Онлайн калькулятор. Уравнение прямой проходящей через две точки
Этот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки.
Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал.
Найти уравнение прямой
Выберите необходимую вам размерность:
Размерность:
Введите координаты точек.
Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.
На этой странице вы найдете два калькулятора, которые строят уравнение прямой по координатам двух точек, принадлежащих этой прямой.
Первый калькулятор находит уравнение прямой с угловым коэффициентом, то есть уравнение в форме . Также он строит график и отдельно выводит угловой коэффициент и значение y в месте пересечения прямой с осью ординат.
Второй калькулятор находит параметрические уравнения прямой, то есть систему уравнений вида . Он также строит график и отдельно выводит направляющий вектор.
Формулы расчета можно найти под калькуляторами.
Уравнение прямой с угловым коэффициентом по двум точкам
Первая точка
Вторая точка
Значение y в точке пересечения с осью ординат
Точность вычисления
Знаков после запятой: 2
Параметрическое уравнение прямой
Первая точка
Вторая точка
Параметрическое уравнение для x
Параметрическое уравнение для y
Точность вычисления
Знаков после запятой: 2
Уравнение прямой с угловым коэффициентом
Найдем уравнение прямой с угловым коэффициентом по двум известным точкам и .
Нам надо найти угловой коэффициент a и y координату точки пересечения прямой с осью ординат b.
Мы можем составить следующие уравнения для двух точек относительно a и b
Вычитаем первое из второго
Откуда
b можно найти как
Таким образом, как только мы нашли а, для расчета b достаточно только подставить значения или в выражение выше.
Параметрическое уравнение прямой
Найдем параметрическое уравнение прямой по двум известным точкам и .
Нам надо найти компоненты направляющего вектора.
Этот вектор описывает величину и направление воображаемого движения по прямой от первой до второй точки.
Имея направляющий вектор, легко записать параметрические уравнения прямой
Обратите внимание, что если , то и если , то
Дано
Координаты двух точек
A(0, 5) и B(-1, 3)
Задача
Составить уравнение прямой проходящей через эти точки
Решение
Воспользуемся уравнением прямой с угловым коэффициентом
y=kx+b
Так как точки A(x1, y1) и B(x2, y2) лежат на одной прямой то мы можем составить систему уравнений. Решив эту систему найдём коэффициенты k и b.
y1=kx1+b
y2=kx2+b
Вычтем из второго первое
y2-y1=kx2-kx1
Подставим k в первое и выведем b
Подставим выведенные значения k и b в уравненение прямой
Подставим координаты наших точек и вычислим
y=2x+5
Уравнение прямой проходящей через точки A(0, 5) и B(-1, 3) будет y=2x+5.
Введите координаты точки A
Введите координаты точки B
Ссылка на результат
https://calc-best.ru/matematicheskie/analiticheskaya-geometriya/uravnenie-pryamoj-prokhodyashchej-cherez-dve-tochki/na-ploskosti?x1=0&y1=5&x2=-1&y2=3
Похожие калькуляторы
Этот калькулятор онлайн составляет уравнения прямой проходящей через 2 точки.
Онлайн калькулятор для составления уравнения прямой проходящей через 2 точки не просто даёт ответ задачи, он приводит подробное решение с
пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и
экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре.
А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее
сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным
решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень
образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Правила ввода чисел
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac{2}{3} )
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac{5}{7} )
Наши игры, головоломки, эмуляторы:
Уравнение прямой, проходящей через две точки онлайн
С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Уравнение прямой, проходящей через две точки − примеры и решения
Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).
Решение.
Уравнение прямой, проходящей через точки A(x1, y1, z1) и B(x2, y2, z2) имеет следующий вид:
Подставив координаты точек A и B в уравнение (1), получим:
или
(Здесь 0 в знаменателе не означает деление на 0).
Составим параметрическое уравнение прямой:
Выразим переменные x, y, z через параметр t :
Ответ.
Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:
Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:
Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).
Решение.
Уравнение прямой, проходящей через точки A(x1, y1, z1) и B(x2, y2, z2) имеет следующий вид:
Подставив координаты точек A и B в уравнение (2), получим:
или
Составим параметрическое уравнение прямой:
Выразим переменные x, y, z через параметр t :
Ответ.
Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:
Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид: