Содержание
Касательная, нормальная плоскость, соприкасающаяся плоскость, бинормаль, главная нормаль, репер Френе
Краткие теоретические сведения
Кривая в пространстве
Рассмотрим в пространстве гладкую кривую $gamma$.
-
Векторное уравнение $gamma:, vec{r}=vec{r}(t)$.
-
Параметрическое уравнение $gamma:,, x=x(t),, y=y(t),, z=z(t)$.
Пусть точка $M$ принадлежит данной кривой и отвечает значению параметра $t=t_0$. Тогда радиус-вектор и координаты данной точки равны:
begin{equation*}
vec{r_0}=vec{r}(t_0), quad x_0=x(t_0),, y_0=y(t_0), , z_0=z(t_0).
end{equation*}
Пусть в точке $M$ $ vec{r’}(t_0)neqvec{0}$, то есть $M$ не является особой точкой.
Касательная к кривой
Касательная к кривой, проведенная в точке $M$, имеет направляющий вектор коллинеарный вектору $vec{r’}(t_0)$.
Пусть $vec{R}$ — радиус-вектор произвольной точки касательной, тогда уравнение этой касательной имеет вид
begin{equation*}
vec{R}=vec{r}(t_0)+lambdavec{r’}(t_0).
end{equation*}
Здесь $lambdain(-infty,+infty)$ — параметр, определяющий положение точки на касательной (то есть разным значениям $lambda$ будут соответствовать разные значения $vec{R}$).
Если $vec{R}={X,Y,Z}$, $M = (x(t_0), y(t_0), z(t_0))$, то можно записать уравнение касательной в каноническом виде:
begin{equation*}
frac{X-x(t_0)}{x'(t_0)}=frac{Y-y(t_0)}{y'(t_0)}=frac{Z-z(t_0)}{z'(t_0)}.
end{equation*}
Нормальная плоскость
Плоскость, проходящую через данную точку $M$ кривой $gamma$ перпендикулярно касательной в этой точке, называют нормальной плоскостью.
Пусть $vec{R}$ — радиус-вектор произвольной точки нормальной плоскости, тогда ее уравнение можно записать в векторном виде через скалярное произведение векторов $vec{R}-vec{r}(t_0)$ и $vec{r’}(t_0)$:
begin{equation*}
(vec{R}-vec{r}(t_0))cdotvec{r’}(t_0)=0.
end{equation*}
Если расписать покоординатно, то получим следующее уравнение:
begin{equation*}
x'(t_0)cdot(X-x(t_0))+y'(t_0)cdot(Y-y(t_0))+z'(t_0)cdot(Z-z(t_0))=0.
end{equation*}
Соприкасающаяся плоскость
Плоскость, проходящую через заданную точку $M$ кривой $gamma$ параллельно векторам $vec{r’}(t_0)$, $vec{r»}(t_0)$, когда они неколлинеарны, называют соприкасающейся плоскостью кривой.
Если $vec{R}$ — радиус-вектор произвольной точки соприкасающейся плоскости, то ее уравнение можно записать через смешанной произведение трех компланарных векторов $vec{R}-vec{r}(t_0)$, $vec{r’}(t_0)$, $vec{r»}(t_0)$:
begin{equation*}
(vec{R}-vec{r}(t_0), vec{r’}(t_0), vec{r»}(t_0))=0.
end{equation*}
Зная координаты точки и векторов, определяющих плоскость, запишем смешанное произведение через определитель. Получим следующее уравнение соприкасающейся плоскости:
begin{equation*}
left|
begin{array}{ccc}
X-x(t_0) & Y-y(t_0) & Z-z(t_0) \
x'(t_0) & y'(t_0) & z'(t_0)\
x»(t_0) & y»(t_0) & z»(t_0) \
end{array}
right|=0
end{equation*}
Плоская кривая лежит в своей соприкасающейся плоскости.
Бинормаль и главная нормаль
Прямая, проходящая через точку $M$ кривой $gamma$ перпендикулярно касательной к кривой в этой точке, называется нормалью.
Таких кривых можно провести бесконечно много, все они образуют нормальную плоскость. Мы выделим среди нормалей две — бинормаль и главную нормаль.
Нормаль, перпендикулярную соприкасающейся плоскости, называют бинормалью.
Нормаль, лежащую в соприкасающейся плоскости, называют главной нормалью.
Из определения бинормали (перпендикулярна касательной и перпендикулярна соприкасающейся плоскости) следует, что в качестве ее направляющего вектора мы можем взять векторное произведение $ vec{r’}(t_0)timesvec{r»}(t_0)$, тогда ее уравнение можно записать в виде:
begin{equation*}
vec{R}=vec{r}(t_0)+lambda,vec{r’}(t_0)timesvec{r»}(t_0).
end{equation*}
Как и раньше, $vec{R}$ — радиус-вектор произвольной точки бинормали.
Каноническое уравнение прямой:
begin{equation*}
frac{X-x(t_0)}{left|
begin{array}{cc}
y'(t_0) & z'(t_0) \
y»(t_0) & z»(t_0) \
end{array}
right|
}=frac{Y-y(t_0)}{left|
begin{array}{cc}
z'(t_0) & x'(t_0) \
z»(t_0) & x»(t_0) \
end{array}
right|
}=frac{Z-z(t_0)}{left|
begin{array}{cc}
x'(t_0) & y'(t_0) \
x»(t_0) & y»(t_0) \
end{array}
right|
}.
end{equation*}
Из определения главной нормали (перпендикулярна касательной и перпендикулярна бинормали) следует, что в качестве ее направляющего вектора можно взять векторное произведение $vec{r’}(t_0) timesleft[vec{r’}(t_0),vec{r»}(t_0)right]$:
begin{equation*}
vec{R}=vec{r}(t_0)+lambda,vec{r’}(t_0) timesleft[vec{r’}(t_0),vec{r»}(t_0)right].
end{equation*}
Уравнение в каноническом виде распишите самостоятельно.
