Как составить уровень диссоциации

Электролитической диссоциацией называют процесс, в ходе которого молекулы растворенного вещества
распадаются на ионы в результате взаимодействия с растворителем (воды). Диссоциация является обратимым процессом.

Диссоциация обуславливает ионную проводимость растворов электролитов. Чем больше молекул вещества распадается на ионы, тем
лучше оно проводит электрический ток и является более сильным электролитом.

В общем виде процесс электролитической диссоциации можно представить так:

KA ⇄ K+ (катион) + A (анион)

NaCl ⇄ Na+ + Cl

Электролитическая диссоциация и неэлектролит

Замечу, что сила кислоты определяется способностью отщеплять протон. Чем легче кислота его отщепляет, тем она сильнее.

У HF крайне затруднен процесс диссоциации из-за образования водородных связей между F (самым электроотрицательным элементом) одной молекулы
и H другой молекулы.

Ступени диссоциации

Некоторые вещества диссоциируют на ионы не в одну стадию (как NaCl), а ступенчато. Это характерно для многоосновных кислот: H2SO4,
H3PO4.

Посмотрите на ступенчатую диссоциацию ортофосфорной кислоты:

Ступенчатая диссоциация

Важно заметить, что концентрация ионов на разных ступенях разная. На первых ступенях ионов всегда много, а до последних доходят не все молекулы.
Поэтому в растворе ортофосфорной кислоты концентрация дигидрофосфат-анионов будет больше, чем фосфат-анионов.

Для серной кислоты диссоциация будет выглядеть так:

Ступени диссоциации серной кислоты

Для средних солей диссоциация чаще всего происходит в одну ступень:

Na3PO4 ⇄ 3Na+ + PO43-

Из одной молекулы ортофосфата натрия образовалось 4 иона.

K2SO4 ⇄ 2K+ + SO42-

Из одной молекулы сульфата калия образовалось 3 иона.

Электролиты и неэлектролиты

Химические вещества отличаются друг от друга по способности проводить электрический ток. Исходя из этой способности,
вещества делятся на электролиты и неэлектролиты.

Проведения тока через электролит и неэлектролит

Электролиты — жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический
ток. Связи в их молекулах обычно ионные или ковалентные сильнополярные.

К ним относятся соли, сильные кислоты и щелочи (растворимые основания).

Степень диссоциации сильных электролитов составляет от 0,3 до 1, что означает 30-100% распад молекул, попавших в раствор, на ионы.

Сильные электролиты

Неэлектролиты — вещества недиссоциирующие в растворах на ионы. В молекулах эти веществ связи ковалентные неполярные или слабополярные.

К неэлектролитам относятся многие органические вещества, слабые кислоты, нерастворимые в воде основания и гидроксид аммония.

Степень их диссоциации до 0 до 0.3, то есть в растворе неэлектролита на ионы распадается до 30% молекул. Они плохо или вообще не проводят
электрический ток.

Слабые электролиты

Молекулярное, полное и сокращенное ионные уравнения

Молекулярное уравнение представляет собой запись реакции с использованием молекул. Это те уравнения, к которым мы привыкли и которыми
наиболее часто пользуемся. Примеры молекулярных уравнений:

Молекулярное уравнение

Полные ионные уравнения записываются путем разложения молекул на ионы. Запомните, что нельзя раскладывать на ионы:

  • Слабые электролиты (в их числе вода)
  • Осадки
  • Газы

Полное ионное уравнение

Сокращенное ионное уравнение записывается путем сокращения одинаковых ионов из левой и правой части. Просто, как в математике — остается только то,
что сократить нельзя.

Сокращенное ионное уравнение

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.

Степень диссоциации

Классификация электролитов

Диссоциация электролитов

Константа диссоциации

Примеры решения задач

Задачи для самостоятельного решения

Степень диссоциации

Вещества, которые в растворах или расплавах полностью или частично распадаются на ионы, называются электролитами.

