Инфоурок
›
Начальные классы
›Другие методич. материалы›Памятка»Как составить выражение к задаче».
Памятка»Как составить выражение к задаче».
Скачать материал
Скачать материал
- Сейчас обучается 32 человека из 23 регионов
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 266 141 материал в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
- 09.06.2016
- 2038
- 9
- 09.06.2016
- 654
- 5
- 09.06.2016
- 9121
- 44
- 09.06.2016
- 662
- 0
- 09.06.2016
- 2472
- 10
- 09.06.2016
- 424
- 0
- 09.06.2016
- 522
- 0
Вам будут интересны эти курсы:
-
Курс профессиональной переподготовки «Организация образовательного процесса для обучающихся с ограниченными возможностями здоровья»
-
Курс повышения квалификации «Актуальные проблемы обучения детей с нарушением слуха в образовательных организациях общего и среднего профессионального образования»
-
Курс повышения квалификации «Сетевые и дистанционные (электронные) формы обучения в условиях реализации ФГОС по ТОП-50»
-
Курс профессиональной переподготовки «Организация инклюзивного обучения в сфере образования»
-
Курс профессиональной переподготовки «Тьюторское сопровождение обучающихся в системе инклюзивного образования»
-
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
-
Курс повышения квалификации «Организация и проведение культурно-досуговых мероприятий в соответствии с ФГОС НОО»
-
Курс повышения квалификации «Продуктивность учебной деятельности младших школьников общеобразовательного учреждения в рамках реализации ФГОС НОО»
-
Курс повышения квалификации «Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ) в соответствии с ФГОС»
-
Курс повышения квалификации «Техники креативного мышления как инструмент формирования общих компетенций по ФГОС»
-
Курс профессиональной переподготовки «Теория и методика преподавания в начальных классах компенсирующего и коррекционно-развивающего вида»
-
Курс профессиональной переподготовки «Оказание психолого-педагогической помощи лицам с ОВЗ»
-
Курс профессиональной переподготовки «Музыка: теория и методика преподавания в сфере начального общего, основного общего, среднего общего образования»
-
Настоящий материал опубликован пользователем Кобец Нина Владимировна. Инфоурок является
информационным посредником и предоставляет пользователям возможность размещать на сайте
методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайтЕсли Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
сайта, Вы можете оставить жалобу на материал.Удалить материал
-
- На сайте: 9 лет
- Подписчики: 0
- Всего просмотров: 28822
-
Всего материалов:
20
Решение задач составлением уравнения
Разделы: Математика
«Умственную самодеятельность, сообразительность и смекалку нельзя ни «вдолбить», ни «вложить» ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний осуществляется в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью».
Е.И. Игнатьев «В царстве смекалки»
Цель обучающая: Научить анализировать условие задачи, выбирать рациональные способы решения, составлять уравнение, решать его, проверять правильность решения.
Цель воспитательная: Развитие абстрактного и логического мышления.
I. Актуализация опорных знаний.
1) Что называется уравнением? Что называется корнем уравнения? Что значит решить уравнение?
2) Решите уравнение .
Решение: а) ; ; x= ;
б) НОЗ=6; ; ; ; ;
3) Составьте буквенное выражение.
Наташа купила блокнот за m рублей, книгу на 20 рублей дороже блокнота и ручку в 2.5 раза дешевле книги. Сколько рублей стоит ручка?
Решение: (m+20) рублей цена книги, рублей цена ручки.
4) Из двух сёл, расстояние между которыми 10 км навстречу друг другу вышли мальчик и девочка и встретились через 2 часа. Скорость мальчика 3 км/час. Найдите скорость девочки.
Решение: а) 3*2=6(км) прошел мальчик, 10-6=4(км) прошла девочка, 4:2=2(км/ч) скорость девочки
б) 10:2=5(км/ч) скорость сближения, 5-3=2(км/ч) скорость девочки.
II. Сообщение темы и цели урока.
III. Решение задач составлением уравнения.
1) Андрей старше Олега на 4 года, а Олег старше Бориса в 1,5 раза. Вместе им 36 лет. Сколько лет каждому из них?
Первый ряд решает задачу, взяв за неизвестную величину возраст Андрея, второй ряд — возраст Олега, третий ряд-возраст Бориса. А затем каждый ряд объясняет своё решение у доски.
Условие задачи | Решение уравнения | Проверка |
Х лет Андрею,
лет Борису, |
16+12+8=36 | |
Х лет Олегу
лет Борису |
12+16+8=36 | |
Х лет Борису
(1,5х+4) лет Андрею |
8+12+16=36 |
Если в задаче несколько неизвестных величин, лучше обозначить буквой наименьшую из них.
2) Два пешехода вышли одновременно навстречу друг другу из двух посёлков и встретились через 3ч. Расстояние между посёлками 30 км. Найдите скорость каждого пешехода, если у одного она на 2 км/ч меньше, чем у другого.
а) Ученики решают задачу составлением уравнения.
Х км/ч – скорость 1-го пешехода
(х+2) км/ч – скорость 2-го пешехода
3х км прошел 1-й пешеход
3(х+2) км прошел 2-й пешеход
3х+3(х+2)=30 | 4 |
3х+3х+6=30 | +6 |
6х+6=30 | +12 |
6х=24 | +18 |
Х=4 | =30 |
б) Затем решают арифметическим способом.
10-2=8(км/ч)-две скорости 1-го пешехода.
8:2=4(км/ч)-скорость 1-го пешехода.
4+2=6(км/ч)-скорость 2-го пешехода.
Вывод. Арифметическое решение задачи более рациональное
3)Для распечатки 340 страниц были использованы две копировальные машины. Первая машина работала 10 минут, а вторая 15 минут. Сколько страниц в минуту печатает каждая машина, если первая печатает на 4 страницы больше, чем вторая?
Снова дети решают задачу алгебраически и арифметически.
А) х страниц за 1 минуту печатает 2-я машина,
(х+4) страниц за 1 минуту напечатает 1-я машина,
15х страниц напечатает 2 машина,
10(х+4) страниц напечатает 2 машина,
15х+10(х+4=340 | 12 |
15х+10х+40=340 | +16 |
25х+40=340 | +180 |
25х=300 | +160 |
Х=12 | =340 |
б) 10*4=40(стр) на столько страниц больше напечатает 1-я машина за 10 минут
340-40=300(стр) напечатали бы обе машины вместе, если бы у них были одинаковые скорости.
10+15=25(мин) работали обе машины.
300:25=12(стр) за 1-у минуту печатает 2-я машина.
12+4=16 (стр) за 1-у минуту печатает 1-я машина.
При решении задач с помощью уравнения поступают следующим образом:
- Внимательно читают условие задачи.
- Обозначают неизвестную величину буквой.
- Переводят условие задачи на алгебраический язык.
- Составляют уравнение.
- Решают уравнение.
- Проверяют правильность решения
V. Домашнее задание.
Решить задачу алгебраически и арифметически.
Охотничья собака спугнула зайца, который сидел под кустом в 150м от неё. Через сколько минут собака догонит зайца, если она пробегает за 6 минут 3,6км, а заяц только 3км?
- Л.В. Кузнецова, Е.А. Бунимович, Б.П. Пигарев, С.Б. Суворова «Алгебра» сборник заданий для проведения письменного экзамена по алгебре за курс основной школы. Москва. «Дрофа». 2001г; стр 43, работа №31, вариант 1(5); стр 50, работа №38, вариант 2(7); стр 65, работа №48, вариант 1(6).
- Составители Т.А. Братусь, Н.А. Жарковская, Е.А Рисс, Т.Е Савелова «Детский математический календарь 2001-2002». Санкт — Питербург стр10.
- Н.Т. Кострикина «Задачи повышенной трудности в курсе алгебры 7-9 классов». Москва. «Просвещение» 1991 стр5-19.
Решение задач с помощью уравнений
Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.
Введение
В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.
Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.
Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.
Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.
Алгоритм решения текстовых задач с помощью уравнений
Для решения задачи с помощью уравнения делают следующие действия:
- Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
- Решают уравнение.
- Истолковывают результат.
Примеры решений
Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?
Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.
Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: $3x+24=7x-7cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.
Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.
Монет в мешке: $48$
Монет в сундуке: $48cdot 3=144$
Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?
Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.
Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.
Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.
Муки в первом мешке: $700cdot 3=2100$ кг.
Муки во втором мешке: $700$ кг.
Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:
Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:
Избавимся от коэффициента при неизвестном и получим ответ:
Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.
Картошки в первом мешке: $15cdot 4=60$ кг.
Картошки во втором мешке: $15$ кг.
Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.
Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:
По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)
Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.
Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).
Первоначальная скорость машин: $v=60$ км/ч.
Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?
Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3cdot 150$ кг цемента, а у второй $x-3cdot 200$ кг.
По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:
$$x-50-3cdot 150=1,5(x-3cdot 200)$$
Осталось решить данное уравнение относительно $x$ и истолковать ответ.
Упростим и раскроем скобки в правой части, тогда получим:
Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=frac<15><10>=frac<3><2>$.
Запишем с учётом перевода дробей и упростим:
Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:
Домножим обе части на 2 и получим ответ:
Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$
Кол-во цемента в первой бригаде: $800-50=750$ кг.
Кол-во цемента во второй бригаде: $800$ кг.
Задачи для самостоятельного решения
По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?
Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.
В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$
Ответ: Рабочие отработали 6 дней.
Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?
Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:
1 фунт и половина кирпича = целый кирпич.
Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?
Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:
$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:
Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.
Ответ: 9,5 копеек стоит бутыка без пробки.
На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?
Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:
Ответ: На шапку ушло $80$ г, на свитер $5cdot 80=400$ г, на шарф $80-5=75$ г.
Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?
Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:
$$2x-10+0,3cdot 2x-0,3cdot 10=65$$
$$2x+0,3cdot 2x=65+10+0,3cdot 10$$
Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.
Решение задач с помощью уравнений
Решение задачи обычно свóдится к тому, чтобы путем логических рассуждений и вычислений найти значение какой-нибудь величины. Например, найти скорость, время, расстояние, массу какого-нибудь предмета или количество чего-то.
Такую задачу можно решить с помощью уравнения. Для этого искомое значение обозначают через переменную, затем путем логических рассуждений составляют и решают уравнение. Решив уравнение, производят проверку на то, удовлетворяет ли решение уравнения условиям задачи.
Запись выражений, содержащих неизвестное
Решение задачи сопровождается составлением уравнения к этой задаче. На начальном этапе изучения задач желательно научиться составлять буквенные выражения, описывающие ту или иную жизненную ситуацию. Этот этап не является сложным и его можно изучать в процессе решения самой задачи.
Рассмотрим несколько ситуаций, которые можно записать с помощью математического выражения.
Задача 1. Возраст отца x лет. Мама на два года младше. Сын младше отца в 3 раза. Запишите возраст каждого с помощью выражений.
Решение:
Задача 2. Возраст отца x лет, мама на 2 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Запишите возраст каждого с помощью выражений.
Решение:
Задача 3. Возраст отца x лет, мама на 3 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Сколько лет каждому, если общий возраст отца, мамы, сына и дочери составляет 92 года?
Решение:
В данной задаче помимо записи выражений, необходимо вычислить возраст каждого члена семьи.
Сначала запишем возраст каждого члена семьи с помощью выражений. За переменную x примем возраст отца, и далее пользуясь этой переменной составим остальные выражения:
Теперь определим возраст каждого члена семьи. Для этого нам нужно составить и решить уравнение. Все компоненты уравнения у нас уже готовы. Осталось только собрать их воедино.
Общий возраст в 92 года получился путем сложения возрастов папы, мамы, сына и дочери:
Для каждого возраста мы составили математическое выражение. Эти выражения и будут компонентами нашего уравнения. Давайте соберем наше уравнение согласно данной схеме и таблице, которая была приведена выше. То есть слова папа, мама, сын, дочь заменим на соответствующее им в таблице выражение:
Выражение, отвечающее за возраст мамы x − 3, для наглядности было взято в скобки.
Теперь решим получившееся уравнение. Для начала можно раскрыть скобки там, где это можно:
Чтобы освободить уравнение от дробей, умножим обе части на 3
Решим получившееся уравнение, пользуясь известными тождественными преобразованиями:
Мы нашли значение переменной x . Эта переменная отвечала за возраст отца. Значит возраст отца составляет 36 лет.
Зная возраст отца, можно вычислить возрасты остальных членов семьи. Для этого нужно подставить значение переменной x в те выражения, которые отвечают за возраст конкретного члена семьи.
В задаче было сказано, что мама на 3 года младше отца. Ее возраст мы обозначили через выражение x−3. Значение переменной x теперь известно, и чтобы вычислить возраст мамы, нужно в выражении x − 3 вместо x подставить найденное значение 36
x − 3 = 36 − 3 = 33 года маме.
Аналогично определяется возраст остальных членов семьи:
Проверка:
Задача 4. Килограмм яблок стоит x рублей. Запишите выражение, вычисляющее сколько килограмм яблок можно купить на 300 рублей.
Решение
Если килограмм яблок стоит x рублей, то на 300 рублей можно купить килограмм яблок.
Пример. Килограмм яблок стоит 50 рублей. Тогда на 300 рублей можно купить , то есть 6 килограмм яблок.
Задача 5. На x рублей было куплено 5 кг яблок. Запишите выражение, вычисляющее сколько рублей стоит один килограмм яблок.
Решение
Если за 5 кг яблок было уплачено x рублей, то один килограмм будет стоит рублей
Пример. За 300 рублей было куплено 5 кг яблок. Тогда один килограмм яблок будет стоит , то есть 60 рублей.
Задача 6. Том, Джон и Лео на перемене пошли в столовую и купили по бутерброду и по кружке кофе. Бутерброд стоит x рублей, а кружка кофе — 15 рублей. Определите стоимость бутерброда, если известно, что за всё было уплачено 120 рублей?
Решение
Конечно, данная задача проста как три копейки и ее можно решить не прибегая к уравнению. Для этого из 120 рублей нужно вычесть стоимость трех кружек кофе (15 × 3) , и полученный результат разделить на 3
Но наша цель — составить уравнение к задаче и решить это уравнение. Итак, стоимость бутерброда x рублей. Куплено их всего три. Значит увеличив стоимость в три раза, мы получим выражение описывающее сколько рублей было уплачено за три бутерброда
3x — стоимость трех бутербродов
А стоимость трех кружек кофе можно записать как 15 × 3 . 15 это стоимость одной кружки кофе, а 3 множитель (Том, Джон и Лео), увеличивающий эту стоимость в три раза.
По условию задачи за все уплачено 120 рублей. У нас уже появляется примерная схема, что нужно делать:
Выражения, описывающие стоимость трех бутербродов и трех кружек кофе, у нас уже готовы. Это выражения 3x и 15 × 3 . Пользуясь схемой составим уравнение и решим его:
Итак, стоимость одного бутерброда составляет 25 рублей.
Задача решается верно только в том случае, если уравнение к ней составлено правильно. В отличие от обычных уравнений, по которым мы учимся находить корни, уравнения для решения задач имеют своё конкретное применение. Каждый компонент такого уравнения может быть описан в словесной форме. Составляя уравнение, обязательно нужно понимать для чего мы включаем в его состав тот или иной компонент и зачем он нужен.
Также необходимо помнить, что уравнение это равенство, после решения которого левая часть должна будет равняться правой части. Составленное уравнение не должно противоречить этой идее.
Представим, что уравнение это весы с двумя чашами и экраном, показывающим состояние весов.
В данный момент экран показывает знак равенства. Понятно почему левая чаша равна правой чаше — на чашах ничего нет. Состояние весов и отсутствие на чашах чего-либо запишем с помощью следующего равенства:
Положим на левую чашу весов арбуз:
Левая чаша перевесила правую чашу и экран забил тревогу, показав знак не равно ( ≠ ). Этот знак говорит о том, что левая чаша не равна правой чаше.
Теперь попробуем решить задачу. Пусть требуется узнать сколько весит арбуз, который лежит на левой чаше. Но как это узнать? Ведь наши весы предназначены только для проверки равна ли левая чаша правой.
На помощь приходят уравнения. Вспомним, что уравнение по определению есть равенство, содержащее в себе переменную значение которой требуется найти. Весы в данном случае играют роль этого самого уравнения, а масса арбуза это переменная, значение которой нужно найти. Наша цель правильно составить это уравнение. Понимай, выровнять весы так, чтобы можно было вычислить массу арбуза.
Чтобы выровнять весы, на правую чашу можно положить какой-нибудь тяжелый предмет. Например, положим туда гирю массой 7 кг.
Теперь наоборот правая чаша перевесила левую. Экран по прежнему показывает, что чаши не равны.
Попробуем на левую чашу положить гирю массой 4 кг
Теперь весы выровнялись. На рисунке видно, что левая чаша на уровне правой чаши. А экран показывает знак равенства. Этот знак говорит о том, что левая чаша равна правой чаше.
Таким образом мы получили уравнение — равенство, содержащее неизвестное. Левая чаша — это левая часть уравнения, состоящая из компонентов 4 и переменной x (массы арбуза), а правая чаша — это правая часть уравнения, состоящая из компонента 7.
Ну и нетрудно догадаться, что корень уравнения 4 + x = 7 равен 3. Значит масса арбуза равна 3 кг.
Аналогично дела обстоят и с другими задачами. Чтобы найти какое-нибудь неизвестное значение, к левой или к правой части уравнения добавляют различные элементы: слагаемые, множители, выражения. В школьных задачах эти элементы бывают уже даны. Остается только правильно структурировать их и построить уравнение. Мы же в данном примере занимались подбором, пробуя гири разной массы, чтобы вычислить массу арбуза.
Естественно, те данные которые даны в задаче сначала нужно привести к виду, при котором их можно включить в уравнение. Поэтому, как говорят «хочешь не хочешь, а думать придётся».
Рассмотрим следующую задачу. Возраст отца равен возрасту сына и дочери вместе. Сын вдвое старше дочери и на двадцать лет моложе отца. Сколько лет каждому?
Возраст дочери можно обозначить через x . Если сын вдвое старше дочери, то его возраст будет обозначаться как 2x . В условии задачи сказано, что вместе возраст дочери и сына равен возрасту отца. Значит возраст отца будет обозначаться суммой x + 2x
В выражении можно привести подобные слагаемые. Тогда возраст отца будет обозначаться как 3x
Теперь составим уравнение. Нам нужно получить равенство в котором можно найти неизвестное x . Воспользуемся весами. На левую чашу положим возраст отца (3x) , а на правую чашу возраст сына (2x)
Понятно почему левая чаша перевесила правую и почему экран показывает знак ( ≠ ) . Ведь логично, что возраст отца больше возраста сына.
Но нам нужно уравнять весы, чтобы можно было вычислить неизвестное x . Для этого к правой чаше нужно прибавить какое-нибудь число. Какое именно число указано в задаче. В условии было сказано, что сын моложе отца на 20 лет. Значит 20 лет это то самое число, которое нужно положить на весы.
Весы выровнятся, если мы эти 20 лет добавим на правую чашу весов. Иными словами, вырастим сына до возраста отца
Теперь весы выровнялись. Получилось уравнение , которое решается легко:
В начале решения данной задачи через переменную x мы обозначили возраст дочери. Теперь мы нашли значение этой переменной. Дочери 20 лет.
Далее было сказано, что сын двое старше дочери, значит сыну (20 × 2) , то есть 40 лет.
Ну и наконец вычислим возраст отца. В задаче было сказано, что он равен сумме возрастов сына и дочери, то есть (20 + 40) лет.
Вернемся к середине задачи и обратим внимание на один момент. Когда мы положили на весы возраст отца и возраст сына, левая чаша перевесила правую
Но мы решили эту проблему, добавив на правую чашу еще 20 лет. В результате весы выровнялись и мы получили равенство
Но можно было не добавлять к правой чаше эти 20 лет, а вычесть их из левой. Мы получили бы равенство и в таком случае
В этот раз получается уравнение . Корень уравнения по прежнему равен 20
То есть уравнения и являются равносильными. А мы помним, что у равносильных уравнений корни совпадают. Если внимательно посмотреть на эти два уравнения, то можно увидеть что второе уравнение получено путем переноса числа 20 из правой части в левую с противоположным знаком. А это действие, как было указано в предыдущем уроке, не меняет корней уравнения.
Также нужно обратить внимание на то, что в начале решения задачи возрасты каждого члена семьи можно было обозначить через другие выражения.
Скажем возраст сына обозначить через x и поскольку он двое старше дочери, то возраст дочери обозначить через (понимай сделать её младше сына в два раза). А возраст отца поскольку он является суммой возрастов сына и дочери обозначить через выражение . Ну и напоследок для построения логически правильного уравнения, к возрасту сына нужно прибавить число 20, ведь отец старше на двадцать лет. В итоге получается совсем другое уравнение . Решим это уравнение
Как видно ответы к задаче не поменялись. Сыну по прежнему 40 лет. Дочери по прежнему лет, а отцу 40 + 20 лет.
Другими словами, задача может решаться различными методами. Поэтому не следует отчаиваться, что не получается решить ту или иную задачу. Но нужно иметь ввиду, что существует наиболее простые пути решения задачи. К центру города можно доехать различными маршрутами, но всегда существует наиболее удобный, быстрый и безопасный маршрут.
Примеры решения задач
Задача 1. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?
Решение
Обозначим через x количество тетрадей, которое было в первой пачке. Если всего тетрадей было 30, а переменная x это количество тетрадей из первой пачке, то количество тетрадей во второй пачке будет обозначаться через выражение 30 − x . То есть от общего количества тетрадей вычитаем количество тетрадей из первой пачки и тем самым получаем количество тетрадей из второй пачки.
Далее сказано, что если переложить 2 тетради из первой пачки во вторую, то в первой пачке окажется вдвое больше тетрадей. Итак, снимем с первой пачки две тетради
и добавим эти две тетради во вторую пачку
Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:
Попробуем составить уравнение из имеющихся выражений. Положим на весы обе пачки тетрадей
Левая чаша тяжелее правой. Это потому, что в условии задачи сказано, что после того как из первой пачки взяли две тетради и положили их во вторую, количество тетрадей в первой пачке стало вдвое больше, чем во второй.
Чтобы выровнять весы и получить уравнение, увеличим правую часть вдвое. Для этого умножим её на 2
Получается уравнение . Решим данное уравнение:
Первую пачку мы обозначали через переменную x . Теперь мы нашли её значение. Переменная x равна 22. Значит в первой пачке было 22 тетради.
А вторую пачку мы обозначали через выражение 30 − x и поскольку значение переменой x теперь известно, то можно вычислить количество тетрадей во второй пачке. Оно равно 30 − 22 , то есть 8 шт .
Задача 2. Два человека чистили картофель. Один очищал в минуту две картофелины, а второй — три картофелины. Вместе они очистили 400 шт. Сколько времени работал каждый, если второй проработал на 25 минут больше первого?
Решение
Обозначим через x время работы первого человека. Поскольку второй человек проработал на 25 минут больше первого, то его время будет обозначаться через выражение
Первый рабочий в минуту очищал 2 картофелины, и поскольку он работал x минут, то всего он очистил 2x картофелин.
Второй человек в минуту очищал три картофелины, и поскольку он работал минут, то всего он очистил картофелин.
Вместе они очистили 400 картофелин
Из имеющихся компонентов составим и решим уравнение. В левой части уравнения будут картофелины, очищенные каждым человеком, а в правой части их сумма:
В начале решения данной задачи через переменную x мы обозначили время работы первого человека. Теперь мы нашли значение этой переменной. Первый человек работал 65 минут.
А второй человек работал минут, и поскольку значение переменной x теперь известно, то можно вычислить время работы второго человека — оно равно 65 + 25 , то есть 90 мин .
Задача из Учебника по алгебре Андрея Петровича Киселева. Из сортов чая составлена смесь в 32 кг. Килограмм первого сорта стоит 8 руб., а второго сорта 6 руб. 50 коп. Сколько килограммов взято того и другого сорта, если килограмм смеси стоит (без прибыли и убытка) 7 руб. 10 коп.?
Решение
Обозначим через x массу чая первого сорта. Тогда масса чая второго сорта будет обозначаться через выражение 32 − x
Килограмм чая первого сорта стоит 8 руб. Если эти восемь рублей умножить на количество килограмм чая первого сорта, то можно будет узнать во сколько рублей обошлись x кг чая первого сорта.
А килограмм чая второго сорта стоит 6 руб. 50 коп. Если эти 6 руб. 50 коп. умножить на 32 − x , то можно узнать во сколько рублей обошлись 32 − x кг чая второго сорта.
В условии сказано, что килограмм смеси стоит 7 руб. 10 коп. Всего же было приготовлено 32 кг смеси. Умножим 7 руб. 10 коп. на 32 мы сможем узнать сколько стоит 32 кг смеси.
Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:
Попробуем составить уравнение из имеющихся выражений. Положим на левую чашу весов стоимость смесей чая первого и второго сорта, а на правую чашу положим стоимость 32 кг смеси, то есть общую стоимость смеси, в составе которой оба сорта чая:
Получили уравнение . Решим его:
В начале решения данной задачи через переменную x мы обозначили массу чая первого сорта. Теперь мы нашли значение этой переменной. Переменная x равна 12,8. Значит для приготовления смеси было взято 12,8 кг чая первого сорта.
А через выражение 32 − x мы обозначили массу чая второго сорта и поскольку значение переменой x теперь известно, то можно вычислить массу чая второго сорта. Оно равно 32 − 12,8 то есть 19,2 . Значит для приготовления смеси было взято 19,2 кг чая второго сорта.
Задача 3. Велосипедист проехал некоторое расстояние со скоростью 8 км/ч. Возвратиться он должен был другой дорогой, которая была на 3 км длиннее первой, и, хотя возвращаясь, ехал со скоростью 9 км/ч, он употребил времени на минут более. Как длинны были дороги?
Решение
Некоторые задачи могут затрагивать темы, которые человек возможно не изучал. Данная задача относится к такому кругу задач. В ней затрагиваются понятия расстояния, скорости и времени. Соответственно, чтобы решить подобную задачу, нужно иметь представление о тех вещах, о которых говорится в задаче. В нашем случае, надо знать что представляет собой расстояние, скорость и время.
В задаче нужно найти расстояния двух дорог. Мы должны составить уравнение, которое позволит вычислить эти расстояния.
Вспомним, как взаимосвязаны расстояние, скорость и время. Каждая из этих величин может быть описана с помощью буквенного уравнения:
Правую часть одного из этих уравнений мы будем использовать для составления своего уравнения. Чтобы узнать какую именно, нужно вернуться к тексту задачи и обратить внимание на следующий момент:
Следует обратить внимание на момент, где велосипедист на обратном пути употребил времени на минут более. Эта подсказка указывает нам, что можно воспользоваться уравнением , а именно его правой частью. Это позволит нам составить уравнение, которое содержит переменную S .
Итак, обозначим длину первой дороги через S . Этот путь велосипедист проехал со скоростью 8 км/ч . Время за которое он преодолел этот путь будет обозначаться выражением , поскольку время это отношение пройденного расстояния к скорости
Обратная дорога для велосипедиста была длиннее на 3 км . Поэтому её расстояние будет обозначаться через выражение S + 3 . Эту дорогу велосипедист проехал со скоростью 9 км/ч . А значит время за которое он преодолел этот путь будет обозначаться выражением .
Теперь составим уравнение из имеющихся выражений
Правая чаша тяжелее левой. Это потому, что в задаче сказано, что на обратную дорогу велосипедист затратил времени на больше.
Чтобы уравнять весы прибавим к левой части эти самые минут. Но сначала переведем минуты в часы, поскольку в задаче скорость измеряется в километрах в час, а не в метрах в минуту.
Чтобы минут перевести в часы, нужно разделить их на 60
минут составляют часа. Прибавляем эти часа к левой части уравнения:
Получается уравнение . Решим данное уравнение. Чтобы избавиться от дробей, обе части части можно умножить на 72. Далее пользуясь известными тождественными преобразованиями, найдем значение переменной S
Через переменную S мы обозначали расстояние первой дороги. Теперь мы нашли значение этой переменной. Переменная S равна 15. Значит расстояние первой дороги составляет 15 км.
А расстояние второй дороги мы обозначили через выражение S + 3 , и поскольку значение переменной S теперь известно, то можно вычислить расстояние второй дороги. Это расстояние равно сумме 15 + 3 , то есть 18 км .
Задача 4. По шоссе идут две машины с одной и той же скоростью. Если первая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на 10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за 3 ч. С какой скоростью идут автомашины?
Решение
Обозначим через v скорость каждой машины. Далее в задаче приводятся подсказки: скорость первой машины увеличить на 10 км/ч, а скорость второй — уменьшить на 10 км/ч. Воспользуемся этой подсказкой
Далее говорится, что при таких скоростях (увеличенных и уменьшенных на 10 км/ч) первая машина пройдет за 2 часа столько же расстояния сколько вторая за 3 часа. Фразу «столько же» можно понимать как «расстояние, пройденное первой машиной, будет равно расстоянию, пройденному второй машиной».
Расстояние как мы помним, определяется по формуле . Нас интересует правая часть этого буквенного уравнения — она позволит нам составить уравнение, содержащее переменную v .
Итак, при скорости v + 10 км/ч первая машина пройдет 2(v+10) км , а вторая пройдет 3(v − 10) км . При таком условии машины пройдут одинаковые расстояния, поэтому для получения уравнения достаточно соединить эти два выражения знаком равенства. Тогда получим уравнение . Решим его:
В условии задачи было сказано, что машины идут с одинаковой скоростью. Мы обозначили эту скорость через переменную v . Теперь мы нашли значение этой переменной. Переменная v равна 50. Значит скорость обеих машин составляла 50 км/ч.
Задача 5. За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.
Решение
Обозначим через v собственную скорость теплохода. Скорость течения реки равна 2 км/ч. По течению реки скорость теплохода будет составлять v + 2 км/ч , а против течения — (v − 2) км/ч .
В условии задачи сказано, что за 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Фразу «тот же путь» можно понимать как «расстояние, пройденное теплоходом по течению реки за 9 часов, равно расстоянию, пройденному теплоходом против течения реки за 11 часов». То есть расстояния будут одинаковыми.
Расстояние определяется по формуле . Воспользуемся правой частью этого буквенного уравнения для составления своего уравнения.
Итак, за 9 часов по течению реки теплоход пройдет 9(v + 2) км , а за 11 часов против течения — 11(v − 2) км . Поскольку оба выражения описывают одно и то же расстояние, приравняем первое выражение ко второму. В результате получим уравнение . Решим его:
Значит собственная скорость теплохода составляет 20 км/ч.
При решении задач полезной привычкой является заранее определить на каком множестве ищется для неё решение.
Допустим, что в задаче требовалось найти время, за которое пешеход преодолеет указанный путь. Мы обозначили время через переменную t , далее составили уравнение, содержащее эту переменную и нашли её значение.
Из практики мы знаем, что время движения объекта может принимать как целые значения, так и дробные, например 2 ч, 1,5 ч, 0,5 ч. Тогда можно сказать, что решение данной задачи ищется на множестве рациональных чисел Q, поскольку каждое из значений 2 ч, 1,5 ч, 0,5 ч может быть представлено в виде дроби.
Поэтому после того, как неизвестную величину обозначили через переменную, полезно указать к какому множеству эта величина принадлежит. В нашем примере время t принадлежит множеству рациональных чисел Q
Ещё можно ввести ограничение для переменной t , указав что она может принимать только положительные значения. Действительно, если объект затратил на путь определенное время, то это время не может быть отрицательным. Поэтому рядом с выражением t ∈ Q укажем, что её значение должно быть больше нуля:
Если решив уравнение, мы получим отрицательное значение для переменной t , то можно будет сделать вывод, что задача решена неправильно, поскольку это решение не будет удовлетворять условию t ∈ Q , t > 0 .
Ещё пример. Если бы мы решали задачу в которой требовалось найти количество человек для выполнения той или иной работы, то это количество мы обозначили бы через переменную x . В такой задаче решение искалось бы на множестве натуральных чисел
Действительно, количество человек является целым числом, например 2 человека, 3 человека, 5 человек. Но никак не 1,5 (один целый человек и половина человека) или 2,3 (два целых человека и еще три десятых человека).
Здесь можно было бы указать, что количество человек должно быть больше нуля, но числа входящие во множество натуральных чисел N сами по себе являются положительными и большими нуля. В этом множестве нет отрицательных чисел и числа 0. Поэтому выражение x > 0 можно не писать.
Задача 6. Для ремонта школы прибыла бригада в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально
Решение
Обозначим через x плотников, прибывших на ремонт первоначально.
Количество плотников является целым числом, большим нуля. Поэтому укажем, что x принадлежит множество натуральных чисел
Маляров было в 2,5 раза больше, чем плотников. Поэтому количество маляров будет обозначаться как 2,5x .
Далее говорится, что прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. Сделаем для своих выражений тоже самое. Уменьшим количество плотников на 2
А количество маляров увеличим на 4
Теперь количество плотников и маляров будут обозначаться через следующие выражения:
Попробуем составить уравнение из имеющихся выражений:
Правая чаша больше, поскольку после включения в бригаду ещё четырёх маляров, и перемещения двух плотников на другой объект, количество маляров в бригаде оказалось в 4 раза больше чем плотников. Чтобы уравнять весы, нужно левую чашу увеличить в 4 раза:
Получили уравнение . Решим его:
Через переменную x было обозначено первоначальное количество плотников. Теперь мы нашли значение этой переменной. Переменная x равна 8. Значит 8 плотников было в бригаде первоначально.
А количество маляров было обозначено через выражение 2,5 x и поскольку значение переменной x теперь известно, то можно вычислить количество маляров — оно равно 2,5 × 8 , то есть 20 .
Возвращаемся к началу задачи и удостоверяемся, что соблюдается условие x ∈ N. Переменная x равна 8, а элементы множества натуральных чисел N это все числа, начинающиеся с 1, 2, 3 и так далее до бесконечности. В это же множество входит число 8, которое мы нашли.
Тоже самое можно сказать о количестве маляров. Число 20 принадлежит множеству натуральных чисел:
Для понимания сути задачи и правильного составления уравнения, вовсе необязательно использовать модель весов с чашами. Можно использовать и другие модели: отрезки, таблицы, схемы. Можно придумать свою модель, которая хорошо описывала бы суть задачи.
Задача 9. Из бидона отлили 30% молока. В результате в нем осталось 14 л. Сколько литров молока было в бидоне первоначально?
Решение
Искомое значение это первоначальное число литров в бидоне. Изобразим число литров в виде линии и подпишем эту линию как X
Сказано, что из бидона отлили 30% молока. Выделим на рисунке приблизительно 30%
Процент по определению есть одна сотая часть чего-то. Если 30% молока отлили, то остальные 70% остались в бидоне. На эти 70% приходятся 14 литров, указанные в задаче. Выделим на рисунке оставшиеся 70%
Теперь можно составить уравнение. Вспомним, как находить процент от числа. Для этого общее количество чего-то делят на 100 и полученный результат умножают на искомое количество процентов. Замечаем, что 14 литров, составляющих 70% можно получить таким же образом: первоначальное число литров X разделить на 100 и полученный результат умножить на 70. Всё это приравнять к числу 14
Или получить более простое уравнение: 70% записать как 0,70, затем умножить на X и приравнять это выражение к 14
Значит первоначально в бидоне было 20 литров молока.