Спрямляющая плоскость
Плоскость, проходящую через заданную точку $M$ кривой $gamma$ перпендикулярно главной нормали, называют спрямляющей плоскостью.
Другое определение:
Плоскость, определяемую касательной к кривой и бинормалью в той же точке, называют спрямляющей плоскостью.
Второе определение позволяет записать уравнение спрямляющей плоскости через смешанное произведение трех компланарных векторов, определяющих эту плоскость $vec{R}-vec{r}(t_0)$, $vec{r’}(t_0)$, $vec{r’}(t_0)timesvec{r»}(t_0)$:
begin{equation*}
left(vec{R}-vec{r}(t_0),, vec{r’}(t_0),, vec{r’}(t_0)timesvec{r»}(t_0)right)=0.
end{equation*}
Зная координаты соответствующих векторов, можно легко записать это смешанное произведение через определитель, раскрыв который, вы получите общее уравнение спрямляющей плоскости.
Репер Френе
Орт (то есть единичный вектор) касательной обозначим:
$$ vec{tau}=frac{vec{r’}(t_0)}{|vec{r’}(t_0)|}. $$
Орт бинормали:
$$ vec{beta}=frac{vec{r’}(t_0)timesvec{r»}(t_0)}{|vec{r’}(t_0)timesvec{r»}(t_0)|}. $$
Орт главной нормали:
$$ vec{nu}=frac{vec{r’}(t_0) times[vec{r’}(t_0),,vec{r»}(t_0)]}{|vec{r’}(t_0) times [vec{r’}(t_0),,vec{r»}(t_0)]|}. $$
Правая тройка векторов $vec{tau}$, $vec{nu}$, $vec{beta}$ называется репером Френе.
Решение задач
Задача 1
Кривая $gamma$ задана параметрически:
$$
x=t,,, y=t^2,,, z=e^t.
$$
Точка $M$, принадлежащая кривой, соответствует значению параметра $t=0$.
Записать уравнения касательной, бинормали, главной нормали, нормальной плоскости, соприкасающейся плоскости и спрямляющей плоскости, проведенных к данной кривой в точке $M$. Записать векторы репера Френе.
Решение задачи 1
Задачу можно решать разными способами, точнее в разном порядке находить уравнения прямых и плоскостей.
Начнем с производных.
begin{gather*}
gamma: vec{r}(t)=left{ t,, t^2,, e^tright} ,, Rightarrow \
vec{r’}(t)=left{ 1,, 2t,, e^tright},\
vec{r»}(t)=left{ 0,, 2,, e^tright}.
end{gather*}
В точке $M(t_0=0)$:
begin{gather*}
vec{r}(t_0)={ 0,, 0,, 1},\
vec{r’}(t_0)={ 1,, 0,, 1},\
vec{r»}(t_0)={ 0,, 2,, 1}.
end{gather*}
-
Зная координаты точки $M(0,0,1)$ и направляющего вектора $ vec{r’}(t_0)={ 1,0,1 }$, можем записать уравнение касательной:
begin{equation*}
frac{X}{1}=frac{Y}{0}=frac{Z-1}{1}.
end{equation*}
-
Нормальная плоскость проходит через точку $M(0,0,1)$ перпендикулярно вектору $vec{r’}(t_0)={ 1,0,1 }$, поэтому ее общее уравнение имеет вид:
begin{equation*}
1cdot X+0cdot Y+1cdot (Z-1)=0,, Rightarrow ,, X+Z=1.
end{equation*}
-
Запишем теперь уравнение соприкасающейся плоскости, определяемой точкой $M(0,0,1)$ и векторами: $vec{r’}(t_0)={ 1,, 0,, 1}$, $vec{r»}(t_0)={ 0,, 2,, 1}$:
begin{equation*}
left|
begin{array}{ccc}
X-0 & Y-0 & Z-1 \
1 & 0 & 1\
0 & 2 & 1 \
end{array}
right|=0
end{equation*}
Раскрываем определитель, получаем уравнение:
begin{equation*}
-2X-Y+2Z-2=0
end{equation*}
-
Направление бинормали задается вектором $vec{r’}(t_0) times vec{r»}(t_0)$. Координаты этого вектора мы уже нашли, когда вычисляли миноры в определителе, задающем уравнение соприкасающейся плоскости.
$$
{ 1,, 0,, 1} times { 0,, 2,, 1}= left|
begin{array}{ccc}
vec{i} & vec{j} & vec{k} \
1 & 0 & 1\
0 & 2 & 1 \
end{array}
right|= {-2,, -1,, 2}.
$$
Уравнение бинормали:
begin{equation*}
frac{X}{-2}=frac{Y}{-1}=frac{Z-1}{2}.
end{equation*}
-
Направление главной нормали задается вектором $vec{r’}(t_0) times (vec{r’}(t_0)timesvec{r»}(t_0))$.
$$
{ 1,, 0,, 1} times {-2,, -1,, 2}= left|
begin{array}{ccc}
vec{i} & vec{j} & vec{k} \
1 & 0 & 1\
-2 & -1 & 2 \
end{array}
right|= {1,, -4,, -1} ,, Rightarrow ,,
frac{X}{1}=frac{Y}{-4}=frac{Z-1}{-1}.
$$
-
Спрямляющая плоскость перпендикулярна главной нормали, а значит, вектору ${1,, -4,, -1}$, поэтому можем сразу записать ее общее уравнение:
begin{equation*}
1cdot X-4cdot Y-1cdot (Z-1)=0,, Rightarrow ,, X-4Y-Z+1=0.
end{equation*}
Орт касательной: $vec{tau} =frac{1}{sqrt{2}}{1,,0,,1}$,
Орт главной нормали: $vec{nu} =frac{1}{sqrt{18}}{1,,-4,,-1}$,
Орт бинормали: $vec{beta }=frac{1}{3}{-2,,-1,,2}$.