Степень диссоциации α — это отношение числа молекул, распавшихся на ионы N′ к общему числу растворенных молекул N:

α = N′/N

Степень диссоциации выражают в процентах или в долях единицы. Если α =0, то диссоциация отсутствует и вещество не является электролитом. В случае если α =1, то электролит полностью распадается на ионы.

Классификация электролитов

Согласно современным представлениям теории растворов все электролиты делятся на два класса: ассоциированные (слабые) и неассоциированные (сильные). Неассоциированные электролиты в разбавленных растворах практически полностью диссоциированы на ионы. Для этого класса электролитов a близко к единице (к 100 %). Неассоциированными электролитами являются, например, HCl, NaOH, K2SO4 в разбавленных водных растворах.

Ассоциированные электролиты подразделяются на три типа:

      1. Слабые электролиты существуют в растворах как в виде ионов, так и в виде недиссоциированных молекул. Примерами ассоциированных электролитов этой группы являются, в частности, Н2S, Н2SO3, СН3СOОН в водных растворах.
      2. Ионные ассоциатыобразуются в растворах путем ассоциации простых ионов за счет электростатического взаимодействия. Ионные ассоциаты возникают в концентрированных растворах хорошо растворимых электролитов. В результате в растворе находятся как простые ионы, так и ионные ассоциаты. Например, в концентрированном водном растворе КCl образуются простые ионы К+, Cl , а также возможно образование ионных пар (К+Cl ), ионных тройников (K2Cl+, KCl2 ) и ионных квадруполей (K2Cl2, KCl32- , K3Cl2+).
      3. Комплексные соединения(как ионные, так и молекулярные), внутренняя сфера которых ступенчато диссоциирует на ионные и (или) молекулярные частицы.
        Примеры комплексных ионов: [Cu(NH3)4]2+[Fe(CN)6]3+[Cr(H2O)3Cl2]+.

При таком подходе один и тот же электролит может относиться к различным типам в зависимости от концентрации раствора, вида растворителя и температуры. Подтверждением этому являются данные, приведенные в таблице.

Таблица. Характеристика растворов KI в различных растворителях

Концентрация электролита, С, моль/л Температура

t,оС

Растворитель Тип электролита
0,01 25 Н2О Неассоциированный (сильный)
5 25 Н2О Ионный ассоциат
0,001 25 С6Н6 Ассоциированный (слабый)

Приближенно, для качественных рассуждений можно пользоваться устаревшим делением электролитов на сильные и слабые. Выделение группы электролитов “средней силы” не имеет смысла. Эти электролиты являются ассоциированными. К слабым электролитам обычно относят электролиты, степень диссоцииации которых мала α<<1.

Таким образом, к сильным электролитам относятся разбавленные водные растворы почти всех хорошо растворимых в воде солей, многие разбавленные водные растворы минеральных кислот (НСl, HBr, НNО3, НСlO4 и др.), разбавленные водные растворы гидроксидов щелочных металлов. К слабым электролитам принадлежат все органические кислоты в водных растворах, некоторые водные растворы неорганических кислот, например, H2S, HCN, H2CO3, HNO2, HСlO и др. К слабым электролитам относится и вода.

Диссоциация электролитов

Уравнение реакции диссоциации сильного электролита можно представить следующим образом. Между правой и левой частями уравнения реакции диссоциации сильного электролита ставится стрелка или знак равенства:

HCl → H+ + Cl 

Na2SO3 = 2Na+ + SO32- 

Допускается также ставить знак обратимости, однако в этом случае указывается направление, в котором смещается равновесие диссоциации, или указывается, что α≈1. Например:

NaOH → Na+ + OH 

Диссоциация кислых и основных солей в разбавленных водных растворах протекает следующим образом:

NaHSO3 → Na+ + HSO3— 

Анион кислой соли будет диссоциировать в незначительной степени, поскольку является ассоциированным электролитом:

HSO3  → H+ + SO32- 

Аналогичным образом происходит диссоциация основных солей:

