывает затруднение у студентов. Для этого возьмём изначальную нашу матрицу:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right

Для удобства умножаем первую строку на (-3):

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right to begin{pmatrix} -6&3&vert{12}\6&1&vert{-6}end{pmatrix}right

Теперь ко второй строке прибавляем первую строку, которую умножали на -3. Вот что у нас получается:

begin{pmatrix} -6&3&vert{12}\ 6&1&vert{-6} end{pmatrix} right

В итоге получилось такое преобразование:

begin{pmatrix} -6&3&vert{12}\ 0&4&vert{6} end{pmatrix} right

Теперь для проверки можно разделить все коэффициенты первой строки на те же -3 и вот что получается:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6} end{pmatrix} right

В матрице верхняя строка преобразовалась:

begin{pmatrix} -6&3&vert{12}\ 6&1&vert{-6} end{pmatrix} right

Первую строку делим на -3 и преобразовалась нижняя строка:

begin{pmatrix} -6&3&vert{12}\ 0&4&vert{6} end{pmatrix} right

И верхнюю строку поделили на то же самое число -3:

begin{pmatrix} 2&-1&vert{-4}\ 0&4&vert{6} end{pmatrix} right

Как вы можете убедиться, в итоге строка, которую мы прибавляли ни капельки не изменилась, а вот вторая строка поменялась. ВСЕГДА меняется только та строка, к которой прибавляются коэффициенты.

Мы расписали в таких подробностях, чтобы было вам понятно, откуда какая цифра взялась. На практике, например, на контрольной или экзамене матрица так подробно не расписывается. Как правило, в задании решение матрицы оформляется так:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right.to begin{pmatrix} 2&-1&vert{-4}\ 0&4&vert{6} end{pmatrix} right

Если в примере приведены десятичные дроби, метод Гаусса в этом случае также поможет решить систему линейных алгебраических уравнений. Однако, не стоит забывать, что следует избегать приближённых вычислений, так как ответ будет неверным. Лучше всего использовать десятичные дроби, а от них переходить к обыкновенным дробям.

Алгоритм решения методом Гаусса пошагово

После того, как мы рассмотрели простейшие преобразования, в которых на помощь пришёл метод Гаусса, можем вернуться к нашей системе, которую уже разложили по полочкам и пошагово распишем:

left{ begin{aligned} 2x - y = -4\ 6x + y = -6 end {aligned} уравненияright

Шаг 1. Переписываем систему в виде матрицы

Записываем матрицу:

begin{pmatrix} 2&-1&vert{-4}\ 6&1&vert{-6}\ end{pmatrix} right

Шаг 2. Преобразовываем матрицу: вторую строку в первом столбце приводим к нулю

Как мы привели вторую строку в первом столбце к нулю описано выше. Напомним, что первую строку умножали на -3 и вторую строку прибавили к первой , умноженной на -3.

begin{pmatrix} -6&3&vert{12}\ 0&4&vert{6} end{pmatrix} right

Шаг 3. Приводим матрицу к ступенчатому виду

Теперь вторую строку можно поделить на 2 и получается:

begin{pmatrix} -6&3&vert{12}\ 0&2&vert{3} end{pmatrix} right

Верхнюю строку делим на -3 и приводим матрицу к ступенчатому виду:

Метод Гаусса

Когда оформляют задание, так и отчёркивают простым карандашом для упрощения работы, а также обводят те числа, которые стоят на “ступеньках”. Хотя в учебниках и другой литературе нет такого понятия, как ступенчатый вид. Как правило, математики такой вид называют трапециевидным или треугольным.

Шаг 4. Записываем эквивалентную систему

После наших элементарных преобразований получилась эквивалентная система:

left{ begin{aligned} 2x - y = -4\ 2y = 3 end {aligned} уравненияright

Шаг 5. Производим проверку (решение системы обратным путём)

Теперь систему нужно решить в обратном направлении, то есть обратным ходом, начиная с последней строки.:

находим y: 2y = 3,

{y} = {3over{2}},

y = 1.5.

После y находим x:

2x - 1.5 = -4,

x = -1,25.

Тогда:

2 * (-1,25) - 1,5 = -4 6 * (-1,25) + 1,5 = -6.

Как видим, уравнение решено правильно, так как ответы в системе совпадают.

Решение систем линейных уравнений методом Гаусса, в которых основная матрица невырожденная, а количество в ней неизвестных равняется количеству уравнений

Как мы уже упоминали, невырожденная матрица бывает тогда, когда |A|neq{0}. Разберём систему уравнений невырожденной матрицы, где уравнений по количеству столько же, сколько и неизвестных. Эту систему уравнений решим другим способом.

Дана система уравнений:

left{ begin{aligned} x - 2y + z = 0\ 2x + 2y - z = 3\ 4x - y + z = 5 end {aligned} right

Для начала нужно решить первое уравнение системы относительно неизвестной переменной x. Далее подставим полученное выражение сначала во второе уравнение, а затем в третье, чтобы исключить из них эту переменную.

left{ begin{aligned} x - 2y + z = 0\ 2x + 2y - z = 3\ 4x - y + z = 5 end {aligned} leftrightarrowleft{begin{aligned}x = 2y - z\2 * (2y - z) + 2y - z = 3\4 * (2y - z) - y + z = 5end {aligned} leftrightarrowleft{begin{aligned}x = 2y - z = 0\2x + 2y - z = 3\4x - y + z = 5end {aligned}rightleftrightarrowleft{                            begin{aligned}x = 2y - z\6y - 3z = 3\7y - 3z = 5end {aligned}

Теперь переходим ко второму уравнению системы относительно y и полученный результат подставим в третье уравнение.. Это нужно для того, чтобы исключить неизвестную переменную y:

left{begin{aligned}x = 2y - z = 0\6y - 3z = 3\7y - 3z = 5end {aligned}leftrightarrowleft{begin{aligned}x = 2y - z\{y} = {1over{2}}z + {1over{2}}\7y - 3z = 5end {aligned}leftrightarrowleft{begin{aligned}x = 2y - z\{y} = {1over{2}}z + {1over{2}}\7 * ({1over{2}}z + {1over{2}}) - 3z = 5end {aligned}leftrightarrowleft{begin{aligned}x = 2y - z\y = {1over{2}}z + {1over{2}}\{1over{2}}z = {3over{2}}end {aligned}right

Из последнего, третьего уравнения мы видим, что z = 3. Из второго уравнения находим y = {1over{2}}x + {1over{2}} = {1over{2}} * 3 + {1over{2}} = 2. И последнее, находим первое уравнение x = 2y - z = 2 * 2 - 3 = 1.

Итак, мы нашли все три неизвестных при помощи последовательного исключения. Такой процесс называют – прямой ход метода Гаусса. Когда последовательно находятся неизвестные переменные, начиная с последнего уравнения, называется обратным ходом метода Гаусса.

Когда выражается x через y и z в первом уравнении, а затем подставляется полученное выражение во второе или третье уравнения, тогда, чтобы привести в к такому же результату, необходимо проделать такие действия:

И действительно, благодаря такой процедуре у нас есть возможность исключать неизвестную переменную x со второго и третьего уравнения системы:

left{begin{aligned}x - 2y + z = 0\2x + 2y - z = 3\4x - y + z = 5end {aligned}leftrightarrowleft{begin{aligned}x - 2y + z = 0\2x + 2y - z + (-{2over{1}}) *  (x - 2y + x = 3 + (-{2over{1}}) * 0end {aligned}leftrightarrowleft{begin{aligned}x - 2y + z = 0\6x - 3y = 3\7x - 3y = 5end {aligned}right

Возникают нюансы с исключением неизвестных переменных тогда, когда в уравнении системы нет каких-либо неизвестных переменных. Рассмотрим такую систему:

left{ begin{aligned} 2y + z = -4\ x + y + 2z = -3\ 2x + 2z = 0 end {aligned} right

В этой системе в первом уравнении нет переменной x и поэтому у нас нет возможности решить первое уравнение системы относительно x, чтобы исключить данную переменную из остальных уравнений. В таком случае выход есть. Нужно всего лишь уравнения переставить местами.

Так как мы описываем уравнения системы, в которых определитель основных матриц отличен от нуля, тогда всегда есть такое уравнение, в котором есть необходимая нам переменная и это уравнение мы можем поставить туда, куда нам нужно.

В примере, который мы рассматриваем, достаточно всего лишь поменять местами первое и второе уравнение.

left{ begin{aligned} x + y + 2z = -3\ 2y + z = -4\ 2x + 2z = 0 end {aligned} right

Теперь мы можем спокойно разрешить первое уравнение относительно переменной x и убрать (исключить) из остальных уравнений в системе. Вот и весь принцип работы с такими, на первый взгляд, сложными системами.

Решение систем линейных уравнений методом Гаусса, в которых основная матрица вырожденная, а количество в ней неизвестных не совпадает с количеством уравнений

Метод Гаусса помогает решать системы уравнений, у которых основная матрица прямоугольная или квадратная, но основная вырожденная матрица может совсем не иметь решений, иметь бесконечное множество решений или иметь всего лишь одно единственное решение.

Рассмотрим, как при помощи метода Гаусса устанавливается совместность или несовместность систем линейных уравнений. В случае, если есть совместность определим все решения или одно решение.

В принципе, исключать неизвестные переменные можно точно так, как описано выше. Однако, есть некоторые непонятные ситуации, которые могут возникнуть в ходе решения:

1. На некоторых этапах в момент исключения неизвестных переменных некоторые уравнения могут обратиться в тождества 0 = 0. В данном случае такие уравнения лишние в системе и их можно смело полностью убирать, а затем продолжать решать уравнение методом Гаусса.

Например, вам попалась подобная система:

left{ begin{aligned} x + 2y - z + 3k = 7\ 2x + 4y - 2z + 6k = 14\ x - y + 3z + k = -1 end {aligned} right

У нас получается такая ситуация

left{begin{aligned}x + 2y - z + 3k = 7\2x + 4y - 2z + 6k = 14\x - y + 3z + k = -1end{aligned}leftrightarrowright

left{begin{aligned}x + 2y - z + 3k = 7\2x + 4y - 2z + 6k + (-2) * (x + 2y - z + 3k) = 14 + (-2) * 7\x - y + 3z + k + (-1) * (x + 2y - z + 3k) = -1 + (-1) * 7end{aligned}leftrightarrowright

left{begin{aligned}x + 2y - z + 3k = 7\0 = 0\-3y + 4z - 2k = -8end{aligned}right

Как видим, второе уравнение 0 = 0. Соответственно, данное уравнение мы можем из системы удалить, так как оно без надобности.

left{begin{aligned}x + 2y - z + 3k = 7\0 = 0\-3y + 4z - 2k = -8end{aligned}leftrightarrowrightleft{begin{aligned}x + 2y - z + 3k = 7\-3y + 4z - 2k = -8end{aligned}right

Дальше можно продолжать решение системы линейных алгебраических уравнений уравнений традиционным методом Гаусса.

2. При решении уравнений прямым ходом методом Гаусса могут принять не только одно, но и несколько уравнений такой вид: 0 = k, где k – число, которое отличное от нуля. Это говорит о том, что такое уравнение никогда не сможет превратиться в тождество даже при любых значениях неизвестных переменных. То есть, можно выразить по-другому. Если уравнение приняло 0 = k вид, значит система несовместна, то есть, не имеет решений. Рассмотрим на примере:

left{ begin{aligned} 2x - y + 3z = 1\ 2x - y - z = -2\ 4x - 2y + 6z = 0\ 6x + 8y - 7z = 2 end {aligned} right

Для начала необходимо исключить неизвестную переменную x из всех уравнений данной системы, начиная со второго уравнения. Для этого нужно прибавить к левой и правой частям второго, третьего, четвёртого уравнения части (левую и правую) первого уравнения, которые соответственно, умножаются на (-1), (-2), (-3). Получается:

left{begin{aligned}2x - y + 3z = 1\ 2x - y - z = -2\4x - 2y + 6z = 0\6x + 8y - 7z = 2end {aligned}leftrightarrowright

left{begin{aligned}2x - y + 3z = 1\2x - y - z + (-1) * (2x - y + 3z) = -2 + (-1) * 1\4x - 2y + 6z + (-2) * (2x - y + 3z) = 0 + (-2) * 1\6x + 8y - 7z  + (-3) *(2x - y + 3z) = 2 + (-3) * 1end {aligned}leftrightarrowright

left{begin{aligned}2x - y + 3z = 1\-4z = -3\0 = -2\11y - 16z = -1end {aligned} right

В третьем уравнении получилось равенство 0 = -2. Оно не подходит ни для каких значений неизвестных переменных x, y и z, и поэтому, у данной системы нет решений. То есть, говорится, что система не имеет решений.

3. Допустим, что при выполнении прямого хода методом Гаусса нам нужно исключить неизвестную переменную x_n, и ранее, на каком-то этапе у нас уже исключалась вместе с переменной x_j. Как вы поступите в таком случае? При таком положении нам нужно перейти к исключению переменной x_{n+1}. Если же x_{n+1} уже исключались, тогда переходим к x_{n+2}x_{n+3} и т. д.

Рассмотрим систему уравнений на таком этапе, когда уже исключилась переменная x:

left{ begin{aligned} x + 2y + z + k + l + n = 7\ x + 2y + z + 2k + l - n = 1\ x + 2y + z - k + 5l - n = 2\ x+ 2y + z - k - 4l + 4n = -1 end {aligned} right

Такая система уравнений после преобразования выглядит так:

left{ begin{aligned} x + 2y + z + k + 3l + n = 7\ k - 2l - n = -6\ -2k + 2l - 2n = -5\ -3k - 7l + 3n = -8 end {aligned} right

Вы наверное уже обратили внимание, что вместе с x исключились y и z. Поэтому решение методом Гаусса продолжаем исключением переменной k из всех уравнений системы, а начнём мы с третьего уравнения:

left{begin{aligned} x + 2y + z + k + 3l + n = 7\ k - 2l - n = -6\ -2k + 2l - 2n = -5\ -3k - 7l + 3n = -8 end {aligned}leftrightarrowleft{begin{aligned} x + 2y + z + k + 3l + n = 7\k - 2l - n = -6\-2k + 2l - 2n + 2 * (k - 2l - 2n) = -5 + 2 * (-6)\-3k - 7l + 3n + 3 * (k - l - n) = -8 + 3 * (-6)  end {aligned}leftrightarrow  left{begin{aligned}x + 2y + z + k + 3l + n = 7\k - 2l - n = -6\-2l - 6n = -17\-13l - 3n = -26  end {aligned} right

Чтобы завершить уравнение прямым ходом метода Гаусса, необходимо исключить последнюю неизвестную переменную l из последнего уравнения:

Допусти, что система уравнений стала:

left{begin{aligned}x + y - 2z - k + l + n = 6\k + 7l + n = 1\l + n = 3end {aligned}  right

В этой системе нет ни одного уравнения, которое бы сводилось к 0. В данном случае можно было бы говорить о несовместности системы. Дальше непонятно, что же делать? Выход есть всегда. Для начала нужно выписать все неизвестные, которые стоят на первом месте в системе:

Система уравнений

В нашем примере это x, k и l. В левой части системы оставим только неизвестные, которые выделены зелёным квадратом а в правую перенесём известные числа, но с противоположным знаком. Посмотрите на примере, как это выглядит:

left{begin{aligned} x  -  k + l = 6 - y + 2z - 2n\ k + 7l = 1 - n\ l = 3 - n end {aligned} right

Можно придать неизвестным переменным с правой части уравнений свободные (произвольные) значения: y = delta_y, z = delta_z, n =  delta_n, где delta_ydelta_zdelta_n – произвольные числа.

left{begin{aligned} x  -  k + l = 6 - delta_y + 2delta_z - 2delta_n\ k + 7l = 1 - delta_n\ l = 3 - delta_n end {aligned} right

Теперь в правых частях уравнений нашей системы имеются числа и можно приступать к обратному ходу решения методом Гаусса.

В последнем уравнении системы получилось: l = 3 - delta_n, и теперь мы легко найдём решение в предпоследнем уравнении: k = 1 - delta_n - 7l = 1 - delta_n - 7(3 - delta_n) = -20 + 6delta_n, а из первого уравнения получаем:

x = 6 - delta_y + 2delta_z - 2delta_n + k - l = 6 - delta_y + 2delta_z - 2delta_n + (-20 + 6delta_n) - (3 - delta_n) =-17 - delta_y + 2delta_z + 5delta_n

В итоге, получился результат, который можно и записать.

Ответ

x = -17 - y + 2z + 5delta_n,

y = delta_y,

z = delta_z,

k = -20 + 6delta_n,

l = 3 - delta_n,

n = delta_n.

Примеры решения методом Гаусса

Выше мы подробно расписали решение системы методом Гаусса. Чтобы закрепить материал, решим несколько примеров, в которых опять нам поможет метод Гаусса. Соответственно, начнём с самой простой системы.

Задача 

Решить систему линейных алгебраических уравнений методом Гаусса:

left{ begin{aligned} 3x_1 + 4x_2 = 10\ 5x_1 - 7x_2 = 3 end {aligned} right

Решение

Выписываем матрицу, куда добавляем столбец свободных членов:

begin{pmatrix} 3&4&vert{10}\ 5&-7&vert{3} end{pmatrix} right

Прежде всего мы смотрим на элемент, который находится в матрице в левом верхнем углу (первая строка, первый столбец). Для наглядности выделим цифру зелёным квадратом. На этом месте практически всегда стоит единица:

Метод Гаусса

Так как 3neq{0} мы должны использовать подходящее элементарное преобразование строк и сделать так, чтобы элемент, который находится в матрице под выделенной цифрой 3 превратился в 0. Для этого можно ко второй строке прибавить первую строку и умножить на -5over{3}.Однако, не сильно хочется работать с дробями, поэтому давайте постараемся этого избежать. Для этого нужно вторую строку умножить на 3 (разрешающий элемент данного шага).

Метод Гаусса

Соответственно, первая строка остаётся неизменной, а вторая поменяется:

begin{pmatrix} 3&4&vert{10}\ 15&-21&vert{9} end{pmatrix} right

Подбираем такое элементарное преобразование строк, чтобы во второй строке в первом столбце образовался 0. Для этого первую строку нужно умножить на -5 и только после этого ко второй строке прибавить изменённую после умножения на -5 вторую строку. Вот что получилось:

3 * -5 = -15. Теперь прибавляем со второй строки 15 первую строку -15. У нас получился 0, который записываем во вторую строку в первый столбец. Также решаем и остальные элементы матрицы. Вот что у нас получилось:

begin{pmatrix} 3&4&vert{10}\ 0&-41&vert{-41} end{pmatrix} right

Как всегда у нас первая строка осталась без изменений, а вторая с новыми числами.

Итак, у нас получился ступенчатый вид матрицы:

Системы методом Гаусса

Записываем новую систему уравнений:

left{ begin{aligned} 3x_1 + 4x_2 = 10\ - 41x_2 = -41 end {aligned} уравненияright

Для проверки решаем систему обратным ходом. Для этого находим сначала x_2}:

-41x_2 = -41

x_2 = (-41)/(-41)

x_2 = 1

Так как x_2 найден, находим x_1:

3x_1 + 4 * 1 = 10

3x_1 + 4 = 10

3x_1 = 10 - 4

3x_1 = 6

x_1 = 6/3

x_1 = 2.

Подставляем в изначальную нашу систему уравнений найденные x_1 и x_2:

left{ begin{aligned} 3x_1 + 4x_2 = 10\ 5x_1 - 7x_2 = 3 end {aligned} right

3 * 2 + 4 * 1 = 10 и 5 * 2 - 7 * 1 = 3.

Как видите из решения, система уравнений решена верно. Запишем ответ.

Ответ

x_1 = 2

x_2 = 1

Выше мы решали систему уравнений в двумя неизвестными, а теперь рассмотрим систему уравнений с тремя неизвестными.

Задача

Решить систему уравнений методом Гаусса:

left{ begin{aligned} x + 2y - 3z = -4\ 2x + 5y - 4z = 0\ -3x + y + 3z = 5 end {aligned} right

Решение

Составляем матрицу, куда вписываем и свободные члены:

begin{pmatrix} 1&2&-3&vert{-4}\ 2&5&-4&vert{0}\ -3&1&3&vert{5} end{pmatrix} right

Что нам надо? Чтобы вместо цифры 2 появился 0. Для этого подбираем ближайшее число. Например, можно взять цифру -2 и на неё перемножить все элементы первой строки. Значит, умножаем 1 * (-2), а потом прибавляем, при этом задействуем вторую строку: -2 +2. В итоге у нас получился нуль, который записываем во вторую строку в первый столбец. Затем 2 * (-2) = (-4), и -4 + 5 = 1. Аналогично, -3 * (-2) = 6 и 6 + (-4) = 2. И умножаем свободный член (-4) * (-2) = 8. Так и запишем следующую матрицу. Не забывайте, что первая строка остаётся без изменений:

begin{pmatrix} 1&2&-3&vert{-4}\ 0&1&2&vert{8}\ -3&1&3&vert{5} end{pmatrix} right

Дальше необходимо проделать те же самые действия по отношению к третьей строке. То есть, первую строку нужно умножать не на (-2), а на цифру 3, так как и в третьей строке нужно коэффициенты привести у нулю. Также первую строку умножаем на 3 и прибавляем третью строку. Получается так:

begin{pmatrix} 1&2&-3&vert{-4}\ 0&1&2&vert{8}\ 0&7&-6&vert{-7} end{pmatrix} right

Теперь нужно обнулить элемент 7, который стоит в третьей строке во втором столбце. Для этого выбираем цифру (-7) и проделываем те же действия. Однако, необходимо задействовать вторую строку. То есть, вторую строку умножаем на (-7) и прибавляем с третьей строкой. Итак, 1 * (-7) + 7 = 0. Записываем результат в третью строку. Такие же действия проделываем и с остальными элементами. Получается новая матрица:

begin{pmatrix} 1&2&-3&vert{-4}\ 0&1&2&vert{8}\ 0&0&-20&vert{-63} end{pmatrix} right

В результате получилась ступенчатая система уравнений:

left{ begin{aligned} x + 2y - 3z = -4\ y + 2z = 8\ -20z = -63 end {aligned} right

Сначала находим z: z = -63/-20 = 3,15,

y = 8 - 2 * 3,15 = 1,7

x = -4 - 2 * 1,7 + 3 * 3,15 = 2,05.

Обратный ход:

left{ begin{aligned} 2,05 + 2 * 3,4 - 3 * 3,15 = -4\ 2 * 2,05 + 5 * 1,7 - 4 * 3,15 = 0\ -3 * 2,05 + 1,7 + 3 * 3,15 = 5 end {aligned} right

Итак, уравнение системы решено верно.

Ответ

x = 2,05,

y = 1,7,

z = 3,15.

Система с четырьмя неизвестными более сложная, так как в ней легко запутаться. Попробуем решить такую систему уравнений.

Задача

Решите систему уравнений методом Гаусса:

left{ begin{aligned} x_1+2x_2 + 3x_3 - 2x_4=6\     2x_1 + 4x_2 - 2x_2 - 3x_4=18\  3x_1 + 2x_2 - x_3 + 2x_4 =4\ 2x_1 - 3x_2 + 2x_3 + x_4 =8 end{aligned} right

Решение                                                                

В уравнении a_1_1, то есть x_1 – ведущий член и пусть a_1_1 ≠ 0

Из данного уравнения составим расширенную матрицу:

 begin{pmatrix} 1&2 &3&2&vert{6}\ 2& 4& -2& -3&vert{18}\ 3& 2& -1& 2&vert{4}\  2& -3& 2& 1&vert{8} end{pmatrix} right

Теперь нужно умножить последние три строки (вторую, третью и четвёртую) на: -2, -3, -2. Затем прибавим полученный результат ко второй, третьей и четвёртой строкам исключаем переменную x_1 из каждой строки, начиная не с первой, а не со второй. Посмотрите, как изменилась наша новая матрица и в a_2_2 теперь стоит 0.

 begin{pmatrix} 1&2&3&-2&6\ 0&0&-8&1&6\ 0&-4&-10&8&-14\ 0&-7&-4&5&20 end{pmatrix} right

Поменяем вторую и третью строку местами и получим:

 begin{pmatrix} 1&2&3&-2&6\ 0&-4&-10&8&-14\ 0&0&-8&1&6\ 0&-7&-4&5&20 end{pmatrix} right

Получилось так, что a^1_{22} = -4neq0 b и тогда, умножая вторую строку на (-7/4) и результат данной строки, прибавляя к четвёртой, можно исключить переменную x_2 из третьей и четвёртой строк:

 begin{pmatrix} 1&2&3&-2&6\ 0&-4&-10&8&-14\ 0&0&-8&1&6\ 0&0&13,5&9&4,5 end{pmatrix} right

Получилась такая матрица:

 begin{pmatrix} 1&2&3&-2&6\ 0&-4&-10&8&-14\ 0&0&-8&1&6\ 0&0&0&-{{117}over{16}}&{117}over{8} end{pmatrix} right

Также, учитывая, что a^3_{23} = -8neq0, умножим третью строку на: 13,5/8 = 27/16, и, полученный результат прибавим к четвёртой, чтобы исключить переменную x_3 и получаем новую систему уравнений:

left{ begin{aligned} x_1+2x_2 + 3x_3 - 2x_4=6\     - 4x_2 - 10x_3 + 8x_4=-14\  -8x_3 + x_4=6\ -{{117}over{16}} x_4 = {{117}over{8}} end{aligned} right

Теперь необходимо решить уравнение обратным ходом и найдём из последнего, четвёртого уравнения x_4 = -2,

из третьего: x_3 = {6-x_4}over{-8} = {6+2}over{-8} = -1

второе уравнение находим: x_2 = {-14-8x_4+10x_3}over{-4} = {-14-8(-2)+10(-1)}over{-4} = 2,

из первого уравнения: x_1 = 6+2x_4-3x_3-2x_2=6+2(-2)-3(-1)-2*2=1.

Значит, решение системы такое: (1, 2, -1, -2).

Ответ

x_1 = 1,

x_2 = 2,

x_3 = -1,

x_4 = -2.

Добавим ещё несколько примеров для закрепления материла, но без такого подробного описания, как предыдущие системы уравнений.

Задача

Решить систему уравнений методом Гаусса:

left{ begin{aligned} x + 2y + 3z = 3\ 3x + 5y + 7z = 0\  x + 3y + 4z = 1 end{aligned} right

Решение

Записываем расширенную матрицу системы:

begin{pmatrix} 1&2&3&vert{3}\ 3&5&7&vert{0}\ 1&3&4&vert{1} end{pmatrix} right

Сначала смотрим на левое верхнее число:

Метод Гаусса

Как выше уже было сказано, на этом месте должна стоять единица, но не обязательно. Производим такие действия: первую строку умножаем на -3, а потом ко второй строке прибавляем первую:

begin{pmatrix} 1&2&3&vert{3}\ 0&-1&-2&vert{-9}\ 1&3&14vert{1} end{pmatrix} right

Производим следующие действия: первую строку умножаем на -1. Затем к третьей строки прибавляем вторую:

begin{pmatrix} 1&2&3&vert{3}\ 0&-1&-2&vert{-9}\ 0&1&1vert{-2} end{pmatrix} right

Теперь вторую строку умножаем на 1, а затем к третьей строке прибавляем вторую:

begin{pmatrix} 1&2&3&vert{3}\ 0&-1&-2&vert{-9}\ 0&0&-1&vert{-11} end{pmatrix} right

Получился ступенчатый вид уравнения:

left{ begin{aligned} x + 2y + 3z = 3\ -y - 2z = -9\  -z = -11 end{aligned} right

Проверяем:

-z = -11 = 11,

-y - 2 * 11 = -9,

-y - 22 = -9,

-y = 22 - 9,

y = -13.

x + 2 * (-13) + 3 * (11) = x + 7 = 3 = -4.

  Ответ

x = -4,

y = -13,

z = 11.

Заключение

Итак, вы видите, что метод Гаусса – интересный и простой способ решения систем линейных алгебраических уравнений. Путём элементарных преобразований нужно из системы исключать неизвестные переменные, чтобы систему превратить в ступенчатый вид. Данный метод удобен тем, что всегда можно проверить, правильно ли решено уравнение. Нужно просто подставить найденные неизвестные в изначальную систему уравнений.

Если элементы определителя не равняются нулю, тогда лучше обратиться к методу Крамера, а если же элементы нулевые, тогда такие системы очень удобно решать благодаря методу Гаусса.

Предлагаем ещё почитать учебники, в которых также описаны решения систем методом Гаусса.

Литература для общего развития:

pdf Умнов А. Е. Аналитическая геометрия и линейная алгебра, изд. 3: учеб. пособие – М. МФТИ – 2011 – 259 с.

pdf Карчевский Е. М. Лекции по линейной алгебре и аналитической геометрии, учеб. пособие – Казанский университет – 2012 – 302 с.

Метод Гаусса

  1. Метод Гаусса
    1. Пример 1
    2. Пример 2
  2. Несовместность системы (нет решений)
    1. Пример 3
  3. Общее и частное решение системы (бесконечное множество решений)
    1. Пример 4

Пусть задана система линейных алгебраических уравнений: $$begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1 \ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2 \ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3 end{cases}. $$

  1. Запишем систему уравнений в виде расширенной матрицы, состоящей из коэффициентов и столбца свободных членов. Вертикальная черта используется для удобства оформления. $$ begin{pmatrix} a_{11} & a_{12} & a_{13} & | & b_1 \ a_{21} & a_{22} & a_{23} & | & b_2 \ a_{31} & a_{32} & a_{33} & | & b_3 end{pmatrix} $$
  2. С помощью элементарных преобразований матрицы (вычитание одной строки из другой, умноженной на коэффициент, удаление одинаковых и нулевых строк, деление строки на число отличное от нуля) получаем нули под главной диагональю $$ begin{pmatrix} a_{11} & a_{12} & a_{13} & | & b_1 \ 0 & a_{22} & a_{23} & | & b_2 \ 0 & 0 & a_{33} & | & b_3 end{pmatrix} $$
  3. Используя элементарные преобразования, изложенные в пункте 2, приводим матрицу к виду содержащему нули везде, кроме главной диагонали $$ begin{pmatrix} a_{11} & 0 & 0 & | & b_1 \ 0 & a_{22} & 0 & | & b_2 \ 0 & 0 & a_{33} & | & b_3 end{pmatrix} $$
Пример 1
Решить систему уравнений методом Гаусса $$begin{cases} x_1 + 2 x_2 + x_3 = 5 \ -x_1 + 3 x_2 -2 x_3 = 3 \ — x_1 -7 x_2 + 4 x_3 = -5 end{cases}. $$
Решение

Запишем расширенную матрицу, состоящую из коэффициентов при неизвестных $x_1, x_2, x_3$ и отдельно столбец свободных членов $b_1, b_2, b_3$. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ -1 & 3 & -2 & | & 3 \ -1 & -7 & 4 & | & -5 end{pmatrix} $$

Приведем матрицу к нижнетреугольному виду (под главной диагональю должны быть нули) с помощью элементарных преобразований.