Поскольку направляющий вектор главной нормали у нас был найден как векторное произведение направляющих векторов касательной и бинормали, тройка $vec{tau}$, $vec{nu}$, $vec{beta}$ не будет правой (по определению векторного произведения вектор $vec{tau}timesvec{beta}$ направлен так, что тройка векторов $vec{tau}$, $vec{beta}$, $vec{nu}=vec{tau}timesvec{beta}$ — правая). Изменим направление одного из векторов. Например, пусть
$$ vec{nu} =frac{1}{sqrt{18}}{-1,,4,,1}.$$
Теперь тройка $vec{tau}$, $vec{nu}$, $vec{beta}$ образует репер Френе для кривой $gamma$ в точке $M$.
Задача 2
Написать уравнение соприкасающейся плоскости к кривой
$$
x=t,,, y=frac{t^2}{2},,, z=frac{t^3}{3},
$$
проходящей через точку $N(0,0,9)$.
Решение задачи 2
Нетрудно заметить, что точка $N$ не принадлежит заданной кривой $gamma$. Следовательно соприкасающаяся плоскость проведена в какой-то точке $M(t=t_0)ingamma$, но при этом плоскость проходит через заданную точку $N(0,0,9)$.
Найдем значение параметра $t_0$.
Для этого запишем уравнение соприкасающейся плоскости, проведенной в произвольной точке $M(t=t_0)$. И учтем, что координаты $N$ должны удовлетворять полученному уравнению.
begin{align*}
gamma: vec{r}(t)&=left{ t,, frac{t^2}{2},, frac{t^3}{3}right} ,, Rightarrow \
vec{r’}(t)&=left{ 1,, t,, 3t^2right},\
vec{r»}(t)&=left{ 0,, 1,, 6tright}.
end{align*}
В точке $M(t=t_0)$:
begin{align*}
vec{r}(t_0)&=left{t_0,, frac{t_0^2}{2},, frac{t_0^3}{3}right} \
vec{r’}(t_0)&=left{1,, t_0,, 3t_0^2right},\
vec{r»}(t_0)&=left{0,, 1,, 6t_0right}.
end{align*}
Соприкасающаяся плоскость определяется векторами $vec{r’}(t_0)$, $vec{r»}(t_0)$, поэтому записываем определитель
begin{equation*}
left|
begin{array}{ccc}
X-t_0 & Y-t_0^2/2 & Z-t_0^3/3 \
&&\
1 & t_0 & t^2_0 \
&&\
0 & 1 & 2t_0
end{array}
right|=0 quad Rightarrow
end{equation*}
begin{equation*}
(X-t_0)cdot t_0^2 — (Y-t_0^2/2)cdot 2t_0 + (Z-t_0^3/3)=0.
end{equation*}
Подставляем вместо $X$, $Y$, $Z$ координаты точки $N$: $X=0$, $Y=0$, $Z=9$, упрощаем и получаем уравнение относительно $t_0$:
begin{equation*}
9-t_0^3/3=0 quad Rightarrow quad t_0=3.
end{equation*}
Подставив найденное $t_0$ в записанное ранее уравнение, запишем искомое уравнение соприкасающейся плоскости:
$$ 9X-6Y+Z-9=0. $$
Задача 3
Через точку $Pleft(-frac45,1,2right)$ провести плоскость, являющуюся спрямляющей для кривой:
$$
x=t^2,,, y=1+t,,, z=2t.
$$
Решение задачи 3
Как и в предыдущей задаче нам неизвестны координаты точки, в которой проведена спрямляющая плоскость к заданной кривой. Найдем их.
Спрямляющая плоскость определяется касательной и бинормалью, то есть векторами $vec{r’}(t_0)$ и $vec{r’}(t_0)timesvec{r»}(t_0)$.
В произвольной точке $M(t=t_0)$:
begin{align*}
vec{r}(t_0)&=left{t^2_0,, 1+t_0,, 2t_0right} \
vec{r’}(t_0)&=left{2t_0,, 1,, 2right},\
vec{r»}(t_0)&=left{2,, 0,, 0right}.
end{align*}
begin{equation*}
vec{r’}(t_0)timesvec{r»}(t_0)= left|
begin{array}{ccc}
vec{i} & vec{j} & vec{k} \
2t_0 & 1 & 2\
2 & 0 & 0
end{array}
right|= {0,, 4,, -2}
end{equation*}
Записываем уравнение спрямляющей плоскости:
begin{equation*}
left|
begin{array}{ccc}
X-t_0^2 & Y-1-t_0 & Z-2t_0 \
2t_0 & 1 & 2\
0 & 4 & -2
end{array}
right|= 0
end{equation*}
Раскрываем определитель. Подставляем в уравнение координаты точки $P$: $X=-4/5$, $Y=1$, $Z=2$. Упрощаем и получаем уравнение для нахождения $t_0$:
begin{equation*}
5t_0^2-8t_0-4=0 ,, Rightarrow ,, t_{01}=2,, t_{02}=-frac25.
end{equation*}
Уравнения соприкасающихся плоскостей к заданной кривой, проходящих через $P$, принимают вид:
begin{align*}
& 5X-4Y-8Z+24=0,\
& 25X+4Y+8Z=0.
end{align*}
Рассмотрим
плоскости, проходящие через касательную
кривой
(t)
в точке Р=Р (t0)
кривой. При изменении параметра t
получаем вектор
.
Для вектора
имеет
место формула Тейлора:
=+
+
,
0.
Точка
М(t0+∆t)
кривой и касательная
P,
ꞌ(t0)определяют плоскость
=P,
ꞌ(t0),
ꞌ(t0+∆t).
Нормальный
вектор плоскости есть
ꞌ(t0)ꞌ(t0+∆t).
Плоскость
P
,
ꞌ(t0),
ꞌꞌ(t0)
называетсясоприкасающейся
плоскостью
кривой в точке t0
.
Уравнение
соприкасающейся плоскости:
Практическая
часть нахождения соприкасающейся
плоскости в произвольной и в выбранной
точке
Найдем
формулу соприкасающейся плоскости в
произвольной и выбранной точке:
=
=0.
Мы
нашли формулу соприкасающейся плоскости
в произвольной точке. Теперь найдем в
произвольной точке, которую мы ранее
приняли равной
:
=
=0.
Соприкасающаяся
плоскость в выбранной точке найдена.
1.3 Кривизна и кручение кривой. Вычислительные формулы для кривизны и кручения.
Величина
k1
называется кривизной
или первой
кривизной
кривой r(s)
в точке Р; функция k1
= k1(s)
называется функцией
кривизны кривой
r(s),
k1
≥
0,
(s)
–вектор кривизны кривой
(s).
Величина
k2
называется кручением
кривой
ꞌ(s)
или второй
кривизной кривой
(s)
в точке Р. При движении точки Р по кривой
(s),
т.е. с изменением параметра s,
имеем функцию k2=
k2(s)
–
функцию кручения.
Знак величины k2
может
быть и положительным, и отрицательным
k1=(1);
k2
=
(2).
Практическая
часть вычисления кривизны и кручения
в произвольной и выбранной точке
Вычислим,
имея компоненты нашей кривой: кривизну
и кручение в произвольной и выбранной
точке.
Кривизна
кривой ()
в произвольной точке вычисляется
согласно формуле (1).Подставляем наши
координаты в эту формулу, получаем:
Мы
нашли кривизну кривой в произвольной
точке. Найдем кривизну выбранной точке,
подставив вместо
значение равное 1, которое мы выбрали
ранее.
Кривизна
кривой в выбранной точке найдена.
Кручение
кривой ()
в произвольной точке вычисляется
согласно формуле (2).Подставляем наши
координаты в эту формулу, получаем:
Мы
нашли кручение кривой в произвольной
точке. Найдем кручение выбранной точке,
подставив вместо
значение равное 1, которое мы выбрали
ранее.
Кручение
кривой в выбранной точке найдена.
1.4 Построение кривой
Изобразим
нашу кривую; она будет иметь следующий
вид:
-
2.Поверхности евклидова пространства.
Нам
даны компоненты поверхности: x=,y=,z=Найдем на ее примере уравнение касательной
плоскости и нормали, первую и вторую
квадратичные формы в произвольной и
выбранной точке. Вычислим полную и
среднюю кривизны поверхности. Изобразим
поверхность.
2.1 Касательная плоскость и нормаль поверхности.
Пусть
P
– точка регулярной поверхности
(u,v).
В этой точке имеем неколлинеарные
векторы
.
Для любой линии(t)
=
(u(t),v(t))
выполняется
.
Касательная
прямая
P
,
ꞌ(t)всякой кривой(t)
=
(u(t),v(t))
поверхности
(u,v)
лежит в плоскости
.
Касательные всех линий поверхности(u,v)
,проходящих через точку Р, образуют
плоскость.
Пусть
Р=(x0,y0,z0)
и производные
вычислены
в точке Р.
Тогда
уравнение касательной плоскости таково
.
Прямая
называется нормалью поверхности(u,v)
в точке Р. Ее уравнение
Нахождение
касательной плоскости и нормали в
произвольной и выбранной точке.
Вычислим
производные по u
и v.
Получим следующее:
Возьмем
точки
=,=.
Найдем
касательную плоскость в произвольной
точке:
Уравнение
касательной плоскости в произвольной
точке найдено.
Найдем
в выбранной точке, подставив значения
и расписавsh
и ch:
Мы
нашли уравнение касательной плоскости
в выбранной точке.
Теперь
найдем уравнение нормали в произвольной
и выбранной точке, используя теоретическую
часть нашего вопроса, получим:
Получено
уравнение нормали в произвольной точке.
Найдем в выбранной:
Уравнение
нормали в выбранной точке найдено.
Соседние файлы в папке курсач docx180
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Определение.
Плоскость, проходящую через касательную и главную нормаль в данной точке кривой, называют соприкасающейся плоскостью.
Отсюда и из определения главной нормали следует, что соприкасающаяся плоскость определена для точек кривой, в которых кривизна (kneq 0).
Утверждение 1.
Если гладкая кривая (Gamma={textbf{r}=textbf{r}(t),;alphaleq tleqbeta}) дважды дифференцируема и ее кривизна в точке (M_{0}=M(t_{0})) не равна нулю, то уравнение соприкасающейся плоскости (Q) в точке (M_{0}) имеет вид
$$
(r-r(t_0),r'(t_0),r″(t_0))=0.label{ref41}
$$
Доказательство.