Задача 9. Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1 : 9, а в другом 2 : 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1 : 4?
Решение
Попробуем сначала узнать сколько золота и серебра будет содержáться в 15 кг нового сплава. В задаче сказано, что содержание этих металлов должно быть в отношении 1 : 4, то есть на одну часть сплава должно приходиться золото, а на четыре части — серебро. Тогда всего частей в сплаве будет 1 + 4 = 5, а масса одной части будет 15 : 5 = 3 кг.
Определим сколько золота будет содержáться в 15 кг сплава. Для этого 3 кг умножим на количество частей золота:
Определим сколько серебра будет содержáться в 15 кг сплава:
Значит сплав массой 15 кг будет содержать 3 кг золота и 12 кг серебра. Теперь вернёмся к исходным сплавам. Использовать нужно каждый из них. Обозначим через x массу первого сплава, а массу второго сплава можно обозначить через 15 − x
Выразим в процентах все отношения, которые даны в задаче и заполним ими следующую таблицу:
В первом сплаве золото и серебро находятся в отношении 1 : 9. Тогда всего частей будет 1 + 9 = 10 . Из них золота будет , а серебра .
Перенесём эти данные в таблицу. 10% занесём в первую строку в графу «процент золота в сплаве», 90% также занесём в первую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём переменную x , поскольку так мы обозначили массу первого сплава:
Аналогично поступаем со вторым сплавом. Золото и серебро в нём находятся в отношении 2 : 3. Тогда всего частей будет 2 + 3 = 5. Из них золота будет , а серебра .
Перенесём эти данные в таблицу. 40% занесем во вторую строку в графу «процент золота в сплаве», 60% также занесём во вторую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём выражение 15 − x , поскольку так мы обозначили массу второго сплава:
Заполним последнюю строку. Полученный сплав массой 15 кг будет содержать 3 кг золота, что составляет сплава, а серебра будет сплава. В последнюю графу записываем массу полученного сплава 15
Теперь по данной таблице можно составить уравнения. Вспоминаем задачи на концентрацию, сплавы и смеси. Если мы отдельно сложим золото обоих сплавов и приравняем эту сумму к массе золота полученного сплава, то сможем узнать чему равно значение x.
Далее для удобства проценты будем выражать в десятичной дроби.
В первом сплаве золота было 0,10x , а во втором сплаве золота было 0,40(15 − x) . Тогда в полученном сплаве масса золота будет суммой масс золота первого и второго сплавов и эта масса составляет 20% от нового сплава. А 20% от нового сплава это 3 кг золота, вычисленные нами ранее. В результате получаем уравнение 0,10x + 0.40(15 − x) = 3 . Решим это уравнение:
Изначально через x мы обозначили массу первого сплава. Теперь мы нашли значение этой переменной. Переменная x равна 10. А массу второго сплава мы обозначили через 15 − x , и поскольку значение переменной x теперь известно, то можно вычислить массу второго сплава, она равна 15 − 10 = 5 кг .
Значит для получения нового сплава массой 15 кг в котором золото и серебро относились бы как 1 : 4, нужно взять 10 кг первого и 5 кг второго сплава.
Уравнение можно было составить, воспользовавшись и вторым столбцом получившейся таблицы. Тогда мы получили бы уравнение 0,90x + 0.60(15 − x) = 12. Корень этого уравнения тоже равен 10
Задача 10. Имеется руда из двух пластов с содержанием меди в 6% и 11%. Сколько надо взять бедной руды, чтобы получить при смешивании с богатой 20 тонн с содержанием меди 8%?
Решение
Обозначим через x массу бедной руды. Поскольку нужно получить 20 тонн руды, то богатой руды будет взято 20 − x . Поскольку содержание меди в бедной руде составляет 6%, то в x тоннах руды будет содержáться 0,06x тонн меди. В богатой руде содержание меди составляет 11%, а в 20 − x тоннах богатой руды будет содержáться 0,11(20 − x) тонн меди.
В получившихся 20 тоннах руды содержание меди должно составлять 8%. Значит в 20 тоннах руды меди будет содержáться 20 × 0,08 = 1,6 тонн.
Сложим выражения 0,06x и 0,11(20 − x) и приравняем эту сумму к 1,6. Получим уравнение 0,06x + 0,11(20 − x) = 1,6
Решим данное уравнение:
Значит для получения 20 тонн руды с содержанием меди 8%, нужно взять 12 тонн бедной руды. Богатой же будет взято 20 − 12 = 8 тонн.
Задача 11. Увеличив среднюю скорость с 250 до 300 м/мин спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?
Решение
Длину дистанции (или расстояние дистанции) можно описать следующим буквенным уравнением:
Воспользуемся правой частью этого уравнения для составления своего уравнения. Изначально спортсменка пробегала дистанцию со скоростью 250 метров в минуту. При такой скорости длина дистанции будет описываться выражением 250t
Затем спортсменка увеличила свою скорость до 300 метров в минуту. При такой скорости длина дистанции будет описываться выражением 300t
Заметим, что длина дистанции это величина постоянная. От того, что спортсменка увеличит скорость или уменьшит её, длина дистанции останется неизменной.
Это позволяет нам приравнять выражение 250t к выражению 300t , поскольку оба выражения описывают длину одной и той же дистанции
Но в задаче сказано, что при скорости 300 метров в минуту спортсменка стала пробегать дистанцию на 1 минуту быстрее. Другими словами, при скорости 300 метров в минуту, время движения уменьшится на единицу. Поэтому в уравнении 250t = 300t в правой части время нужно уменьшить на единицу:
Получилось простейшее уравнение. Решим его:
При скорости 250 метров в минуту спортсменка пробегает дистанцию за 6 минут. Зная скорость и время, можно определить длину дистанции:
S = 250 × 6 = 1500 м
А при скорости 300 метров в минуту спортсменка пробегает дистанцию за t − 1 , то есть за 5 минут. Как было сказано ранее длина дистанции не меняется:
S = 300 × 5 = 1500 м
Задача 12. Всадник догоняет пешехода, находящегося впереди него на 15 км. Через сколько часов всадник догонит пешехода, если каждый час первый проезжает по 10 км, а второй проходит только по 4 км?
Решение
Данная задача является задачей на движение. Её можно решить, определив скорость сближения и разделив изначальное расстояние между всадником и пешеходом на эту скорость.
Скорость сближения определяется вычитанием меньшей скорости из большей:
10 км/ч − 4 км/ч = 6 км/ч (скорость сближения)
С каждым часом расстояние в 15 километров будут сокращаться на 6 км. Чтобы узнать, когда оно сократится полностью (когда всадник догонит пешехода), нужно 15 разделить на 6
2,5 ч это два целых часа и половина часа. А половина часа это 30 минут. Значит всадник догонит пешехода через 2 часа 30 минут.
Решим эту задачу с помощью уравнения.
Будем считать, что пешеход и всадник вышли в путь из одного и того же места. Пешеход вышел раньше всадника и успел преодолеть 15 км
После этого вслед за ним в путь вышел всадник со скоростью 10 км/ч. А скорость пешехода составляет только 4 км/ч. Это значит, что всадник через некоторое время догонит пешехода. Это время нам нужно найти.
Когда всадник догонит пешехода это будет означать, что они вместе прошли одинаковое расстояние. Расстояние, пройденное всадником и пешеходом описывается следующим уравнением:
Воспользуемся правой частью этого уравнения для составления своего уравнения.
Расстояние, пройденное всадником, будет описываться выражением 10t . Поскольку пешеход вышел в путь раньше всадника и успел преодолеть 15 км, то расстояние пройденное им будет описываться выражением 4t + 15 .
На момент, когда всадник догонит пешехода, оба они пройдут одинаковое расстояние. Это позволяет нам приравнять расстояния, пройденные всадником и пешеходом:
Получилось простейшее уравнение. Решим его:
Задачи для самостоятельного решения
Решение
Скорости поездов в данной задаче измеряются в километрах в час. Поэтому 45 мин, указанные в задаче, переведем в часы. 45 мин это 0,75 ч
Обозначим время, за которое товарный поезд приезжает в город, через переменную t . Поскольку пассажирский поезд приезжает в этот город на 0,75 ч быстрее, то время его движения будет обозначаться через выражение t − 0,75
Пассажирский поезд преодолел 48(t − 0.75) км, а товарный 36t км. Поскольку речь идет об одном и том же расстоянии, приравняем первое выражение ко второму. В результате получим уравнение 48(t − 0.75) = 36t . Решим его:
Теперь вычислим расстояние между городами. Для этого скорость товарного поезда (36 км/ч) умножим на время его движения t. Значение переменной t теперь известно — оно равно трём часам
Для вычисления расстояния можно воспользоваться и скоростью пассажирского поезда. Но в этом случае значение переменной t необходимо уменьшить на 0,75 поскольку пассажирский поезд затратил времени на 0,75 ч меньше
48 × (3 − 0,75) = 144 − 36 = 108 км
Ответ: расстояние между городами равно 108 км.
Решение
Пусть t время через которое автомобили встретились. Тогда первый автомобиль на момент встречи проедет 65t км, а второй 60t км. Сложим эти расстояния и приравняем к 150. Получим уравнение 65t + 60t = 150
Значение переменной t равно 1,2. Значит автомобили встретились через 1,2 часа.
Ответ: автомобили встретились через 1,2 часа.
Решение
Пусть x рабочих было в первом цехе. Во втором цехе было в три раза больше, чем в первом, поэтому количество рабочих во втором цехе можно обозначить через выражение 3x . В третьем цехе было на 15 рабочих меньше, чем во втором. Поэтому количество рабочих в третьем цехе можно обозначить через выражение 3x − 15 .
В задаче сказано, что всего рабочих было 685. Поэтому можно сложить выражения x, 3x, 3x − 15 и приравнять эту сумму к числу 685. В результате получим уравнение x + 3x + (3x − 15) = 685
Через переменную x было обозначено количество рабочих в первом цехе. Теперь мы нашли значение этой переменной, оно равно 100. Значит в первом цехе было 100 рабочих.
Во втором цехе было 3x рабочих, то есть 3 × 100 = 300 . А в третьем цехе было 3x − 15 , то есть 3 × 100 − 15 = 285
Ответ: в первом цехе было 100 рабочих, во втором — 300, в третьем — 285.
Решение
Пусть x моторов должна была отремонтировать первая мастерская. Тогда вторая мастерская должна была отремонтировать 18 − x моторов .
Поскольку первая мастерская выполнила свой план на 120%, это означает что она отремонтировала 1,2x моторов . А вторая мастерская выполнила свой план на 125%, значит она отремонтировала 1,25(18 − x) моторов.
В задаче сказано, что было отремонтировано 22 мотора. Поэтому можно сложить выражения 1,2x и 1,25(18 − x) , затем приравнять эту сумму к числу 22. В результате получим уравнение 1,2x + 1,25(18 − x) = 22
Через переменную x было обозначено количество моторов, которые должна была отремонтировать первая мастерская. Теперь мы нашли значение этой переменной, она равна 10. Значит первая мастерская должна была отремонтировать 10 моторов.
А через выражение 18 − x было обозначено количество моторов, которые должна была отремонтировать вторая мастерская. Значит вторая мастерская должна была отремонтировать 18 − 10 = 8 моторов.
Ответ: первая мастерская должна была отремонтировать 10 моторов, а вторая — 8 моторов.
Решение
Пусть x рублей стоил товар до повышения цены. Если цена увеличилась на 30% это означает, что она увеличилась на 0,30x рублей. После повышения цены товар начал стоить 91 руб. Сложим x с 0,30x и приравняем эту сумму к 91. В результате получим уравнение x + 0.30x = 91
Значит до повышения цены товар стоил 70 рублей.
Ответ: до повышения цены товар стоил 70 рублей.
Решение
Пусть x — исходное число. Увеличим его на 25%. Получим выражение x + 0,25x . Приведем подобные слагаемые, получим x + 0,25x = 1.25x .
Узнаем какую часть исходное число x составляет от нового числа 1,25x
Если новое число 1,25x считать за 100%, а исходное число x составляет от него 80%, то уменьшив новое число на 20% можно получить исходное число x
Ответ: чтобы получить исходное число, новое число нужно уменьшить на 20%.
Решение
Пусть x — первоначальное число. Увеличим его на 20%. Получим выражение x + 0,20x . Приравняем эту сумму к числу 144, получим уравнение x + 0,20x = 144
Ответ: первоначальное значение числа равно 120.
Решение
Пусть x — первоначальное число. Уменьшим его на 10%. Получим выражение x − 0,10x . Приравняем эту разность к числу 45, получим уравнение x − 0,10x = 45
Ответ: первоначальное значение числа равно 50.
Решение
Пусть x рублей — первоначальная цена альбома. Снизим эту цену на 15%, получим x − 0,15x . Снизим цену ещё на 15 руб., получим x − 0,15x − 15 . После этих снижений альбом стал стоить 19 руб. Приравняем выражение x − 0,15x − 15 к числу 19, получим уравнение x − 0,15x − 15 = 19
Ответ: первоначальная цена альбома составляет 40 руб.
Решение
Если 80% массы теряется, то на оставшиеся 20% будут приходиться 4 т сена. Пусть x тонн травы требуется для получения 4 т сена. Если 4 т будут составлять 20% травы, то можно составить уравнение:
Ответ: для получения 4 т сена, нужно накосить 20 т травы.
Решение
Пусть x кг 20%-го раствора соли нужно добавить к 1 кг 10%-го раствора.
В 1 кг 10%-го раствора соли содержится 0,1 кг соли. А в x кг 20%-го раствора соли содержится 0,20 x кг соли.
После добавления x кг 20%-го раствора в новом растворе будет содержáться 0,12(1 + x) кг соли. Сложим выражения 0,1 и 0,20x , затем приравняем эту сумму к выражению 0,12(1 + x) . В результате получим уравнение 0,1 + 0,20x = 0,12(1 + x)
Ответ: чтобы получить 12%-й раствор соли, нужно к 1 кг 10%-го раствора добавить 0,25 кг 20%-го раствора.
Решение
Пусть x кг первого раствора нужно взять. Поскольку требуется приготовить 25 кг раствора, то массу второго раствора можно обозначить через выражение 25 − x.
В первом растворе будет содержáться 0,20x кг соли, а втором — 0,30(25 − x) кг соли. В полученном растворе содержание соли будет 25 × 0,252 = 6,3 кг. Сложим выражения 0,20x и 0,30(25 − x), затем приравняем эту сумму к 6,3. В результате получим уравнение
Значит первого раствора нужно взять 12 кг, а второго 25 − 12 = 13 кг.
Ответ: первого раствора нужно взять 12 кг, а второго 13 кг.
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
44 thoughts on “Решение задач с помощью уравнений”
Вау новый урок. Я рад что вернулись)) После работы обязательно буду учить этот урок.
не смог решить ни одной задачи из примеров решения…
http://reshu.su/algebra/06/
Морфемный разбор слова:
Однокоренные слова к слову:
Образцы оформления задачи
В разделе «Задачи» мы рассмотрели несколько видов задач. Теперь поучимся оформлять решения к ним.
В вопросе задач такого типа всегда есть «Сколько всего?»
На школьном участке ребята посадили 7 лип и 4 клёна.
Сколько всего деревьев посадили ребята?
2. Задачи на нахождение остатка
Мама с Юлей посадили 7 кустов смородины. Затем они полили 4 куста.
Сколько кустов смородины осталось полить?
Сколько грибов нашёл Володя?
У Ани было 10 рублей, а у Оли на 2 рубля меньше.
Сколько денег было у Оли?
4. Задачи на разностное сравнение
Краски стоят 15 рублей, а альбом 8 рублей.
На сколько рублей краски дороже альбома?
Дыня весит 3 кг, а арбуз 7 кг.
На сколько кг дыня легче арбуза?
5. Задачи на нахождение неизвестного слагаемого
В условии «Было. Стало. «
В вопросе «Сколько добавили?»
У Саши было 4 карандаша. Когда ему купили еще несколько карандашей, у него их стало 9.
Сколько карандашей купили Саше?
6. Задачи на нахождение неизвестного вычитаемого
В условии «Было. Осталось. «
В вопросе «Сколько уехало?»
«Сколько человек вышло?»
В гараже было 9 машин. Когда несколько машин уехало, в гараже осталось 5 машин.
Сколько машин уехало?
7. Задачи на нахождение неизвестного уменьшаемого
В условии «Убрали. Осталось. «
В вопросе «Сколько было сначала?»
После того, как Дима отдал 2 свои машинки младшему брату, у него осталось 6 машинок.
Сколько машинок было у Димы сначала?
Задачи в 2 и 3 действия
Бабушка испекла пончики и разложила их по тарелкам. На первую тарелку она положила 5 пончиков, а на вторую на вторую на 2 пончика меньше.
Сколько всего пончиков испекла бабушка?
Сколько рыбок в двух аквариумах?
У Тани было 10 тетрадей. Она использовала 4 тетради.
На сколько больше тетрадей осталось, чем Таня использовала?
У Юры было 12 счетных палочек. Для решения примеров он использовал сначала 3, а потом еще 4 палочки.
Сколько палочек у него осталось?
У Вани было 20 рублей. На покупку карандаша и ручки он истратил 6 и 8 рублей.
Сколько рублей осталось у Вани?
Задачи с составлением таблиц по из условию:
I тип:
На 3 одинаковые шторы израсходовали 18 м ткани. Сколько таких штор можно сшить из 30 м такой же ткани?
В двух одинаковых пакетах 4 кг муки. Сколько килограммов муки в пяти таких пакетах?
Задачи с составлением рисунка по условию:
Два года назад Юле было 10 лет. Сколько лет будет Юле через 6 лет?