Прибавим ко второй строке первую. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ -1 & -7 & 4 & | & -5 end{pmatrix} $$

Далее прибавляем к третьей строке первую. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & -5 & 5 & | & 0 end{pmatrix}$$

Теперь осталось к третьей строке прибавить вторую строку, чтобы под главной диагональю были только нули. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & 0 & 4 & | & 8 end{pmatrix}$$

Замечаем, что в третьей строке стоят числа, которые можно сократить на четыре. Для этого выполняем деление всей третьей строки на 4. $$ begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & -1 & | & 8 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Теперь выполняем обратный ход Гаусса снизу вверх. Прибавляем ко второй строке третью строку. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 5 & 0 & | & 10 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Сразу замечаем, что вторую строку можно сократить на 5. $$begin{pmatrix} 1 & 2 & 1 & | & 5 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Продолжаем обратный ход, вычитаем третью строку из первой. $$begin{pmatrix} 1 & 2 & 0 & | & 3 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Осталось из первой строки вычесть вторую строку, умноженную на 2, для того, чтобы в первой строке появился ноль. $$begin{pmatrix} 1 & 0 & 0 & | & -1 \ 0 & 1 & 0 & | & 2 \ 0 & 0 & 1 & | & 2 end{pmatrix}$$

Теперь перепишем получившуюся матрицу в виде системы уравнений, чтобы в дальнейшем получить чему равны неизвестные $x_1, x_2, x_3$. $$begin{cases} x_1 = -1 \ x_2 = 2 \ x_3 = 2 end{cases}$$

Ответ
$$x_1 = -1, x_2 = 2, x_3 = 2$$
 

Пример 2
Решить систему линейных алгебраических уравнений методом Гаусса $$begin{cases} 2x_1 + 5 x_2 + 4x_3 + x_4 = 20 \ x_1 + 3 x_2 + 2x_3 +x_4 = 11 \ 2x_1 +10 x_2 + 9 x_3 + 7x_4 = 40 \ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37 end{cases}. $$
Решение

Записываем расширенную матрицу $$ begin{pmatrix} 2&5&4&1&|&20 \ 1&3&2&1&|&11 \ 2&10&9&7&|&40 \ 3&8&9&2&|&37 end{pmatrix}.$$

Умножаем вторую строку на 2 и вычитаем из неё первую строчку. Из третьей строки просто вычитаем первую. Умножаем четвертую строку на 2 и вычитаем из неё первую строку, умноженную на 3. Получаем матрицу $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&5&5&6&|&20 \ 0&1&6&1&|&14 end{pmatrix}.$$

Берем вторую строку, умноженную на 5 и вычитаем из третьей. Затем вторую строку вычитаем из четвертой. $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&6&0&|&12 end{pmatrix}$$

Теперь умножаем третью строку на 6 и вычитаем её из четвертой строки, умноженной на 5. $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&0&-6&|&0 end{pmatrix}$$

Получили нижнетреугольную матрицу, то есть ниже главной диагонали расположены нули. Теперь проделываем элементарные преобразования снизу вверх, так называемый обратный ход Гаусса. Но прежде замечаем, что появилась строка, в которой можно выполнить сокращение. А именно в четвертой строке можно разделить все числа на (-6). И получаем $$begin{pmatrix} 2&5&4&1&|&20 \ 0&1&0&1&|&2 \ 0&0&5&1&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Вот теперь вычитаем четвертую строчку из третьей, второй и первой. $$begin{pmatrix} 2&5&4&0&|&20 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Из второй строки мы не будем вычить третью, потому что там итак стоит ноль, ради которого мы проводим элементарные преобразования, поэтому пропускаем этот шаг. 

Умножаем на 4 третью строку и вычитаем её из первой, умноженной на 5. $$begin{pmatrix} 10&25&0&0&|&60 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Замечаем, что в первой строке можно все числа сократить на 5. $$begin{pmatrix} 2&5&0&0&|&12 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Теперь остался последний шаг это умножить вторую строку на 5 и вычесть из первой. $$begin{pmatrix} 2&0&0&0&|&2 \ 0&1&0&0&|&2 \ 0&0&5&0&|&10 \ 0&0&0&1&|&0 end{pmatrix}$$

Замечаем, что первую строку можно сократить на 2, а третью строку на 5. $$begin{pmatrix} 1&0&0&0&|&1 \ 0&1&0&0&|&2 \ 0&0&1&0&|&2 \ 0&0&0&1&|&0 end{pmatrix}$$

Переписываем матрицу в виде привычной системы уравнений и получаем ответ $$begin{pmatrix} 1&0&0&0&|&1 \ 0&1&0&0&|&2 \ 0&0&1&0&|&2 \ 0&0&0&1&|&0 end{pmatrix} sim begin{cases} x_1 = 1 \ x_2 = 2 \ x_3 = 2 \ x_4 = 0 end{cases}.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$x_1 = 1, x_2 = 2, x_3 = 2, x_4 = 0$$

Несовместность системы (нет решений)

Если в результате элементарных преобразований появилась нулевая строка вида $$begin{pmatrix} 0&0&0&|&b end{pmatrix} text{ где } b neq 0,$$то система уравнений не имеет решений. На этом алгоритм Гаусса заканчивает свою работу и можно записывать ответ, что система несовместна, то есть нет решений. 

Пример 3
Найти решение системы линейных уравнений методом Гаусса $$begin{cases} 7x_1 — 2x_2 — x_3 = 2 \ 6x_1 — 4x_2 — 5x_3 = 3 \ x_1 + 2x_2 + 4x_3 = 5 end{cases}.$$
Решение

Как обычно пишем расширенную матрицу по коэффициентам при неизвестных переменных и столбцу свободных членов $$begin{pmatrix} 7&-2&-1&|&2 \ 6&-4&-5&|&3 \ 1&2&4&|&5 end{pmatrix}.$$

Запускаем алгоритм Гаусса. Идём сверху вниз. Умножаем вторую строку на 7 и вычитаем из неё первую строчку умноженную на 6. Затем первую строку вичитаем из третьей, умноженной на 7. $$begin{pmatrix} 7&-2&-1&|&2 \ 0&-16&-29&|&9 \ 0&16&29&|&33 end{pmatrix}$$

Далее по алгоритму прибавляем вторую строку к третьей. $$begin{pmatrix} 7&-2&-1&|&2 \ 0&-16&-29&|&9 \ 0&0&0&|&42 end{pmatrix}$$

Видим, что в результате элементарных преобразований появилась строка в которой все нули, кроме свободного члена. Это означает, что система несовместа, то есть у системы уравнений нет решения.

Ответ
Нет решений, так как система несовместна.

Общее и частное решение системы (бесконечное множество решений) 

Часто после элементарных преобразований в расширенной матрице появляются нулевые строки вида $$begin{pmatrix} 0&0&0&|&0 end{pmatrix}.$$ Такую строку нужно вычеркивать из матрицы и система уравнений будет иметь бесконечное множество решений. Разберем это на практике.

Пример 4
Найти общее и два частных решения системы линейных алгебраических уравнений методом Гаусса $$begin{cases} x_1+x_2-x_3=4 \ 3x_1+2x_2-5x_3=7 \ 3x_1+x_2-7x_3=2 end{cases}.$$
Решение

Составляем расширенную матрицу $$begin{pmatrix} 1&1&-1&|&4 \ 3&2&-5&|&7 \ 3&1&-7&|&2 end{pmatrix}.$$

Из второй и третьей строки вычетаем первую, умноженную на 3. $$begin{pmatrix} 1&1&-1&|&4 \ 0&-1&-2&|&-5 \ 0&-2&-4&|&-10 end{pmatrix}$$

Из третьей строки вычитаем вторую, домноженную на 2. $$begin{pmatrix} 1&1&-1&|&4 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix}$$

Теперь согласно обратному ходу Гаусса вторую строку прибавляем к первой. $$begin{pmatrix} 1&0&-3&|&-1 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix}$$

По окочанию элементарных преобразований получилась строка, в которой все элементы равны нулю. Значит, система имеет бесконечное множество решений. Для его записи понадобится отличать базисные и свободные переменные. Обычно за базисные берут переменные, которые стоят на главной диагонали, а остальные свободные. В нашем случае базисными будут $x_1, x_2$, а свободной $x_3$.

Переписываем матрицу в виде системы $$begin{pmatrix} 1&0&-3&|&-1 \ 0&-1&-2&|&-5 \ 0&0&0&|&0 end{pmatrix} sim begin{cases} x_1-3x_3 = -1 \ -x_2-2x_3 = -5 end{cases}.$$

Так как $x_1, x_2$ являются базисными переменными, то их переносим в левую часть равенства, а всё остальное в правую часть. Получившееся называют общим решением решением системы уравнений $$begin{cases} x_1-3x_3 = -1 \ -x_2-2x_3 = -5 end{cases} sim begin{cases} x_1 = 3x_3-1 \ x_2 = 5-2x_3 end{cases}.$$

Чтобы получить частное решение системы уравнений нужно вместо свободного $x_3$ подставить любое число, например $x_3 = 0$. Тогда получаем, что $$begin{cases} x_1 = -1 \ x_2 = 5 end{cases}.$$ Возьмем ещё например $x_3 = 1$ и получаем $$begin{cases} x_1 = 2 \ x_2 = 3 end{cases}.$$

Можно брать различные числа вместо $x_3$ и получать бесконечное множество решений.

Ответ

Общее решение системы уравнений $$begin{cases} x_1 = 3x_3-1 \ x_2 = 5-2x_3 end{cases}.$$

Частные решения системы уравнений $$begin{cases} x_1 = -1 \ x_2 = 5 end{cases}, begin{cases} x_1 = 2 \ x_2 = 3 end{cases}.$$

Благодаря великим ученым было открыто множество эффективных теорем для работы со сложными математическими задачами. Один из таких примеров — метод Гаусса.

Метод Гаусса — что это такое

Метод Гаусса представляет собой методику эквивалентного преобразования исходной системы линейных уравнений в систему, решаемую существенно проще, чем исходный вариант.

Метод Гаусса используют для решения систем линейных алгебраических формул. Такой способ обладает рядом важных преимуществ:

  1. Нет необходимости сравнивать уравнения для оценки совместимости.
  2. Решение систем равенств, в которых число определителей совпадает или не совпадает с количеством неизвестных переменных.
  3. Поиск решений для уравнений с нулевым определителем.
  4. Сравнительно небольшое количество вычислительных операций для получения результата.

Основные определения и обозначения

Матрицы: определение и свойства

Такие системы являются наиболее удобным способом представления данных, с которыми впоследствии производят манипуляции. Матрица имеет вид прямоугольника для удобства расчетов. При использовании метода Гаусса работа осуществляется с треугольными матрицами, при записи которых применяется прямоугольник с нулями на тех местах, где числа отсутствуют. Часто нули не записывают, а только подразумевают.

Важным параметром матрицы является размер:

  • ширина — это количество строк, обозначают буквой m;
  • длину выражают числом столбцов, записывают буквой n.