Mg(OH)Cl → MgOH+ + Cl 

Катион основной соли подвергается дальнейшей диссоциации как слабый электролит:

MgOH+  → Mg2+ + OH 

Двойные соли в разбавленных водных растворах рассматриваются как неассоциированные электролиты:

KAl(SO4)2  → K+ + Al3+ + 2SO42- 

Комплексные соединения в разбавленных водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы:

K3[Fe(CN)6]  → 3K+ + [Fe(CN)6]3- 

В свою очередь, комплексный ион в незначительной степени подвергается дальнейшей диссоциации:

[Fe(CN)6]3-  → Fe3+ + 6CN 

Константа диссоциации

При растворении слабого электролита КА в растворе установится равновесие:

КА  ↔ К+ + А 

которое количественно описывается величиной константы равновесия Кд, называемой константой диссоциации:

Kд = [К+] · [А] /[КА]                             (2)

Константа диссоциации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в растворе слабого электролита. Например, в растворе азотистой кислоты HNO2 ионов Н+ больше, чем в растворе синильной кислоты HCN, поскольку К(HNO2) = 4,6·10 4, а К(HCN) = 4,9·10 10.

Для слабых I-I электролитов (HCN, HNO2, CH3COOH) величина константы диссоциации Кд связана со степенью диссоциации α  и концентрацией электролита c уравнением Оствальда:

Кд = (αс)/(1-α)        (3)

Для практических расчетов при условии, что α<<1 используется приближенное уравнение:

Кд = αс                (4)

Поскольку процесс диссоциации слабого электролита обратим, то к нему применим принцип Ле Шателье. В частности, добавление CH3COONa к водному раствору CH3COOH вызовет подавление собственной диссоциации уксусной кислоты и уменьшение концентрации протонов. Таким образом, добавление в раствор ассоциированного электролита веществ, содержащих одноименные ионы, уменьшает его степень диссоциации.

Следует отметить, что константа диссоциации слабого электролита связана с изменением энергии Гиббса в процессе диссоциации этого электролита соотношением:

ΔGT0 = — RTlnKд                    (5)

Уравнение (5) используется для расчета констант диссоциации слабых электролитов по термодинамическим данным.

Примеры решения задач

Задача 1. Определите концентрацию ионов калия и фосфат-ионов в 0,025 М растворе K3PO4.

Решение. K3PO4 – сильный электролит и в водном растворе диссоциирует полностью:

K3PO4 → 3К+ + РО43- 

Следовательно, концентрации ионов К+ и РО43- равны соответственно 0,075М и 0,025М.

Задача 2. Определите степень диссоциации αд и концентрацию ионов ОН (моль/л) в 0,03 М растворе NH3·H2О при 298 К, если при указанной температуре Кд(NH3·H2О) = 1,76× 10 5.

Решение. Уравнение диссоциации электролита:

NH3·H2О → NH4+ + OH

Концентрации ионов: [NH4+] = αС ; [OH] = αС , где С – исходная концентрация NH3·H2О моль/л. Следовательно:

Kд = αС · αС /(1 — αС)

Поскольку α << 1, то:

Кд α 2С

Константа диссоциации зависит от температуры и от природы растворителя, но не зависит от концентрации растворов NH3·H2О. Закон разбавления Оствальда выражает зависимость α слабого электролита от концентрации.

α = √(Кд / С) = √(1,76× 10 5 / 0,03) = 0,024 или 2,4 %

[OH] = αС, откуда [OH ] = 2,4·10— 2·0,03 = 7,2·10-4 моль/л.

Задача 3. Определите константу диссоциации уксусной кислоты, если степень диссоциации CH3CОOH в 0,002 М растворе равна 9,4 %.

Решение. Уравнение диссоциации кислоты:

CH3CОOH  → СН3СОО + Н+.

α = [Н+] / Сисх(CH3CОOH)

откуда [Н+] = 9,4·102·0,002 = 1,88·10-4 М.