(circ) Если (s=s(t)) — переменная длина дуги кривой (Gamma), то дифференцируя (r(t)) как сложную функцию и используя эту и эту формулы, получаем
$$
textbf{r}_{t}’=textbf{r}_{s}’s_{t}’=s_{t}’tau,quad textbf{r}_{tt}″=frac{d}{dt}(s_{t}’tau)=s_{tt}″tau+s_{t}’tau_{s}’s_{t}’=s_{tt}″tau+(s_{t}’)^{2}knu,nonumber
$$
где индексы указывают, по каким переменным производится дифференцирование. Отсюда следует, что векторы (textbf{r}_{t}’) и (textbf{r}_{tt}″) параллельны плоскости (Q). По условию (kneq 0), и поэтому ([textbf{r}_{t}’,textbf{r}_{tt}″]neq 0). Следовательно, векторы (textbf{r}_{t}’) и (textbf{r}_{tt}″) не коллинеарны.
Так как векторы (textbf{r}-textbf{r}(t_{0}), textbf{r}'(t_{0})=textbf{r}_{t}'(t_{0}), textbf{r}″(t_0)=textbf{r}_{tt}″(t_{0})) параллельны плоскости (Q) (рис. 22.8), то их смешанное произведение равно нулю, то есть во всех точках плоскости (Q) (и только в этих точках) должно выполняться условие eqref{ref41}. (bullet)
Запишем уравнение eqref{ref41} в координатной форме:
$$
begin{vmatrix}x-x(t_0)&y-y(t_0)&z-z(t_0)\x'(t_0)&y'(t_0)&z'(t_0)\x″(t_0)&y″(t_0)&z″(t_0)end{vmatrix}=0nonumber
$$
VMath
Инструменты сайта
Основное
Навигация
Информация
Действия
Содержание
Касательная, нормальная плоскость, соприкасающаяся плоскость, бинормаль, главная нормаль, репер Френе
Краткие теоретические сведения
Кривая в пространстве
Рассмотрим в пространстве гладкую кривую $gamma$.
Пусть точка $M$ принадлежит данной кривой и отвечает значению параметра $t=t_0$. Тогда радиус-вектор и координаты данной точки равны:
begin vec=vec(t_0), quad x_0=x(t_0),, y_0=y(t_0), , z_0=z(t_0). end
Пусть в точке $M$ $ vec(t_0)neqvec<0>$, то есть $M$ не является особой точкой.
Касательная к кривой
Касательная к кривой, проведенная в точке $M$, имеет направляющий вектор коллинеарный вектору $vec(t_0)$.
Пусть $vec$ — радиус-вектор произвольной точки касательной, тогда уравнение этой касательной имеет вид
Здесь $lambdain(-infty,+infty)$ — параметр, определяющий положение точки на касательной (то есть разным значениям $lambda$ будут соответствовать разные значения $vec$).
Если $vec=$, $M = (x(t_0), y(t_0), z(t_0))$, то можно записать уравнение касательной в каноническом виде:
Нормальная плоскость
Плоскость, проходящую через данную точку $M$ кривой $gamma$ перпендикулярно касательной в этой точке, называют нормальной плоскостью.
Пусть $vec$ — радиус-вектор произвольной точки нормальной плоскости, тогда ее уравнение можно записать в векторном виде через скалярное произведение векторов $vec-vec(t_0)$ и $vec(t_0)$:
Если расписать покоординатно, то получим следующее уравнение:
begin x'(t_0)cdot(X-x(t_0))+y'(t_0)cdot(Y-y(t_0))+z'(t_0)cdot(Z-z(t_0))=0. end
Соприкасающаяся плоскость
Плоскость, проходящую через заданную точку $M$ кривой $gamma$ параллельно векторам $vec(t_0)$, $vec(t_0)$, когда они неколлинеарны, называют соприкасающейся плоскостью кривой.
Если $vec$ — радиус-вектор произвольной точки соприкасающейся плоскости, то ее уравнение можно записать через смешанной произведение трех компланарных векторов $vec-vec(t_0)$, $vec(t_0)$, $vec(t_0)$:
Зная координаты точки и векторов, определяющих плоскость, запишем смешанное произведение через определитель. Получим следующее уравнение соприкасающейся плоскости:
begin left| begin X-x(t_0) & Y-y(t_0) & Z-z(t_0) \ x'(t_0) & y'(t_0) & z'(t_0)\ x»(t_0) & y»(t_0) & z»(t_0) \ end right|=0 end
Бинормаль и главная нормаль
Прямая, проходящая через точку $M$ кривой $gamma$ перпендикулярно касательной к кривой в этой точке, называется нормалью.
Таких кривых можно провести бесконечно много, все они образуют нормальную плоскость. Мы выделим среди нормалей две — бинормаль и главную нормаль.
Нормаль, перпендикулярную соприкасающейся плоскости, называют бинормалью.
Нормаль, лежащую в соприкасающейся плоскости, называют главной нормалью.
Из определения бинормали (перпендикулярна касательной и перпендикулярна соприкасающейся плоскости) следует, что в качестве ее направляющего вектора мы можем взять векторное произведение $ vec(t_0)timesvec(t_0)$, тогда ее уравнение можно записать в виде:
Как и раньше, $vec$ — радиус-вектор произвольной точки бинормали. Каноническое уравнение прямой:
Из определения главной нормали (перпендикулярна касательной и перпендикулярна бинормали) следует, что в качестве ее направляющего вектора можно взять векторное произведение $vec(t_0) timesleft[vec(t_0),vec(t_0)right]$:
Уравнение в каноническом виде распишите самостоятельно.
Спрямляющая плоскость
Плоскость, проходящую через заданную точку $M$ кривой $gamma$ перпендикулярно главной нормали, называют спрямляющей плоскостью.
Другое определение: Плоскость, определяемую касательной к кривой и бинормалью в той же точке, называют спрямляющей плоскостью.