Поделись с друзьями в социальных сетях:
Источник
Памятка»Как составить выражение к задаче».
Условие → вопрос → схема (рисунок, краткая запись) → выражение → ответ
Как составить выражение к задаче?
Было→ до бавили → стало
Было→ у бавили → стало
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Скоростное чтение
Курс повышения квалификации
Актуальные вопросы теории и методики преподавания в начальной школе в соответствии с ФГОС НОО
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-116402
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
В России стартует пилотный проект по реабилитации детей-инвалидов
Время чтения: 2 минуты
Московские школьники победили на международной олимпиаде по информатике
Время чтения: 1 минута
Итоговое сочинение успешно написали более 97% выпускников школ
Время чтения: 2 минуты
АСИ организует конкурс лучших управленческих практик в сфере детского образования
Время чтения: 2 минуты
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Источник
Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №41»
«Составление числовых выражений»
(УМК «Школа XXI века, 2 класс)
Учитель начальных классов Гуменная Ирина Александровна
Урок математики во 2 классе
Тема: «Составление числовых выражений »
Цель: формирование представлений обучающихся о числовых выражениях, содержащих числа, знаки действий, скобки;
Формирование умения различать собственное знание и незнание на примере решения числовых выражений, содержащих скобки и не содержащих их.
Развитие умения сравнивать, делать выводы.
Воспитание интереса к математике.
Предметные: умение записывать и вычислять числовые выражения
Личностные: осознание практической важности изучаемого
— познавательные ( выделение необходимой информации, умение сравнивать и делать вывод);
— регулятивные (целеполагание, самооценка, контроль);
— коммуникативные (умение задавать вопросы друг другу, объяснять, работать в паре).
Средства обучения: В.Н. Рудницкая «Математика» 2 класс, тетрадь на печатной основе, смайлики, компьютер, мультимедийный проектор, экран.
Прозвенел звонок веселый,
Мы начать урок готовы.
Будем слушать, рассуждать
И друг другу помогать.
1 Устный счёт Фронтальная работа.
-О чем нам говорят скобки?
1.2 Работа в тетради. Определение цели урока
— Поставьте знаки «+» или «- », чтобы записи оказались верными
— Что мы с вами сделали? (вставили знаки действий)
-Помимо знаков действий из чего ещё состоят выражения?
— Сравните примеры из левого столбика с примерами из правого столбика.
Что заметили? ( числа одинаковые, есть скобки, ответы или разные, или совпадают. В правом столбике со скобок выражения начинаются … )
-Откройте тетради, запишите число, классная работа.
-Посмотрите на первую запись.
-Какое первое число у нас? ( 9)
-Что мы делали из девяти? ( вычитали)
-Делаем запись в тетради. (9-)
-Что мы вычитали из девяти? Разве только одно число три? (всю сумму)
(Если ученики говорят, что вычитали число три, то учитель напоминает, что мы выполняли действие в скобках 3+2, у нас нет уже числа три, а значит, надо вычитать всю сумму)
-Послушайте, как правильно читается эта запись: «Из девяти вычесть сумму чисел трёх и двух». Получилось числовое выражение.
-Запишите второе числовое выражение, прочитайте его правильно.
( К девяти прибавить разность чисел трёх и двух)
-В этом выражении последним действием что будем выполнять? Сумму или разность? 9+(3-2) (сумму, так как есть скобки)
— Поэтому выражение называется суммой 9 и разности (3-2)
-Может быть, кто-то сформулирует учебную задачу нашего урока
(нам надо научиться составлять числовые выражения, правильно их читать и записывать)
(К разности чисел девяти и трёх прибавить два)
-Какое действие будем выполнять первым? Почему?
(Из пятидесяти вычесть сумму чисел сорока и десяти)
-Откройте учебник на стр.100, рассмотрите иллюстрацию
-Зайчик держит карточки. Что на них написано? ( число девять, знак «-»)
-Заяц держит карточку с числом 9,это первая часть выражения.
-А Волк? (3+4) Это вторая часть выражения.
-Соединили две части при помощи знака «минус»
-Какое числовое выражение у зверят получилось? Почитаем его. ( Из девяти вычесть сумму чисел трёх и четырёх)
— Ниже прочитайте вывод ( « В выражении 9-(3+4) последним выполняется вычитание. Поэтому выражение называется разностью числа 9 и суммы (3+4))
— Итак, назовите тему урока («Составление числовых выражений »)
VI . Первичное закрепление знаний.
1 Фронтальная работа
На доске по одному выражение записывают, проговаривают
( Произведение чисел шести и четырёх разделить на шесть)
Аналогично остальные примеры
-Перепишите примеры с ответами со слайда. Расставьте скобки.
-Объясните соседу по парте, почему вы поставили скобки именно в этом месте.
-По одному примера друг другу объясняют. Сначала один как учитель объясняет, а сосед слушает. Потом меняетесь ролями.
-Прочитаем правильно получившиеся числовые выражения
( Из произведения шести и четырёх вычесть частное чисел пятнадцати и трёх)
(Произведение четырех и трёх разделить на частное чисел сорока восьми и восьми)
1 Самостоятельная работа
-Откройте тетрадь на печатной основе Стр.51
-Найдите значения выражений
Самопроверка по образцу на слайде.
-Оцените свою работу на полях. Если всё верно, то крестик на шкале в самом вверху. Критерий «правильно решил» Если есть ошибка-посередине. Если неверно всё, то крестик на шкале в самом низу.
-У кого есть ошибки? В чем они? (Учащиеся называют свои ошибки.) ( Ошибка в вычислениях…) (Не смотрел на то, что есть скобки)
-Прочитайте текст. ( Дети отправились на водную прогулку: по 6 мальчиков в трёх катерах и по 3 девочки в дух лодках.)
-Можно ли назвать это задачей?
-Что нам нужно сделать? ( написать пояснение; что мы узнаем, выполнив вычисления)
(6*3) + (3*2) ( сколько всего детей)
(6*3) : (3*2) (во сколько раз мальчиков больше, чем девочек)
-Выполните вычисления. Какое правило надо помнить? (действия в скобках выполняются в первую очередь)
Теперь я знаю как правильно прочитать ( числовое выражение)
Теперь я смогу… ( записать числовое выражение, найти его значение)
Мне было интересно…( Работать в паре с соседом, находить ошибки в ответах…)
Самооценка. Алгоритм самооценки на доске .
— работал на уроке активно и выполнил правильно все задания
— выполнял работу с ошибками, сам исправил ошибки
— задания выполнял с помощью учителя или других учеников
— Как оценили свою работу на уроке? Покажите свои смайлики
Список основной литературы
Примерная основная образовательная программа начального общего образования [Текст] / сост. Е.С. Савинов.- М.: Просвещение, 2010.
Рудницкая, В.Н. Рабочая тетрадь на печатной основе №2 – М. : «Вентана-Граф»,2019 – 64 с.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Скоростное чтение
Курс повышения квалификации
Актуальные вопросы теории и методики преподавания в начальной школе в соответствии с ФГОС НОО
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1609327
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
В Думу внесли законопроект об обязательном образовании для находящихся в СИЗО подростков
Время чтения: 2 минуты
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Итоговое сочинение успешно написали более 97% выпускников школ
Время чтения: 2 минуты
В Хабаровске родители смогут заходить в школы и детсады только по QR-коду
Время чтения: 1 минута
В МГУ заработала университетская квантовая сеть
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Источник
Запись решения задачи выражением
Урок 15. Математика 2 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Запись решения задачи выражением»
— Плюс. Плююююс! Ты где?
Привет, Плюс! Чего так долго? Включай скорее компьютер. Сейчас у нас будет в скайпе разговор с царицей Математикой.
— Здравствуй, Минус. Как это я забыл! Включаю.
— Здравствуйте, Дорогие Плюс и Минус!
— Да, царица, мы Вас внимательно слушаем.
— Мы очень внимательно слушаем.
— Ну что же, приступим. Итак, вот первая задача:
Ну, Плюс и Минус, я жду вашего решения. Может быть и ребята, которые на вас смотрят, попробуют решить эту задачу.
— Всё, я готов! Могу даже объяснить, как я решал эту задачу.
В задаче два неизвестных, значит, задача составная, то есть в ней не одно действие, а два. В первом действии я узнаю, сколько лисичек.
А так как боровиков и подберёзовиков вместе столько же, сколько и лисичек, то общее количество грибов я нашёл вот так:
Ответ: всего 28 грибов нашли ребята в лесу.
— А я решал задачу другим способом. Вот посмотрите:
— Ну что же, начинаем решать. Ребята, и вы попробуйте с нами решать!
— Я уже решил. Вот посмотрите, в задаче известно количество мальчиков, Их 14. Но неизвестно количество девочек. Ведь сказано, что их на 5 меньше, чем мальчиков.
Ответ: всего 23 учащихся присутствовало на уроке физкультуры.
— А вот я записал решение этой задачи по-другому:
И ещё можно вот так:
Ты первым действием узнаёшь, сколько девочек, и я тоже. Ведь это действие я записал в скобках. А то, что записано в скобках, всегда выполняется первым.