Так как [CH3CОO] = [Н+] и [CH3CОOH] ≈ Сисх(CH3CОOH), то:

Kд = [Н+]2  / Сисх(CH3CОOH) 

Константу диссоциации можно также найти по формуле: Кд ≈ α 2С.

Задача 4. Константа диссоциации HNO2 при 298К равна 4,6× 10— 4. Найдите концентрацию азотистой кислоты, при которой степень диссоциации HNO2 равна 5 %.

Решение.

Кд =α 2С , откуда получаем Сисх(HNO2) = 4,6·10— 4/(5·10— 2)2 = 0,184 М.

Задача 5. На основе справочных данных рассчитайте константу диссоциации муравьиной кислоты при 298 К.

Решение. Уравнение диссоциации муравьиной кислоты

НСООН →Н+ + СООН— 

В “Кратком справочнике физико–химических величин” под редакцией А.А. Равделя и А.М. Пономаревой приведены значения энергий Гиббса образований ионов в растворе, а также гипотетически недиссоциированных молекул. Значения энергий Гиббса для муравьиной кислоты и ионов Н+ и СООН в водном растворе приведены ниже:

Вещество, ион НСООН Н+ СООН
ΔGT0, кДж/моль — 373,0 0 — 351,5

Изменение энергии Гиббса процесса диссоциации равно:

ΔGT0 = — 351,5- (- 373,0) = 21,5 кДж/моль.

Для расчета константы диссоциации используем уравнение (5). Из этого уравнения получаем:

lnKд = — Δ GT0/RT= — 21500/(8,31 298) = — 8,68

Откуда находим: Kд = 1,7× 10— 4.

Задачи для самостоятельного решения

1. К сильным электролитам в разбавленных водных растворах относятся:

  1. СН3СOOH
  2. Na3PO4
  3. NaCN
  4. NH3
  5. C2H5OH
  6. HNO2
  7. HNO3

13.2. К слабым электролитам в водных растворах относятся:

  1. KAl(SO4)2
  2. NaNO3
  3. HCN
  4. NH4Cl
  5. C2H5OH
  6. H2SO3
  7. H2SO4

3. Определите концентрацию ионов NH4+ в 0,03 М растворе (NH4)2Fe(SO4)2;

4. Определите концентрацию ионов водорода в 6 мас.% растворе H2SO4, плотность которого составляет 1,038 г/мл. Принять степень диссоциации кислоты по первой и второй ступеням равной 100 %.

5. Определите концентрацию гидроксид-ионов в 0,15 М растворе Ba(OH)2.

6. Степень диссоциации муравьиной кислоты в 0,1 М растворе равна 4 %. Рассчитайте Концентрацию ионов водорода в этом растворе и константу диссоциации НСООН.

7. Степень диссоциации муравьиной кислоты в водном растворе увеличится при:

а) уменьшении концентрации HCOOH;

б) увеличении концентрации HCOOH;

в) добавлении в раствор муравьиной кислоты HCOONa;

г) добавлении в раствор муравьиной кислоты НCl.

8. Константа диссоциации хлорноватистой кислоты равна 5× 10— 8. Определите концентрацию HClO, при которой степень диссоциации HClO равна 0,5 %, и концентрацию ионов Н+ в этом растворе.

9. Вычислите объем воды, который необходимо добавить к 50 мл 0,02 М раствора NH3·H2О, чтобы степень диссоциации NH3·H2О увеличилась в 10 раз, если Кд(NH4OH) = 1,76·10— 5.

10. Определите степень диссоциации азотистой кислоты в 0,25 М растворе при 298 К, если при указанной температуре Кд(HNO2) = 4,6× 10— 4.

Электролитическая диссоциация

Электролитической диссоциацией называют процесс, в ходе которого молекулы растворенного вещества распадаются на ионы в результате взаимодействия с растворителем (воды). Диссоциация является обратимым процессом.

Диссоциация обуславливает ионную проводимость растворов электролитов. Чем больше молекул вещества распадается на ионы, тем лучше оно проводит электрический ток и является более сильным электролитом.