Второе определение позволяет записать уравнение спрямляющей плоскости через смешанное произведение трех компланарных векторов, определяющих эту плоскость $vec-vec(t_0)$, $vec(t_0)$, $vec(t_0)timesvec(t_0)$: begin left(vec-vec(t_0),, vec(t_0),, vec(t_0)timesvec(t_0)right)=0. end Зная координаты соответствующих векторов, можно легко записать это смешанное произведение через определитель, раскрыв который, вы получите общее уравнение спрямляющей плоскости.
Репер Френе
Орт (то есть единичный вектор) касательной обозначим: $$ vec<tau>=frac<vec(t_0)><|vec(t_0)|>. $$ Орт бинормали: $$ vec<beta>=frac<vec(t_0)timesvec(t_0)><|vec(t_0)timesvec(t_0)|>. $$ Орт главной нормали: $$ vec<nu>=frac<vec(t_0) times[vec(t_0),,vec(t_0)]><|vec(t_0) times [vec(t_0),,vec(t_0)]|>. $$
Правая тройка векторов $vec<tau>$, $vec<nu>$, $vec<beta>$ называется репером Френе.
Решение задач
Задача 1
Кривая $gamma$ задана параметрически:
Точка $M$, принадлежащая кривой, соответствует значению параметра $t=0$. Записать уравнения касательной, бинормали, главной нормали, нормальной плоскости, соприкасающейся плоскости и спрямляющей плоскости, проведенных к данной кривой в точке $M$. Записать векторы репера Френе.
Решение задачи 1
Задачу можно решать разными способами, точнее в разном порядке находить уравнения прямых и плоскостей.
Начнем с производных.
begin 1cdot X+0cdot Y+1cdot (Z-1)=0,, Rightarrow ,, X+Z=1. end
begin left| begin X-0 & Y-0 & Z-1 \ 1 & 0 & 1\ 0 & 2 & 1 \ end right|=0 end Раскрываем определитель, получаем уравнение: begin -2X-Y+2Z-2=0 end
begin 1cdot X-4cdot Y-1cdot (Z-1)=0,, Rightarrow ,, X-4Y-Z+1=0. end
Поскольку направляющий вектор главной нормали у нас был найден как векторное произведение направляющих векторов касательной и бинормали, тройка $vec<tau>$, $vec<nu>$, $vec<beta>$ не будет правой (по определению векторного произведения вектор $vec<tau>timesvec<beta>$ направлен так, что тройка векторов $vec<tau>$, $vec<beta>$, $vec<nu>=vec<tau>timesvec<beta>$
— правая). Изменим направление одного из векторов. Например, пусть
Теперь тройка $vec<tau>$, $vec<nu>$, $vec<tilde<beta>>$ образует репер Френе для кривой $gamma$ в точке $M$.
Задача 2
Написать уравнение соприкасающейся плоскости к кривой $$ x=t,,, y=frac<2>,,, z=frac<3>, $$ проходящей через точку $N(0,0,9)$.
Решение задачи 2
Нетрудно заметить, что точка $N$ не принадлежит заданной кривой $gamma$. Следовательно соприкасающаяся плоскость проведена в какой-то точке $M(t=t_0)ingamma$, но при этом плоскость проходит через заданную точку $N(0,0,9)$.
Найдем значение параметра $t_0$.
Для этого запишем уравнение соприкасающейся плоскости, проведенной в произвольной точке $M(t=t_0)$. И учтем, что координаты $N$ должны удовлетворять полученному уравнению.
Соприкасающаяся плоскость определяется векторами $vec(t_0)$, $vec(t_0)$, поэтому записываем определитель begin left| begin X-t_0 & Y-t_0^2/2 & Z-t_0^3/3 \ &&\ 1 & t_0 & t^2_0 \ &&\ 0 & 1 & 2t_0 end right|=0 quad Rightarrow end
begin (X-t_0)cdot t_0^2 — (Y-t_0^2/2)cdot 2t_0 + (Z-t_0^3/3)=0. end Подставляем вместо $X$, $Y$, $Z$ координаты точки $N$: $X=0$, $Y=0$, $Z=9$, упрощаем и получаем уравнение относительно $t_0$: begin 9-t_0^3/3=0 quad Rightarrow quad t_0=3. end Подставив найденное $t_0$ в записанное ранее уравнение, запишем искомое уравнение соприкасающейся плоскости: $$ 9X-6Y+Z-9=0. $$
Задача 3
Через точку $Pleft(-frac45,1,2right)$ провести плоскость, являющуюся спрямляющей для кривой: $$ x=t^2,,, y=1+t,,, z=2t. $$
Решение задачи 3
Как и в предыдущей задаче нам неизвестны координаты точки, в которой проведена спрямляющая плоскость к заданной кривой. Найдем их.
Спрямляющая плоскость определяется касательной и бинормалью, то есть векторами $vec(t_0)$ и $vec(t_0)timesvec(t_0)$.
Записываем уравнение спрямляющей плоскости: begin left| begin X-t_0^2 & Y-1-t_0 & Z-2t_0 \ 2t_0 & 1 & 2\ 0 & 4 & -2 end right|= 0 end
Раскрываем определитель. Подставляем в уравнение координаты точки $P$: $X=-4/5$, $Y=1$, $Z=2$. Упрощаем и получаем уравнение для нахождения $t_0$: begin 5t_0^2-8t_0-4=0 ,, Rightarrow ,, t_<01>=2,, t_<02>=-frac25. end
Уравнения соприкасающихся плоскостей к заданной кривой, проходящих через $P$, принимают вид: begin & 5X-4Y-8Z+24=0,\ & 25X+4Y+8Z=0. end
Соприкасающаяся плоскость
Плоскость, проходящую через касательную и главную нормаль в данной точке кривой, называют соприкасающейся плоскостью.
Отсюда и из определения главной нормали следует, что соприкасающаяся плоскость определена для точек кривой, в которых кривизна (kneq 0).
Если гладкая кривая (Gamma=<textbf=textbf(t),;alphaleq tleqbeta>) дважды дифференцируема и ее кривизна в точке (M_<0>=M(t_<0>)) не равна нулю, то уравнение соприкасающейся плоскости (Q) в точке (M_<0>) имеет вид
$$
(r-r(t_0),r'(t_0),r″(t_0))=0.label
$$
(circ) Если (s=s(t)) — переменная длина дуги кривой (Gamma), то дифференцируя (r(t)) как сложную функцию и используя эту и эту формулы, получаем
$$
textbf_’=textbf_’s_’=s_’tau,quad textbf_″=frac
$$
где индексы указывают, по каким переменным производится дифференцирование. Отсюда следует, что векторы (textbf_’) и (textbf_″) параллельны плоскости (Q). По условию (kneq 0), и поэтому ([textbf_’,textbf_″]neq 0). Следовательно, векторы (textbf_’) и (textbf_″) не коллинеарны.
Рис. 22.8
Так как векторы (textbf-textbf(t_<0>), textbf'(t_<0>)=textbf_'(t_<0>), textbf″(t_0)=textbf_″(t_<0>)) параллельны плоскости (Q) (рис. 22.8), то их смешанное произведение равно нулю, то есть во всех точках плоскости (Q) (и только в этих точках) должно выполняться условие eqref. (bullet)
Запишем уравнение eqref в координатной форме:
$$
beginx-x(t_0)&y-y(t_0)&z-z(t_0)\x'(t_0)&y'(t_0)&z'(t_0)\x″(t_0)&y″(t_0)&z″(t_0)end=0nonumber
$$
Написать уравнение соприкасающейся плоскости в произвольной точке
Пространственные кривые. Задание пространственной кривой. Регулярное задание кривой. Регулярная кривая. Неявное задание пространственной кривой. Касательная к пространственной кривой. Единичный вектор касательной. Бинормаль и главная нормаль и их единичные векторы. Нормальная, соприкасающаяся и спрямляющая плоскости. Ускорение при криволинейном движении и векторы сопровождающего трехгранника. Кривизна пространственной кривой. Теорема о прямой. Кручение пространственной кривой. Теорема о плоской кривой. Формулы Френе. Естественный параметр и натуральные уравнения кривой.
Основные определения, результаты, комментарии
Элементарной кривой в пространстве называется образ открытого интервала при его гомеоморфизме в евклидово трехмерное пространство.
Общей кривой на плоскости называется подмножество евклидова пространства, локально гомеоморфное прямой.
Как и в случае плоских кривых, всякая общая кривая допускает покрытие элементарными кривыми.
Кривая задана неявным способом
если координаты каждой точки кривой удовлетворяют обоим уравнениям .
Наиболее удобны и наиболее часто используются векторно-параметрическое представление
и координатно-параметрическое представление
отличающиеся лишь формой записи.
Определение регулярности параметрического представления пространственной кривой полностью аналогично плоскому случаю.
Неявное задание (5) кривой регулярно в точке , если матрица частных производных
имеет в этой точке ранг 2.
Понятия длины кривой, ее естественной параметризации, а также определение касательной полностью аналогичны тем же понятиям для плоских кривых. Направляющий вектор касательной — это, по-прежнему, производная , имеющая физический смысл скорости, если параметрическое представление кривой интерпретировать как кинематическое описание движения точки.
Нормальная плоскость кривой в точке — это плоскость, проходящая через точку ортогонально касательной.
Соприкасающейся плоскостью кривой в ее точке (рис. 17) называется содержащая эту точку плоскость , удовлетворяющая соотношению
где — точка, принадлежащая элементарной окрестности точки .
Спрямляющей плоскостью кривой в ее точке называется содержащая эту точку плоскость, ортогональная нормальной и соприкасающейся плоскостям в этой точке.
Прямые, ортогональные соприкасающейся и спрямляющей плоскостям в точке , называются соответственно бинормалью и главной нормалью кривой в точке .
Нормальная, соприкасающаяся и спрямляющая плоскости образуют сопровождающий трехгранник кривой , или трехгранник Френе , в точке , и называются его гранями . Касательная, бинормаль и главная нормаль называются ребрами сопровождающего трехгранника (рис. 18).
Уравнения элементов сопровождающего трехгранника вычисляются по следующим правилам:
Касательная | Нормальная плоскость |
Бинормаль | Соприкасающаяся плоскость |
Главная нормаль | Спрямляющая плоскость |
Единичные векторы
касательной |
главной нормали |
бинормали |
Если параметризация естественная , то вектор главной нормали может быть вычислен по формуле .
Вектор ускорения может быть разложен в сумму двух составляющих: нормальной (ортогональной вектору скорости) и тангенциальной (параллельной вектору скорости). При этом нормальная составляющая ускорения сонаправлена единичному вектору главной нормали.
Пусть и — две различные точки кривой , соответствующие значениям и естественного параметра. Тогда — длина дуги кривой, заключенной между точками и . Пусть — величина угла, образуемого касательной к кривой в точке по отношению к касательной в точке . Кривизна кривой в ее точке — это предел
В отличие от кривизны плоской кривой, кривизна пространственной кривой всегда положительна . Кривизна пространственной кривой в регулярной точке может быть вычислена по формулам:
если параметризация естественная.
Пусть и — две различные точки кривой , соответствующие значениям естественного параметра и соответственно, и — единичные векторы бинормалей в этих точках (рис. 19).
Обозначим за величину угла между ними. Очевидно, этот угол равен углу, образованному соприкасающимися плоскостями в точках и .