Решение уравнений

Источник: bigpicture.ru

Размер матрицы будет записан в формате А m*n. В случае, когда m=n, матрица является квадратной, а m=n служит ее порядком. Номера строк и столбцов изменяются.

Определитель

Матрица обладает крайне важной характеристикой. Таким параметром является определитель. Данную величину рассчитывают с помощью диагонали. Для этого в матрице необходимо провести воображаемые диагональные линии. Затем следует найти произведение элементов, которые располагаются на этих диагоналях, а полученные значения суммировать таким образом:

  1. Если диагональ обладает наклоном в правую сторону, то знак «+».
  2. Для диагоналей, наклоненных влево, знак «–».

Матрица

Источник: wp.com

Рассчитать определитель представляется возможным лишь в случае работы с квадратной матрицей.

Если необходимо определить данный параметр для прямоугольной матрицы, то следует выполнить следующие манипуляции:

  • из числа строк и числа столбцов выбрать наименьшее и обозначить его k;
  • отметить в матрице произвольным образом k столбцов и k строк.

Элементы, которые расположены на пересечении отмеченных столбцов и строк, образуют новую квадратную матрицу. В случае, когда определитель является числом, не равным нулю, то данный параметр будет обозначен как базисный минор первоначальной прямоугольной матрицы. Перед решением систем уравнений методом Гаусса полезно рассчитать определитель. Если данная характеристика равна нулю, то матрица имеет бесконечное множество решений либо не имеет их вовсе. В таком случае потребуется определить ранг матрицы.

Классификация систем

Ранг матрицы является распространенным понятием. Он обозначает максимальный порядок ее определителя, который не равен нулю. По-другому можно сказать, что ранг матрицы представляет собой порядок базисного минора. Исходя из данного критерия, СЛАУ классифицируют на несколько типов. В совместных системах, которые состоят лишь из коэффициентов, ранг основной матрицы совпадает с рангом расширенной. Для подобных систем характерно одно или множество решений. По этой причине совместные системы подразделяют на следующие типы:

  • определенные, обладающие одним решением, в которых наблюдается равенство ранга матрицы и количество неизвестных;
  • неопределенные;
  • обладающие бесконечным числом решений с рангом матрицы, который меньше количества неизвестных.

В несовместных системах ранги, характеризующие основную и расширенную матрицы, отличаются. С помощью метода Гаусса в процессе решения можно прийти либо к однозначному доказательству несовместности системы, либо к решению общего вида для системы, обладающей бесконечным количеством решений.

Обучение

Источник: asiaplustj.info

Основные правила и разрешаемые преобразования при использовании метода Гаусса

Перед тем, как решать систему, необходимо ее упростить. На данном этапе выполняют элементарные преобразования, которые не влияют на конечный результат. Определенные манипуляции справедливы лишь в случае матриц, исходниками которых являются СЛАУ. Список элементарных преобразований:

  1. Перестановка строк. При перемене записей в системе местами ее решение не меняется. Можно менять место строк в матрице, учитывая столбец со свободными членами.
  2. Произведение всех элементов строк и некоторого коэффициента. Сокращаются большие числа в матрице, и исключаются нули. При этом множество решений сохраняется без изменений, а дальнейшие манипуляции существенно упрощаются. Важным условием является отличие от нуля коэффициента.
  3. Удаление строк, которые содержат пропорциональные коэффициенты. Данное преобразование следует из предыдущего пункта. При условии, что две или более строк в матрице обладают пропорциональными коэффициентами, то при произведении или делении одной из строк на коэффициент пропорциональности получают две или более абсолютно одинаковые строки. В этом случае лишние строки исключают, оставляя только одну.
  4. Удаление нулевой строки. Бывают случаи, когда в процессе манипуляций с уравнениями возникает строка, все элементы которой, в том числе свободный член, равны нулю. Нулевую строку допустимо исключать из матрицы.
  5. Суммирование элементов одной строки с элементами другой, умноженными на некоторый коэффициент, в соответствующих столбцах. Данное преобразование имеет наиболее важное значение из всех перечисленных.

Особенности использования метода Гаусса для решения СЛАУ

На первом этапе система уравнений записывается в определенном виде. Пример выглядит следующим образом:

Система уравнений

Источник: wp.com

Коэффициенты необходимо представить в виде таблицы. С правой стороны в отдельном столбце записаны свободные члены. Данный блок отделен для удобства решения. Матрицу со столбцом со свободными членами называют расширенной.

Матрицы

Источник: wp.com

Затем основная матрица с коэффициентами приводится к верхней треугольной форме. Данное действие является ключевым моментом при решении системы уравнений с помощью метода Гаусса. По итогам преобразований матрица должна приобрести такой вид, чтобы слева внизу находились одни нули:

Матрица с нулями

Источник: wp.com

При записи новой матрицы в виде системы уравнений можно отметить, что последняя строка уже содержит значение одного из корней, которое в дальнейшем подставляется в уравнение выше для нахождения следующего корня и так далее. Подобное описание позволяет разобраться в методе Гаусса в общих чертах.

Обратный и прямой ход метода Гаусса

В первом случае необходимо представить запись расширенной матрицы системы. При выполнении обратного метода Гаусса далее в главную матрицу добавляют столбец со свободными членами.

Метод Гаусса

Источник: wp.com

Суть такого способа заключается в выполнении элементарных преобразований, по итогам которых данная матрица приводится к ступенчатому или треугольному виду. В этом случае над или под главной диагональю матрицы располагаются только нули.

Метод Гаусса 2

Источник: wp.com

Варианты дальнейших действий:

  • перемена строк матрицы местами, при наличии одинаковых или пропорциональных строк их можно исключить, кроме одной;
  • деление либо умножение строки на любое число, не равное нулю;
  • удаление нулевых строк;
  • добавление строки, умноженной на число, не равное нулю, к другой строке.

Имея преобразованную систему с одной неизвестной Xn, которая становится известной, можно выполнить поиск в обратном порядке остальных неизвестных с помощью подстановки известных х в уравнения системы, вплоть до первого. Данный способ называют обратным методом Гаусса.

Примеры решений с объяснением

Пример 1

Требуется решить с помощью метода Гаусса систему линейных уравнений, которая выглядит следующим образом:

Пример 1

Источник: wp.com

Решение

Необходимо записать расширенную матрицу:

Пример 2

Источник: wp.com

Затем нужно выполнить преобразования. В результате матрица должна приобрести треугольный вид. Для этого следует умножить первую строку на (3) и умножить вторую строку на (-1). В результате суммирования второй и первой строк получается следующее:

Пример 3

Источник: wp.com

Далее следует умножить третью строку на (-1). После добавления третьей строки ко второй получаем следующие преобразования:

Пример 4

Источник: wp.com

После этого необходимо умножить первую строку на (6) и вторую строку на (13). Далее следует добавить вторую строку к первой:

Пример 5

Источник: wp.com

После того, как система преобразована, остается вычислить неизвестные:

(x_{3}=frac{98}{49}=2)

(x_{2}=frac{14-7x_{3}}{6}=frac{14-7*2}{6}=0)

(x_{3}=frac{-9+5x_{2}+6x_{3}}{3}=frac{-9+5*0+6*2}{3}=1)

Данный пример демонстрирует единственное решение системы.

Доска

Источник: supertics.com

Пример 2

Необходимо решить систему уравнений, которая выглядит следующим образом:

Задача 2

Источник: wp.com

Решение

Необходимо составить матрицу:

Задача 2-2

Источник: wp.com

Согласно методу Гаусса уравнение первой строки по итогам преобразований не меняется. Удобнее, когда левый верхний элемент матрицы обладает наименьшим значением. В таком случае первые элементы остальных строк после преобразований будут равны нулю. Таким образом, составленная матрица будет решаться проще, если на место первой строки поставить вторую:

вторая строка:

(k = (-a_{21} /a_{11}) = (-3/1) = -3)

(a»_{21} = a_{21} + k×a_{11} = 3 + (-3)×1 = 0)

(a» _{22} = a_{22} + k×a _{12} = -1 + (-3)×2 = -7)

(a»_{ 23} = a_{23} + k×a_{13} = 1 + (-3)×4 = -11)

b» 2 = b 2 + k×b 1 = 12 + (-3)×12 = -24

третья строка: 

(k = (-a_{31} /a_{11}) = (-5/1) = -5)

(a»_{31} = a_{31} + k×a_{11} = 5 + (-5)×1 = 0)

(a»_{32} = a_{32} + k×a_{12} = 1 + (-5)×2 = -9)

( a»_{33} = a_{33} + k×a_{13} = 2 + (-5)×4 = -18)

( b»_3 = b_3 + k×b_1 = 3 + (-5)×12 = -57)

Матрица с промежуточными результатами манипуляций будет иметь следующий вид:

Задача 2-3

Источник: wp.com

Благодаря некоторым операциям можно придать матрице наиболее удобный вид. К примеру, вторую строку можно избавить от всех «минусов» путем умножения каждого элемента на «-1». Можно заметить, что для третьей строки характерны все элементы, кратные трем. В этом случае строка сокращается с помощью произведения каждого элемента на «-1/3». Минус позволит удалить отрицательные значения.

Задача 2-4

Источник: wp.com

Далее следует приступить к манипуляциям со второй и третьей строками. Необходимо суммировать третью и вторую строки. Вторая строка при этом умножается на такой коэффициент, при котором элемент а 32 будет равен нулю.

(k = (-a_{32} /a_{22}) = (-3/7) = -3/7)

В случае, когда некоторые преобразования приводят в результате к получению не целого числа, следует оставить его в этом виде. Таким образом, вычисления будут более точными. Затем при получении ответов можно определиться с его дальнейшем округлением или переводом в другую форму записи.

(a»_{32} = a_{32} + k×a_{22} = 3 + (-3/7)×7 = 3 + (-3) = 0)

(a»_{33} = a_{33} + k×a_{23} = 6 + (-3/7)×11 = -9/7)

(b»_3 = b_3 + k×b_2 = 19 + (-3/7)×24 = -61/7)

Преобразованная матрица будет иметь следующий вид:

Итог

 

Матрица обладает ступенчатым видом. Дальнейшие преобразования с помощью метода Гаусса нецелесообразны. В этом случае можно удалить из третьей строки общий коэффициент «-1/7».

Задача 2-5

Источник: wp.com

Затем необходимо представить запись матрицы в виде системы уравнений для вычисления корней.

x + 2y + 4z = 12 (1)

7y + 11z = 24 (2)

Найти корни можно обратным методом Гаусса. Уравнение (3) содержит значение z:

y = (24 — 11×(61/9))/7 = -65/9

С помощью первого уравнения можно определить х:

x = (12 — 4z — 2y)/1 = 12 — 4×(61/9) — 2×(-65/9) = -6/9 = -2/3

Подобная система является совместной и определенной, для которого характерно единственное решение. Ответ будет следующим:

x 1 = -2/3, y = -65/9, z = 61/9.

Метод Гаусса предполагает последовательное исключение неизвестных. Методика справедлива в случае решения квадратных систем линейных алгебраических уравнений. Несмотря на простоту метода, многие студенты сталкиваются с некоторыми трудностями в процессе поиска правильного решения. Это связано с наличием знаков «+» и «-». Поэтому для решения СЛАУ требуется проявить внимательность. А получить квалифицированную помощь можно на ресурсе Феникс.Хелп.

Содержание:

Базисные и свободные переменные:

Пусть задана система

Метод Гаусса - определение и вычисление с примерами решения

Элементарными преобразованиями системы линейных уравнений называются следующие преобразования:

  1. исключение из системы уравнения вида Метод Гаусса - определение и вычисление с примерами решения
  2. умножение обеих частей одного из уравнений системы на любое действительное число Метод Гаусса - определение и вычисление с примерами решения;
  3. перестановка местами уравнений системы;
  4. прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число не равное нулю.

Элементарные преобразования преобразуют данную систему уравнений в эквивалентную систему, т.е. в систему, которая имеет те же решения, что и исходная.

Для решения системы т линейных уравнений с т неизвестными удобно применять метод Гаусса, называемый методом последовательного исключения неизвестных, который основан на применении элементарных преобразований системы. Рассмотрим этот метод.

Предположим, что в системе (6.1.1)Метод Гаусса - определение и вычисление с примерами решения. Если это не так, то переставим уравнения системы так, чтобы Метод Гаусса - определение и вычисление с примерами решения .

На первом шаге метода Гаусса исключим неизвестное Метод Гаусса - определение и вычисление с примерами решения из всех уравнений системы (6.1.1), начиная со второго. Для этого последовательно умножим первое уравнение системы на множители

Метод Гаусса - определение и вычисление с примерами решения и вычтем последовательно преобразованные уравнения из второго, третьего, …, последнего уравнения системы (6.1.1). В результате получим эквивалентную систему:

Метод Гаусса - определение и вычисление с примерами решения (6.1.2)

в которой коэффициенты Метод Гаусса - определение и вычисление с примерами решения вычислены по формулам:

Метод Гаусса - определение и вычисление с примерами решения На втором шаге метода Гаусса исключим неизвестное Метод Гаусса - определение и вычисление с примерами решения из всех уравнений системы (6.1.2) начиная с третьего, предполагая, что Метод Гаусса - определение и вычисление с примерами решения (в противном случае, переставим уравнения системы (6.1.2)

чтобы это условие было выполнено). Для исключения неизвестного Метод Гаусса - определение и вычисление с примерами решения последовательно умножим второе уравнение системы (6.1.2) на множетели Метод Гаусса - определение и вычисление с примерами решения и вычтем последовательно преобразованные уравнения из третьего, четвёртого, последнего,…,уравнения системы (6.1.2). В результате получим эквивалентную систему:

Метод Гаусса - определение и вычисление с примерами решения

в которой коэффициенты Метод Гаусса - определение и вычисление с примерами решениявычислены по формулам:

Метод Гаусса - определение и вычисление с примерами решения

Продолжая аналогичные преобразования, систему (6.1.1) можно привести к одному из видов:

Метод Гаусса - определение и вычисление с примерами решения

или

Метод Гаусса - определение и вычисление с примерами решения

Совокупность элементарных преобразований, приводящих систему (6.1.1) к виду (6.1.4) или (6.1.5) называется прямым ходом метода Гаусса.

Отметим, что если на каком-то шаге прямого хода метода Гаусса получим уравнение вида:

Метод Гаусса - определение и вычисление с примерами решения, то это означает, что система (6.1.1) несовместна.

Итак, предположим, что в результате прямого хода метода Гаусса мы получили систему (6.1.4), которая называется системой треугольного вида. Тогда из последнего уравнения находим значение Метод Гаусса - определение и вычисление с примерами решения подставляем найденное значение Метод Гаусса - определение и вычисление с примерами решения в предпоследнее уравнение системы (6.1.4) и находим значение Метод Гаусса - определение и вычисление с примерами решения; и т.д. двигаясь снизу вверх в системе (6.1.4) находим единственные значения неизвестных Метод Гаусса - определение и вычисление с примерами решения которые и определяют единственное решение системы (6.1.1). Построение решения системы (6.1.4) называют обратным ходом метода Гаусса.

Если же в результате прямого хода метода Гаусса мы получим систему (6.1.5), которая называется системой ступенчатого вида, то из последнего уравнения этой системы находим значение неизвсстногоМетод Гаусса - определение и вычисление с примерами решения которое выражается через неизвестные Метод Гаусса - определение и вычисление с примерами решения. Найденное выражение подставляем в предпоследнее уравнение системы (6.1.5) и выражаем неизвестное Метод Гаусса - определение и вычисление с примерами решения через неизвестные Метод Гаусса - определение и вычисление с примерами решения и т.д. Двигаясь снизу вверх в системе (6.1.5) находим выражения неизвестных Метод Гаусса - определение и вычисление с примерами решения через неизвестные Метод Гаусса - определение и вычисление с примерами решенияПри этом неизвестные Метод Гаусса - определение и вычисление с примерами решения называются базисными неизвестными, а неизвестные Метод Гаусса - определение и вычисление с примерами решения — свободными. Так как свободным неизвестным можно придавать любые значения и получать соответствующие значения базисных неизвестных, то система (6.1.5), а, следовательно, и система (6.1.1) в этом случае имеет бесконечное множество решений. Полученные выражения базисных неизвестных через свободные неизвестные называются общим решением системы уравнений (6.1.1).

Таким образом, если система (6.1.1) путём элементарных преобразований приводится к треугольному виду (6.1.4), то она имеет единственное решение, если же она приводится к системе ступенчатого вида (6.1.5), то она имеет бесконечное множество решений. При этом неизвестные Метод Гаусса - определение и вычисление с примерами решения, начинающие уравнения ступенчатой системы, называются базисными, а остальные неизвестные — свободными.

Практически удобнее преобразовывать не саму систему уравнений (6.1.1), а расширенную матрицу системы, соединяя последовательно получающиеся матрицы знаком эквивалентностиМетод Гаусса - определение и вычисление с примерами решения.

Формализовать метод Гаусса можно при помощи следующего алгоритма.

Алгоритм решения системы m линейных уравнений с n неизвестными методом Гаусса

1. Составьте расширенную матрицу коэффициентов системы уравнений так, чтобы Метод Гаусса - определение и вычисление с примерами решения было не равно нулю:

Метод Гаусса - определение и вычисление с примерами решения

2. Выполните первый шаг метода Гаусса: в первом столбце начиная со второй строки, запишите нули, а все другие элементы вычислите по формуле

Метод Гаусса - определение и вычисление с примерами решения

Матрица после первого шага примет вид

Метод Гаусса - определение и вычисление с примерами решения

3. Выполните второй шаг метода Гаусса, предполагая, что Метод Гаусса - определение и вычисление с примерами решения : во втором столбце начиная с третьей строки, запишите нули, а все другие элементы вычислите по формуле

Метод Гаусса - определение и вычисление с примерами решения

После второго шага матрица примет вид Метод Гаусса - определение и вычисление с примерами решения

4. Продолжая аналогичные преобразования, придёте к одному из двух случаев:

а) либо в ходе преобразований получим уравнение вида Метод Гаусса - определение и вычисление с примерами решения

тогда данная система несовместна;

б) либо придём к матрице вида:

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения. Возможное уменьшение числа строк Метод Гаусса - определение и вычисление с примерами решения

связано с тем, что в процессе преобразований матрицы исключаются строки, состоящие из нулей.

5. Использовав конечную матрицу, составьте систему, при этом возможны два случая:

5.1. r=n:

Метод Гаусса - определение и вычисление с примерами решения

Система имеет единственное,решение Метод Гаусса - определение и вычисление с примерами решения, которое находим из системы обратным ходом метода Гаусса. Из последнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения. Из предпоследнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения затем из третьего от конца — Метод Гаусса - определение и вычисление с примерами решения и т.д., двигаясь снизу вверх, найдём все неизвестные Метод Гаусса - определение и вычисление с примерами решения.

5.2. Метод Гаусса - определение и вычисление с примерами решения:

Метод Гаусса - определение и вычисление с примерами решения

Тогда r неизвестных будут базисными, а остальные (n-r) — свободными. Из последнего уравнения выражаете неизвестное Метод Гаусса - определение и вычисление с примерами решениячерез Метод Гаусса - определение и вычисление с примерами решения. Из предпоследнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения и т.д.

Система имеет в этом случае бесконечное множество решений.

Приведенный алгоритм можно несколько видоизменить и получить алгоритм полного исключения, состоящий в выполнении следующих шагов. На первом шаге:

  1. составляется расширенная матрица;
  2. выбирается разрешающий элемент расширенной матрицы Метод Гаусса - определение и вычисление с примерами решения (если Метод Гаусса - определение и вычисление с примерами решения, строки матрицы можно переставить так, чтобы выполнялось условие Метод Гаусса - определение и вычисление с примерами решения);
  3. элементы разрешающей строки (строки, содержащей разрешающий элемент) оставляем без изменения; элементы разрешающего столбца (столбца, содержащего разрешающий элемент), кроме разрешающего элемента, заменяем нулями;
  4. все другие элементы вычисляем по правилу прямоугольника: преобразуемый элемент равен разности произведений элементов главной диагонали (главную диагональ образует разрешающий элемент и преобразуемый) и побочной диагонали (побочную диагональ образуют элементы, стоящие в разрешающей строке и разрешающем столбце): Метод Гаусса - определение и вычисление с примерами решения — разрешающий элемент (см. схему).

Последующие шаги выполняем по правилам:

1) выбирается разрешающий элемент Метод Гаусса - определение и вычисление с примерами решения (диагональный элемент матрицы);

2) элементы разрешающей строки оставляем без изменения;

Метод Гаусса - определение и вычисление с примерами решения

3) все элементы разрешающего столбца, кроме разрешающего элемента, заменяем нулями; • •

4) все другие элементы матрицы пересчитываем по правилу прямоугольника.

На последнем шаге делим элементы строк на диагональные элементы матрицы, записанные слева от вертикальной черты, и получаем решение системы.