В общем виде процесс электролитической диссоциации можно представить так:

KA ⇄ K + (катион) + A — (анион)

Замечу, что сила кислоты определяется способностью отщеплять протон. Чем легче кислота его отщепляет, тем она сильнее.

У HF крайне затруднен процесс диссоциации из-за образования водородных связей между F (самым электроотрицательным элементом) одной молекулы и H другой молекулы.

Ступени диссоциации

Некоторые вещества диссоциируют на ионы не в одну стадию (как NaCl), а ступенчато. Это характерно для многоосновных кислот: H2SO4, H3PO4.

Посмотрите на ступенчатую диссоциацию ортофосфорной кислоты:

Важно заметить, что концентрация ионов на разных ступенях разная. На первых ступенях ионов всегда много, а до последних доходят не все молекулы. Поэтому в растворе ортофосфорной кислоты концентрация дигидрофосфат-анионов будет больше, чем фосфат-анионов.

Для серной кислоты диссоциация будет выглядеть так:

Для средних солей диссоциация чаще всего происходит в одну ступень:

Из одной молекулы ортофосфата натрия образовалось 4 иона.

Из одной молекулы сульфата калия образовалось 3 иона.

Электролиты и неэлектролиты

Химические вещества отличаются друг от друга по способности проводить электрический ток. Исходя из этой способности, вещества делятся на электролиты и неэлектролиты.

Электролиты — жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический ток. Связи в их молекулах обычно ионные или ковалентные сильнополярные.

К ним относятся соли, сильные кислоты и щелочи (растворимые основания).

Степень диссоциации сильных электролитов составляет от 0,3 до 1, что означает 30-100% распад молекул, попавших в раствор, на ионы.

Неэлектролиты — вещества недиссоциирующие в растворах на ионы. В молекулах эти веществ связи ковалентные неполярные или слабополярные.

К неэлектролитам относятся многие органические вещества, слабые кислоты, нерастворимые в воде основания и гидроксид аммония.

Степень их диссоциации до 0 до 0.3, то есть в растворе неэлектролита на ионы распадается до 30% молекул. Они плохо или вообще не проводят электрический ток.

Молекулярное, полное и сокращенное ионные уравнения

Молекулярное уравнение представляет собой запись реакции с использованием молекул. Это те уравнения, к которым мы привыкли и которыми наиболее часто пользуемся. Примеры молекулярных уравнений:

Полные ионные уравнения записываются путем разложения молекул на ионы. Запомните, что нельзя раскладывать на ионы:

  • Слабые электролиты (в их числе вода)
  • Осадки
  • Газы

Сокращенное ионное уравнение записывается путем сокращения одинаковых ионов из левой и правой части. Просто, как в математике — остается только то, что сократить нельзя.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Электролитическая диссоциация

Уравнения диссоциации

Диссоциация кислот, щелочей и солей

Кислоты — при диссоциации образуют ионы водорода* (и анионы кислотных остатков):
HBr → H + + Br − (бромид-ион)

Щелочи — при диссоциации образуют ионы металлов и гидроксид-ионы:
NaOH → Na + + OH −

Соли — при диссоциации образуют ионы металлов и анионы кислотных остатков:
NaCl → Na + + Cl −

Как записывать уравнения электролитической диссоциации

Величина заряда иона равна валентности, ставится перед знаком заряда:
BaS → Ba 2 + + S 2 − (сульфид-ион)

Число ионов показываем с помощью коэффициентов, а не индексов:
K 2 S → 2 K + + S 2−

Кислотный остаток при диссоциации пишем целиком (не теряем индекс):
Na NO3 → Na + + NO 3 − (нитрат-ион)

При этом число ионов кислотного остатка также показываем с помощью коэффициентов:
Сa(NO3) 2 → Сa 2+ + 2 NO3

* Это интересно!

В учебниках часто приходится встречать утверждение, что ион водорода — это гидратированный протон: H3O + .