Абсолютным кручением кривой в точке называют величину
Кручение кривой определяется в соответствии со следующим правилом: если при движении вдоль кривой по направлению возрастания параметра вектор бинормали поворачивается в сторону, указываемую вектором , в противном случае. Наглядно это означает, что кривая с положительным кручением «закручена» по правилу правого винта.
Кручение кривой в точке, соответствующей значению параметра , может быть вычислено по следующим формулам:
Для производных векторов , по естественному параметру справедливы формулы Френе :
Уравнения и называются натуральными уравнениями кривой. По натуральным уравнениям вид кривой может быть восстановлен с точностью до перемещения. В большинстве случаев решение такой задачи оказывается очень сложным.
1. Для данных представлений кривых укажите область допустимых значений параметра и область значений параметра, в которой задание кривой регулярно.
1)
2)
3)
4) .
2. Кривая задана неявными уравнениями. Изобразите на рисунке вид кривой. Постройте какое-нибудь параметрическое представления этой кривой. Укажите область допустимого изменения параметра и область регулярности параметризации.
1)
2) R,;; y>0;$ —> R,;; y>0;$»>
3)
3. Кривая Вивиани образована пересечением сферы радиуса и цилиндра радиуса , проходящего через центр сферы. Постройте параметрическое представление кривой Вивиани.
4. Винтовая линия. Окружность радиуса движется так, что ее центр перемещается вдоль оси , плоскость ортогональна оси . По окружности равномерно движется точка. В начальный момент времени точка имеет координаты . Составьте параметрические уравнения кривой, описываемой данной точкой.
5. Кривая задана пересечением цилиндрических поверхностей и Постройте параметрическое представление кривой , не содержащее радикалов, и дайте ее изображение.
6. Покажите, что линия
принадлежит сфере и является линией пересечения параболического и кругового цилиндров.
7. Найдите длину дуги линии
между плоскостями и .
8. Покажите, что кривая замкнута и имеет длину .
9. Запишите в естественной параметризации
a) винтовую линию ;
б) гиперболическую винтовую линию .
10. Кривая задана параметрически: 0. end —>
Напишите уравнения
а) касательной и нормальной плоскости в точке (1/4; 1/3; 1/2);
б) касательной, параллельной плоскости .
11. Найдите линию, по которой касательные к линии
Сферической индикатрисой данной кривой называется геометрическое место концов единичных касательных векторов, отложенных от начала координат.
12. Дана винтовая линия
a) Напишите уравнение семейства касательных этой кривой;
б) убедитесь в том, что все касательные к винтовой линии образуют с плоскостью один и тот же угол;
в) составьте уравнение кривой, образуемой точками пересечения касательных с плоскостью ;
г) найдите сферическую индикатрису винтовой линии.
13. Докажите, что все нормальные плоскости кривой Вивиани (задача 3) проходят через начало координат.
14. Составьте уравнения бинормали и главной нормали кривой в указанной точке:
1)
2)
3) ;
4)
15. Найдите точки на кривой
в которых бинормаль параллельна плоскости .
16. Материальная точка движется в пространстве по закону
Укажите моменты времени, в которые
а) ее скорость равна нулю, и сравните их со значениями параметра , при которых параметризация траектории нерегулярна;
б) нормальное ускорение точки ортогонально .
17. Составьте уравнения ребер и граней сопровождающего трехгранника данной кривой в указанной точке
1)
2)
3)
4)
18. Для данной кривой вычислите кривизну в данной точке сначала по готовой формуле, а затем по следующему плану: 1) составьте уравнение поля единичных касательных векторов данной кривой; 2) вычислите абсолютную величину производной этого поля по естественному параметру. Результаты сравните.
1) 0,;; bne 0, ;; t_0=pi/2$ —> 0,;; bne 0, ;; t_0=pi/2$»>
2)
19. Для кривых задачи 18 вычислите абсолютное кручение в данной точке сначала по готовой формуле, а затем по следующему плану: 1) составьте уравнение поля единичных векторов бинормали данной кривой; 2) вычислите абсолютную величину производной этого поля по естественному параметру. Результаты сравните.
20. Вычислите кривизну и кручение данной кривой произвольной регулярной точке:
1) 0,;; bne 0$ —> 0,;; bne 0$»>;
2)
3)
4) .
21. Найдите точки распрямления следующих кривых:
1)
2)
3) .
22. Найдите точки уплощения и дуги, на которых кручение сохраняет свой знак, у следующих кривых:
1)
2)
23. Напишите натуральные уравнения, которым удовлетворяют следующие кривые:
1) 0,;; bne 0$ —> 0,;; bne 0$»>;
2)
24. Найдите точки на кривой
в которых кривизна принимает локально минимальное значение.
25. Найдите точки на кривой
в которых радиус кривизны достигает локального максимума.
26. Докажите, что следующие кривые плоские, и составьте уравнения плоскостей, в которых они расположены:
27. Найдите такую функцию , чтобы кривая
была плоской. Решите задачу двумя способами: 1) используя условие плоскости и 2) используя тот факт, что искомая кривая принадлежит круговому цилиндру (составьте его уравнение!). Результаты сравните.
28. Докажите, что если все соприкасающиеся плоскости линии проходят через неподвижную точку , то линия плоская.
29. Докажите, что если соприкасающиеся плоскости линии (отличной от прямой) параллельны некоторому вектору , то линия плоская.
30. Докажите, что если все нормальные плоскости линии параллельны некоторому вектору , то линия или прямая, или плоская.
http://univerlib.com/mathematical_analysis/derivative/osculating_plane/
http://cito-web.yspu.org/link1/metod/met21/node7.html