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы находим следующее решение системы

уравнении: Метод Гаусса - определение и вычисление с примерами решения

Ответ: Метод Гаусса - определение и вычисление с примерами решения

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом Метод Гаусса - определение и вычисление с примерами решенияМетод Гаусса - определение и вычисление с примерами решения

Система привелась к ступенчатому виду (трапециевидной форме):

Метод Гаусса - определение и вычисление с примерами решения

в которой неизвестные Метод Гаусса - определение и вычисление с примерами решения — базисные, а Метод Гаусса - определение и вычисление с примерами решения — свободные. Из второго уравнения системы (6.1.6) находим выражение Метод Гаусса - определение и вычисление с примерами решения через Метод Гаусса - определение и вычисление с примерами решения. Из первого уравнений найдём выражение Метод Гаусса - определение и вычисление с примерами решения через Метод Гаусса - определение и вычисление с примерами решения и Метод Гаусса - определение и вычисление с примерами решения . Система имеет бесконечное множество решений. Общее решение системы имеет вид:

Метод Гаусса - определение и вычисление с примерами решения

в котором Метод Гаусса - определение и вычисление с примерами решения принимают любые значения из множества действительных чисел.

Если в общем решении положить Метод Гаусса - определение и вычисление с примерами решения, то получим решение Метод Гаусса - определение и вычисление с примерами решения, которое называется частным решением заданной системы.

Ответ: система имеет бесконечное множество решений, общее решение которой записывается в виде: Метод Гаусса - определение и вычисление с примерами решения

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символомМетод Гаусса - определение и вычисление с примерами решения Метод Гаусса - определение и вычисление с примерами решения В последней матрице мы получили четвёртую строку, которая равносильна уравнению Метод Гаусса - определение и вычисление с примерами решения. Это означает, что заданная система не имеет решений.

Ответ: система несовместна.

Замечание 1. Если дана система уравнений (6.1.1), в которой число уравнений m равно числу неизвестных n (m=n) и определитель этой системы Метод Гаусса - определение и вычисление с примерами решения не равен нулю Метод Гаусса - определение и вычисление с примерами решения, то система имеет единственное решение, которое можно найти по формулам Крамера: Метод Гаусса - определение и вычисление с примерами решения, где определитель Метод Гаусса - определение и вычисление с примерами решения получен из определи-теля Метод Гаусса - определение и вычисление с примерами решения заменой j-ro столбца столбцом свободных членов.

Если же такую систему (m-n) записать в матричной форме AX=F, то её решение можно найти по формуле Метод Гаусса - определение и вычисление с примерами решения и оно является единственным.

Замечание 2. Используя метод Гаусса, тем самым и алгоритм полного исключения, можно находить обратную матрицу. Для этого составляется расширенная матрица, в которой слева от вертикальной черты записана матрица А, а справа — единичная матрица. Реализовав алгоритм полного исключения, справа от вертикальной черты получаем обратную матрицу, а слева — единичную.

Пример:

Найти обратную матрицу для матрицы: Метод Гаусса - определение и вычисление с примерами решения

Решение:

Так как

Метод Гаусса - определение и вычисление с примерами решения

то обратная матрицаМетод Гаусса - определение и вычисление с примерами решения существует. Составим расширенную мат-рицу и применим алгоритм полного исключения:

Метод Гаусса - определение и вычисление с примерами решения

тогда

Метод Гаусса - определение и вычисление с примерами решения

Покажем, что Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения

ответ Метод Гаусса - определение и вычисление с примерами решения

Исследование совместности и определённости системы. Теорема Кронекера-Капелли

Рассмотрим систему (6.1.1) m линейных уравнений с n неизвестными при любых m и n (случай m=n не исключается). Вопрос о совместности системы решается следующим критерием.

Теорема 6.2.1. (критерий Кронкера-Капелли). Для того, чтобы система линейных уравнений(6.1.1) была совместна, необходимо и достаточно, чтобы ранг матрицы А системы был равен рангу расширенной матрицы Метод Гаусса - определение и вычисление с примерами решения.

Доказательство и Необходимость:

Предположим, что система (6.1.1) совместна и Метод Гаусса - определение и вычисление с примерами решения — какое-либо её решение (возможно единственное). По определению решения системы получаем:

Метод Гаусса - определение и вычисление с примерами решения

Из этих равенств следует, что последний столбец матрицыМетод Гаусса - определение и вычисление с примерами решения есть линейная комбинация остальных ее столбцов с коэффициентами Метод Гаусса - определение и вычисление с примерами решения, то есть система вектор-столбцов матрицы Метод Гаусса - определение и вычисление с примерами решения линейно зависима (свойство 3 п.2.5) и значит последний столбец матрицы Метод Гаусса - определение и вычисление с примерами решения не изменяет ранга матрицы А, т.е.

Метод Гаусса - определение и вычисление с примерами решения.

Достаточность. Пусть Метод Гаусса - определение и вычисление с примерами решения. Рассмотрим r базисных

столбцов матрицы А, которые одновременно будут базисными столбцами и матрицы Метод Гаусса - определение и вычисление с примерами решения. В этом случае последний столбец матрицы Метод Гаусса - определение и вычисление с примерами решения можно представить как линейную комбинацию базисных столбцов, а следовательно, и как линейную комбинацию всех столбцов матрицы А, то есть

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения — коэффициенты линейных комбинаций. А это означает, что Метод Гаусса - определение и вычисление с примерами решения— решение системы (6.1.1), следовательно,

эта система совместна.

Совместная система линейных уравнений (6.1.1) может быть либо определенной, либо неопределенной.

Следующая теорема даст критерий определенности.

Теорема 6.2.2. Совместная система линейных уравнений имеет единственное решение тогда и только тогда, когда ранг матрицы А системы равен числу п ее неизвестных.

Таким образом, если число уравнений m системы (6.1.1) меньше числа ее неизвестных n и система совместна, то ранг матрицы системы Метод Гаусса - определение и вычисление с примерами решения. Значит система неопределенная.

В случае Метод Гаусса - определение и вычисление с примерами решения по теореме 6.2.2 получаем, что система имеет единственное решение. Так как Метод Гаусса - определение и вычисление с примерами решения, то определительМетод Гаусса - определение и вычисление с примерами решения и квадратная матрица А имеет обратную x матрицу Метод Гаусса - определение и вычисление с примерами решения и её решение можно найти по формуле: Метод Гаусса - определение и вычисление с примерами решения, где Х- столбец неизвестных, F— столбец свободных членов, или по формулам Крамера.

Следует отметить, что, решая систему (6.1.1) методом Гаусса, мы определяем и совместность, и определённость системы.

Пример:

Исследовать на совместность и определённость следующую систему линейных уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу заданной системы. Определяя её ранг, находим тем самым и ранг матрицы системы. Для нахождения ранга матрицы применим алгоритм метода Гаусса. Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы следует, что ранг расширенной матрицы Метод Гаусса - определение и вычисление с примерами решенияне может быть больше ранга матрицы А системы. Так как

Метод Гаусса - определение и вычисление с примерами решения, то заданная система совместная и неопределённая.

  • Заказать решение задач по высшей математике

Однородные системы линейных уравнений

Система линейных уравнений (6.1.1) называется однородной, если все свободные члены Метод Гаусса - определение и вычисление с примерами решения равны нулю, то есть система имеет следующий вид:

Метод Гаусса - определение и вычисление с примерами решения

Эта система всегда совместна, так как очевидно, что она имеет нулевое решение

Метод Гаусса - определение и вычисление с примерами решения

Для однородной системы важно установить, имеет ли она ненулевые решения. Этот факт устанавливается следующей теоремой.

Теорема 6.3.1. Для того, чтобы однородная система имела ненулевые решения, необходимо и достаточно, чтобы ранг г матрицы А системы был меньше числа неизвестных n (rМетод Гаусса - определение и вычисление с примерами решенияn). 

Доказательство. Необходимость. Пусть система (6.3.1) имеет ненулевое решение. Тогда она неопределённая, т.к. имеет еще и нулевое решение. В силу теоремы 6.2.2 ранг матрицы неопределённой системы не может равняться n потому что при r(А)=n система определённая. Следовательно, Метод Гаусса - определение и вычисление с примерами решения и так как он не может быль больше n то Метод Гаусса - определение и вычисление с примерами решения.

Достаточность. Если Метод Гаусса - определение и вычисление с примерами решения, то в силу теоремы 6.2.2 система (6.3.1) имеет бесчисленное множество решений. А так как только одно решение является нулевым, то все остальные решения ненулевые. Метод Гаусса - определение и вычисление с примерами решения

Следствие 1. Если число неизвестных в однородной системе больше числа уравнений, то однородная система имеет ненулевые решения.

Доказательство. Действительно, ранг матрицы системы (6.3.1) не может превышать m. Но так как по условиюМетод Гаусса - определение и вычисление с примерами решения, то и Метод Гаусса - определение и вычисление с примерами решения. Следовательно, в силу теоремы 6.3.1 система имеет ненулевые решения.

Следствие 2. Для того, чтобы однородная система с квадрат-ной матрицей имела ненулевые решения, необходимо и достаточно, чтобы её определитель Метод Гаусса - определение и вычисление с примерами решения равнялся нулю.

Доказательство. Рассмотрим однородную систему с квадратной матрицей:

Метод Гаусса - определение и вычисление с примерами решения (6.3.2)

Если определитель матрицы системы Метод Гаусса - определение и вычисление с примерами решения, то ранг матрицы Метод Гаусса - определение и вычисление с примерами решения, тогда в силу теоремы 6.3.1 система (6.3.2) имеет ненулевое решение, так как условие Метод Гаусса - определение и вычисление с примерами решения является необходимым и достаточным условием для существования ненулевого решения. Заметим, что если определитель матрицы системы (6.3.2) не равен нулю, то Метод Гаусса - определение и вычисление с примерами решения в силу теоремы 6.3.1 она имеет только нулевое решение.

Пример:

Решить систему однородных линейных уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим матицу системы и применим алгоритм полного исключения:Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы следует, что Метод Гаусса - определение и вычисление с примерами решения и система имеет бесчисленное множество решений.

Используя последнюю матрицу, последовательно находим общее решение: Метод Гаусса - определение и вычисление с примерами решения

Неизвестные Метод Гаусса - определение и вычисление с примерами решения— базисные, Метод Гаусса - определение и вычисление с примерами решения— свободная неизвестная, Метод Гаусса - определение и вычисление с примерами решения.