На самом деле такие частицы в растворах кислот не обнаружены. Протон при гидратации присоединяет две молекулы воды и формула иона водорода полностью должна была бы записываться так: H5O2 + .

Теория электролитической диссоциации

Что такое электролитная диссоциация? В следствие чего она образуется и какие факторы влияют на ее степень? Как научиться составлять уравнения диссоциации?
Кто открыл способность некоторых растворов проводить электрический ток и почему великий русский химик Д.И.Менделеев не получил Нобелевской премии?
Ответы на все эти вопросы вы узнаете из этой статьи.

История вопроса

Изучение растворов с давних времен занимало умы исследователей. В начале XIX века М. Фарадей открыл способность некоторых растворов проводить электрический ток. Геймгольц, немецкий физик, предположил, что электролиты в растворе полностью распадаются на ионы, то есть существует электролитическая диссоциация. Однако увеличение электропроводности с уменьшением концентрации раствора объяснить не смог.

Ученые заметили, что растворы замерзают при более низкой температуре, чем чистые растворители. Именно этим свойством растворов и в наше время пользуются дворники, щедро посыпая солью обледеневшие тротуары. Однако, температура замерзания электролитов не соответствовала расчетным данным.

Научным несостыковкам требовалось найти объяснение. И молодой, 29-летний шведский ученый С. Аррениус, в 1887 г. исследуя проведение электрического тока в растворах различных веществ, выдвинул теорию, которая могла объяснить эти факты.

Основные положения теории электролитической диссоциации

  • Химические субстанции делятся на электролиты — вещества, которые проводят электрический ток, и неэлектролиты. К электролитам относится большинство сложных неорганических веществ: кислоты, основания, соли.
    К неэлектролитам — большинство органических веществ.
  • В воде электролиты распадаются на ионы: положительно заряженные катионы и отрицательно заряженные анионы. Ионы бывают простые и сложные. В растворе ионы находятся в хаотическом движении.
  • Под действием электрического тока движение ионов упорядочивается, и катионы движутся к отрицательному полюсу — катоду, анионы к положительному аноду.
  • На степень электролитической диссоциации влияют различные факторы: природа растворенного вещества и его количество, свойства растворителя, температура раствора.

Степень диссоциации

В ходе научных исследований ученые определили, что в растворе диссоциирует некоторая часть молекул растворителя. Для количественной характеристики силы электролита был введен показатель степени диссоциации, который обозначается α и рассчитывается по формуле

Где ν — количество вещества, распавшееся на ионы,

ν0 — общее количество вещества.

Степень диссоциации также можно выразить в процентах. Как это сделать, можно узнать в § 11 учебника «Химия. 9 класс» под редакцией В.В. Еремина.

В зависимости от степени диссоциации вещества делят на сильные и слабые электролиты.

Сильные электролиты представляют собой вещества, которые в разбавленных растворах практически полностью распадаются на ионы. Степень диссоциации более 0.5, или 50%.

Для слабых электролитов значение степени диссоциации α меньше 0.1, или 10%.

Вещества с промежуточными значениями от 10 до 50% иногда называют средними электролитами.

Уравнение диссоциации

Уравнение электролитической диссоциации используют для записи процессов, происходящих в растворе.

Диссоциация сильного электролита протекает практически необратимо, что показывает стрелка →.

CaCl2 → Ca 2+ + 2Cl —

Диссоциация слабого электролита — обратимый процесс, протекает не полностью и не до конца, что обозначает стрелка ⇄

СH3COOH ⇄ СH3COO — + H +

Умение составлять уравнения диссоциации будет отличным подспорьем при разборе темы «§ 13. Реакции ионного обмена и условия их протекания» в учебнике «Химия. 9 класс» под редакцией В.В. Еремина и для решения ионных уравнений.

Противостояние титанов

Теория электролитической диссоциации Аррениуса вызвала жаркие споры среди ученых.

Химический мир разделился на два лагеря. Сторонники «физической» теории Аррениуса считали, что распад на ионы происходит без какого-либо воздействия сил внешней среды и раствор представляет собой механическую взвесь ионов и молекул воды.