Фундаментальная система решений. Общее решение неоднородной системы линейных уравнений

Рассмотрим систему однородных линейных уравнений

Метод Гаусса - определение и вычисление с примерами решения (6.4.1)

Любое решение

Метод Гаусса - определение и вычисление с примерами решения

системы m линейных однородных уравнений с n неизвестными можно рассматривать как вектор-строкуМетод Гаусса - определение и вычисление с примерами решения или как вектор-столбец Метод Гаусса - определение и вычисление с примерами решения . Поэтому имеют смысл такие понятия, как сумма двух решений, произведение решения на число, линейная комбинация решений, линейная зависимость или независимость системы решений. Непосредственной подстановкой в систему (6.4.1) можно показать, что:

1) сумма двух решений также является решением системы, т.е.

еслиМетод Гаусса - определение и вычисление с примерами решения — решения системы

(6.4.1), то и Метод Гаусса - определение и вычисление с примерами решения — решение системы (6.4.1);

2) произведение решенийМетод Гаусса - определение и вычисление с примерами решенияна любое число Метод Гаусса - определение и вычисление с примерами решения есть решение системы, т.е. Метод Гаусса - определение и вычисление с примерами решения — решение системы.

Из приведенных свойств следует, что

3) линейная комбинация решений системы (6.4.1) является решением этой системы.

В частности, если однородная система (6.4.1) имеет хотя бы одно ненулевое решение, то из него умножением на произвольные числа, можно получить бесконечное множество решений.

Определение 6.4.1. Фундаментальной системой решений для системы однородных линейных уравнений (6.4.1) называется линейно независимая система решений, через которую линейно выражается любое решение системы (6.4.1).

Заметим, что если ранг матрицы системы (6.4.1) равен числу неизвестных n (r(А)=n), то эта система не имеет фундаментальной системы решений, так как единственным решением будет нулевое решение, составляющее линейно зависимую систему. Существование и число фундаментальных решений определяется следующей теоремой.

Теорема 6.4.1. Если ранг матрицы однородной системы уравнений (6.4.1) меньше числа неизвестных (r(А)Метод Гаусса - определение и вычисление с примерами решенияn), то система (6.4.1) имеет бесконечное множество фундаментальных систем решений, причём каждая из них состоит из n-r решений и любые n-r линейно независимые решения составляют фундаментальную систему.

Сформулируем алгоритм построения фундаментальной системы решений:

  1. Выбираем любой определитель Метод Гаусса - определение и вычисление с примерами решения порядка n-r, отличный от нуля, в частности, определитель порядка n-r, у которого элементы главной диагонали равны единице, а остальные — нули.
  2. Свободным неизвестным придаём поочерёдно значения, равные элементам первой, второй и т.д. строк определителяМетод Гаусса - определение и вычисление с примерами решения, и каждый раз из общего решения находим соответствующие значения базисных неизвестных.
  3. Из полученных n-r решений составляют фундаментальную систему решений.

Меняя произвольно определитель Метод Гаусса - определение и вычисление с примерами решения, можно получать всевозможные фундаментальные системы решений.

Пример:

Найти общее решение и фундаментальную систему решений для однородной системы уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим матрицу системы и применим алгоритм полного исключения.

Метод Гаусса - определение и вычисление с примерами решения

Для последней матрицы составляем систему:

Метод Гаусса - определение и вычисление с примерами решения,

, из которой находим общее решение:

Метод Гаусса - определение и вычисление с примерами решения

в котором Метод Гаусса - определение и вычисление с примерами решения — базисные неизвестные, а Метод Гаусса - определение и вычисление с примерами решения— свободные неизвестные.

Построим фундаментальную систему решений. Для этого выбираем определительМетод Гаусса - определение и вычисление с примерами решения и свободным неизвестным придаём поочерёдно значения, равные элементам первой, а затем второй строк, т.е. положим вначале Метод Гаусса - определение и вычисление с примерами решения и получим из общего решения Метод Гаусса - определение и вычисление с примерами решения; затем полагаем Метод Гаусса - определение и вычисление с примерами решения, из общего решения находим: Метод Гаусса - определение и вычисление с примерами решения.

Таким образом, построенные два решения (1; -1; 1; 0) и (-6; 4; 0; 1) составляют фундаментальную систему решений.

Если ранг матрицы системы однородных линейных уравнений (6.4.1) на единицу меньше числа неизвестных: Метод Гаусса - определение и вычисление с примерами решения то Метод Гаусса - определение и вычисление с примерами решения, и значит, фундаментальная система состоит из одного решения. Следовательно, любое ненулевое решение образует фундаментальную систему. В этом случае любые два решения различаются между собой лишь числовыми множителями.

Рассмотрим теперь неоднородную систему m линейных уравнений с n неизвестными (6.1.1). Если в системе (6.1.1) положить Метод Гаусса - определение и вычисление с примерами решения, то полученная однородная система называется приведенной для системы (6.1.1).

Решения системы (6.1.1) и её приведенной системы удовлетворяют свойствам:

  1. Сумма и разность любого решения системы (6.1.1) и любого решения её приведенной системы является решением неоднородной системы.
  2. Все решения неоднородной системы можно получить, прибавляя к одному (любому) её решению поочерёдно все решения её приведенной системы.

Из этих свойств следует теорема.

Теорема 6.4.2. Общее решение неоднородной системы (6.1.1.) определяется суммой любого частного решения этой системы и общего решения её приведенной системы.

Пример:

Найти общее решение системы:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу (A|F) заданной системы и применим алгоритм полного исключения:

Метод Гаусса - определение и вычисление с примерами решения,

Преобразованной матрице соответствует система уравнений:

Метод Гаусса - определение и вычисление с примерами решения

из которой находим общее решение системы:

Метод Гаусса - определение и вычисление с примерами решения

, где Метод Гаусса - определение и вычисление с примерами решения — базисные неизвестные, а Метод Гаусса - определение и вычисление с примерами решения— свободные неизвестные.

Покажем, что это общее решение определяется суммой любого частного решения заданной системы и общего решения приведенной системы.

Подставляя вместо свободных неизвестных Метод Гаусса - определение и вычисление с примерами решения в общее решение системы нули, получаем частное решение исходной системы: Метод Гаусса - определение и вычисление с примерами решения.

Очевидно, что общее решение приведенной системы имеет вид:

Метод Гаусса - определение и вычисление с примерами решения

Суммируя частное решение заданной системы и общее решение приведенной системы, получим общее решение (6.4.2) исходной системы.

Отметим, что общее решение системы (6.1.1) можно представить в векторном виде:

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения— • некоторое решение (вектор-строка) системы (6.1.1);

Метод Гаусса - определение и вычисление с примерами решения — фундаментальная система решений системы (6.4.1);

Метод Гаусса - определение и вычисление с примерами решения — любые действительные числа.

Формула (6.4.4) называется общим решением системы (6.1.1) в векторной форме.

Запишем общее решение системы примера 6.4.1 в векторной форме. Для этого определим фундаментальную систему решений приведенной системы. Возьмём определитель Метод Гаусса - определение и вычисление с примерами решения и придадим поочерёдно свободным неизвестным значения, равные элементам строк. Пусть Метод Гаусса - определение и вычисление с примерами решения тогда из общего решения (6.4.3) приведенной системы находим Метод Гаусса - определение и вычисление с примерами решения; если же Метод Гаусса - определение и вычисление с примерами решения, то Метод Гаусса - определение и вычисление с примерами решения. Следовательно, фундаментальную систему решений образуют решения: Метод Гаусса - определение и вычисление с примерами решения и Метод Гаусса - определение и вычисление с примерами решения. Тогда общее решение заданной системы в векторной форме имеет вид: Метод Гаусса - определение и вычисление с примерами решения, где Метод Гаусса - определение и вычисление с примерами решения — частное решение заданной системы; Метод Гаусса - определение и вычисление с примерами решения.

Определение метода Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример:

Решить систему уравнений методом Гаусса:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Выпишем расширенную матрицу данной системы Метод Гаусса - определение и вычисление с примерами решения и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2: Метод Гаусса - определение и вычисление с примерами решения

б) третью строку умножим на (-5) и прибавим к ней вторую: Метод Гаусса - определение и вычисление с примерами решения

В результате всех этих преобразований данная система приводится к треугольному виду: Метод Гаусса - определение и вычисление с примерами решения

Из последнего уравнения находим Метод Гаусса - определение и вычисление с примерами решения Подставляя это значение во второе уравнение, имеем Метод Гаусса - определение и вычисление с примерами решения Далее из первого уравнения получим Метод Гаусса - определение и вычисление с примерами решения

Вычисление метода Гаусса

Этот метод основан на следующей теореме.

Теорема:

Элементарные преобразования не изменяют ранга матрицы.

К элементарным преобразованиям матрицы относят:

  1. перестановку двух параллельных рядов;
  2. умножение какого-нибудь ряда на число, отличное от нуля;
  3. прибавление к какому-либо ряду матрицы другого, параллельного ему ряда, умноженного на произвольное число.

Путем элементарных преобразований исходную матрицу можно привести к трапециевидной форме

Метод Гаусса - определение и вычисление с примерами решения

где все диагональные элементы Метод Гаусса - определение и вычисление с примерами решения отличны от нуля. Тогда ранг полученной матрицы равен рангу исходной матрицы и равен k.

Пример:

Найти ранг матрицы

Метод Гаусса - определение и вычисление с примерами решения

1) методом окаймляющих миноров;

2 ) методом Гаусса.

Указать один из базисных миноров.

Решение:

1. Найдем ранг матрицы методом окаймляющих миноров. Выберем минор второго порядка, отличный от нуля. Например,

Метод Гаусса - определение и вычисление с примерами решения Существуют два минора третьего порядка, окаймляющих минор Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения Т.к. миноры третьего порядка равны нулю, ранг матрицы равен двум. Базисным минором является, например, минор Метод Гаусса - определение и вычисление с примерами решения

2. Найдем ранг матрицы методом Гаусса. Производя последовательно элементарные преобразования, получим: Метод Гаусса - определение и вычисление с примерами решения

  1. переставили первую и третью строки;
  2. первую строку умножили на 2 и прибавили ко второй, первую строку умножили на 8 и прибавили к третьей;
  3. вторую строку умножили на -3 и прибавили к третьей.

Последняя матрица имеет трапециевидную форму и ее ранг равен двум. Следовательно, ранг исходной матрицы также равен двум.

  • Прямая линия на плоскости и в пространстве
  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Производная функции одной переменной
  • Дифференциальные уравнения с примерами
  • Обратная матрица — определение и нахождение
  • Ранг матрицы — определение и вычисление
  • Определители второго и третьего порядков и их свойства

Понравилась статья? Поделить с друзьями:
  • Как найти наибольшее значение в словаре python
  • Rus что это за ошибка как исправить
  • Как исправить ошибку msvcr20 dll
  • Как можно найти никотин в организме человека
  • Как составить каталог технологий