Но эта теория не могла объяснить тепловые эффекты при растворении. Например, нагревание колбы при разведении в воде серной кислоты или покрытие сосуда инеем при растворении в воде аммиачной селитры или азотнокислого аммония.

Сторонники «химической», или гидратной, теории, автором которой был Д.И. Менделеев, считали, что в растворе происходит взаимодействие растворенного вещества и растворителя.

Много копий было сломано в этой борьбе. Проявились худшие человеческие качества. Так, Аррениус, пользуясь служебным положением (в 1905 году он был назначен директором физико-химического Нобелевского института в Стокгольме), приложил массу усилий, чтобы, несмотря на трехкратную номинацию на получение Нобелевской премии в 1905, 1906 и 1907 годах, Д.И. Менделеев так ее и не получил.

Но истина, как всегда, оказалась посередине: в ходе дальнейших экспериментов ученые выяснили, что растворитель и растворенное вещество, взаимодействуя между собой, дают необходимую энергию для разрушения кристаллической решетки электролитов. В споре великих умов родилась новая протолитическая, или протонная, теория кислот и оснований.

источники:

http://staminaon.com/ru/chemistry/chemistry_9-49.htm

http://rosuchebnik.ru/material/teoriya-elektroliticheskoy-dissotsiatsii/

Степень электролитической диссоциации

Для успешного выполнения ряда заданий в ЕГЭ по химии надо хорошо представлять, что такое электролитическая диссоциация и для каких соединений она возможна. Повторим основные понятия из этой темы.

Электролиты – это вещества, чей раствор или расплав проводит электрический ток.

Экспериментально было установлено, что электролитами являются вещества следующих классов:

1) Сильные кислоты. К сильным кислотам относят rm HCl, HBr, HI, HNO_3, H_2SO_4, HClO_3, HClO_4, H_2CrO_4, HMnO_4;

2) Растворимые основание (щелочи). Щелочами являются rm LiOH, NaOH, KOH, Ca(OH)_2, Ba(OH)_2, RbOH, CsOH;

3) Растворимые соли. Растворимость солей легко проверить по таблице растворимости.

Электропроводимость в растворе электролитов обеспечивается за счет движения заряженных частиц – ионов. Попав в воду, все электролиты, взаимодействуя с водой, распадаются на две заряженные частицы. Положительная называется катионом, отрицательная – анионом. Сам процесс распада называют электролитической диссоциацией.

Чтобы понять, какие ионы образуются при распаде электролита, следует обратиться к таблице растворимости. Попробуем составить уравнения диссоциации некоторых веществ:

А. rm K_2SO_4 rightarrow 2K^+ + (SO4)^{2-}

Б. rm H_3PO_4 nrightarrow (диссоциация не идет, так как rm H_3PO_4 –слабая кислота!)

В. rm Ba(OH)_2 rightarrow Ba^{2+} + 2OH^-

Г. rm H_2SO_4 rightarrow 2H^+ + (SO_4)^{2-}

Вещества, не относящиеся к электролитам, часто могут диссоциировать, но в незначительной степени. Такие вещества называют слабыми электролитами. Для качественной характеристики того, насколько хорошо распадается электролит на ионы, используют понятие «степень диссоциации». Степень диссоциации обозначают буквой alpha, она рассчитывается по формуле:

Иногда alpha переводят в проценты для удобства восприятия. Электролитом считают вещества со степенью диссоциации от 40% и выше. Про такие вещества говорят, что они сильные или хорошие электролиты. Про вещества со степенью диссоциации мене 40% говорят, что они слабые электролиты. Вещества совсем неспособные распадаться называют неэлектролитами.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Степень электролитической диссоциации» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти лимон в арк
  • Тесто для блинов с комочками как исправить
  • Grim dawn как найти динамит
  • Как найти параметры видеокарты на виндовс 10
  • Как найти собаку в тульской области