— Ты, Плюс, как всегда. Все тебе надо складывать да экономить. Хотя, наверное, ты прав. Эта запись действительно удобная. А хотелось бы и мне попробовать такую запись задачи выражением.
Ваше величество, госпожа королева. Не могли бы Вы задать нам ещё одну задачу?
— Ну что же, слушайте:
В моём саду растёт 6 яблонь. А груш на 2больше. Сколько всего яблонь и груш растёт в моём саду?
— Ну вот что у меня получилось. Прежде, чем узнать, сколько всего яблонь и груш, необходимо узнать, сколько груш. Ведь нам это неизвестно. Сказано, что их на 2 больше, чем яблонь.
Значит, в саду царицы растёт 14 яблонь и груш.
А вот как получилась запись выражением:
— Хорошо. Задача решена, верно. А теперь расскажите, чему вы научились.
— Можно я начну первый.
Записывать решение задачи можно по действиям и выражением.
— При записи по действиям мы пишем номер действия и пояснения к каждому действию, а при записи выражением только пояснение к значению записанного выражения.
— При записи выражения первое действие часто записываем в скобках, и конечно, не забываем записать ответ задачи.
— Ну что же, молодцы, Плюс и Минус. Вы справились с заданием. И сейчас вы можете пойти погулять в мой сад и полакомиться яблоками и грушами.
Источник
Математика. 2 класс
Конспект урока
Математика, 2 класс
Урок № 22. Решение текстовых задач. Запись решения выражением
Перечень вопросов, рассматриваемых в теме:
— Что такое встречное движение, расстояние?
— Как выполнять схематический чертёж к задачам на движение?
Задача – это упражнение, которое выполняется посредством умозаключения, вычисления.
Выражение – формула, выражающая какие–либо математические отношения.
Расстояние – пространственный промежуток, разделяющий два объекта, отрезок пути.
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
Теоретический материал для самостоятельного изучения
Расстояние – это путь, который прошёл какой-либо объект.
РАССТОЯНИЕ – промежуток в пространстве, разделяющий два объекта
Измеряя расстояние, мы будем использовать сокращённые записи.
Сегодня на уроке мы будем решать новые задачи – задачи на движение.
Длина аллеи 80 м. Два мальчика пошли навстречу друг другу. Один прошёл до встречи 45 м. Сколько прошёл до встречи другой мальчик?
Сделаем к задаче схематический чертёж.
Начертим отрезок, обозначающий длину всей дорожки, или расстояние между концами дорожки. Синей стрелкой обозначим длину дорожки. Укажем – 80 метров.
Мальчики шли навстречу друг другу с разных сторон дорожки. На чертеже это будем обозначать стрелками, которые показывают направление движения каждого мальчика.
Место встречи мальчиков будем обозначать флажком.
Теперь обозначим, что один мальчик прошёл до встречи 45 метров, а другой –
неизвестно. Поставим знак вопроса.
Так выглядит схематический чертёж к задаче. По чертежу видно, что нам необходимо найти разность отрезков, выполнить вычитание.
Чтобы узнать, сколько метров до встречи прошёл второй мальчик, вычтем из длины всей дорожки длину пути, который прошёл первый мальчик.
80 – 45 = 35 (м) прошёл второй мальчик.
Второй мальчик прошёл до встречи 35 метров.
Решим вторую задачу:
Девочки измеряли длину дорожки с двух концов, идя навстречу друг другу. Одна девочка прошла до встречи 30 м, другая на 4 метра меньше. Какой длины была дорожка?
Сделаем схематический чертёж к задаче.
Итак, нам надо найти длину всей дорожки. Для этого мы должны знать, сколько метров прошла каждая девочка. Мы знаем, сколько прошла первая девочка – 30 метров. А сколько прошла вторая девочка, нам надо узнать.
Будем решать задачу в два действия. Запишем первое действие:
1) 30 – 4 = 26 (м) прошла вторая девочка.
Вторая девочка прошла до встречи двадцать шесть метров.
Теперь можем ответить на вопрос задачи. Запишем второе действие:
2) 30 + 26 = 56 (м) длина дорожки.
Длина всей дорожки была 56 метров.
Вывод: Для решения задач на движение обычно выполняют чертёж, в котором стрелками показывают направление движения объектов. Движение может быть встречным или в противоположных направлениях.
1.Подберите схематический чертёж к задаче
Красная Шапочка отправилась в гости к бабушке. До дома бабушки нужно пройти 100 метров. Красная Шапочка уже прошла 70 метров. Сколько ей осталось пройти?
2.Соедините каждый чертёж с карточкой, на которой записано соответствующее решение задачи.
30 – 20
30 + 20
70 – 45
70 – 45
30 + 20
30 – 20
Источник
Теперь вы знаете какие однокоренные слова подходят к слову Как написать выражение к задаче 2 класс, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову «Как написать выражение к задаче 2 класс», предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.
—
Плюс!….. Плююююс! Ты где?
Привет,
Плюс! Чего так долго? Включай скорее компьютер. Сейчас у нас будет в скайпе разговор
с царицей Математикой.
—
Здравствуй, Минус. Как это я забыл! Включаю.
—
Здравствуйте, Дорогие Плюс и Минус!
Сегодня
я хочу проверить, как вы умеете решать задачи. Я дам несколько задач и предлагаю
вам устроить соревнование — кто сможет их решить быстрее, но при этом, конечно,
правильно.
—
Да, царица, мы Вас внимательно слушаем.
—
Мы очень внимательно слушаем.
—
Ну что же, приступим. Итак, вот первая задача:
Ребята
в лесу собирали грибы. Они нашли 5 боровиков, 9 подберёзовиков, а лисичек
столько, сколько боровиков и подберёзовиков вместе. Сколько всего грибов нашли
ребята в лесу?
Ну,
Плюс и Минус, я жду вашего решения. Может быть и ребята, которые на вас
смотрят, попробуют решить эту задачу.
—
Всё, я готов! Могу даже объяснить, как я решал эту задачу.
Нам
даны два числа: количество боровиков — их 5, и количество подберёзовиков — их 9.
Но неизвестно количество лисичек. Про них сказано, что их столько, сколько
боровиков и подберёзовиков вместе. А ещё неизвестно, сколько всего грибов.
В
задаче два неизвестных, значит, задача составная, то есть в ней не одно
действие, а два. В первом действии я узнаю, сколько лисичек.
А
так как боровиков и подберёзовиков вместе столько же, сколько и лисичек, то
общее количество грибов я нашёл вот так:
Ответ:
всего 28 грибов нашли ребята в лесу.
—
А я решал задачу другим способом. Вот посмотрите:
—
Да, Минус, чувствуется, что сложение — это не твой конёк. Конечно, задачу ты
решил правильно. Но при этом у тебя получилось не два, а три действия. При этом
первое и второе действия повторяются. Для этой задачи такой способ записи не
очень удобен. Хотя некоторые задачи действительно удобно записывать не по
действиям, как это сделал я, а числовым выражением. А вот, кстати,
царица Математика уже даёт нам новую задачу.
—
Тихо, Плюс, слушаем!
—
На уроке физкультуры присутствовало 14 мальчиков. А девочек — на 5 меньше.
Сколько всего учащихся присутствовало на уроке физкультуры?
—
Ну что же, начинаем решать. Ребята, и вы попробуйте с нами решать!
—
Я уже решил. Вот посмотрите, в задаче известно количество мальчиков, Их 14. Но
неизвестно количество девочек. Ведь сказано, что их на 5 меньше, чем мальчиков.
А
в задаче надо узнать количество девочек, и только потом — сколько всего детей. Я
так и узнавал:
Ответ:
всего 23 учащихся присутствовало на уроке физкультуры.
—
А вот я записал решение этой задачи по-другому:
И
ещё можно вот так:
—
Но ведь ты мне только что говорил, что такой способ решения неудобен! Зачем же
ты решил задачу другим способом — записью выражения.
—
В первой задаче он действительно был неудобен, а в этой — очень даже удобен.
Во-первых, это не другой способ решения задачи. Посмотри, в моём решении есть
те же действия, что и в твоём, и даже в той же последовательности.
Ты
первым действием узнаёшь, сколько девочек, и я тоже. Ведь это действие я
записал в скобках. А то, что записано в скобках, всегда выполняется первым.
Во
втором действии к 14 прибавляем полученное в первом действии число 9. А в этой
записи слагаемые меняются местами — к 9 прибавляется 14.
И
получается, что это не другой способ решения задачи — ведь все действия
одинаковы, а другой способ записи решения. Ты решал по действиям, а я —
выражением. Способ решения одинаковый, а способ записи этого решения —
разный. Но посмотри, моя запись получилась короче. В ней нет номеров действий и
пояснений. Поэтому такая запись помогает экономить и время, и бумагу.
—
Ты, Плюс, как всегда. Все тебе надо складывать да экономить. Хотя, наверное, ты
прав. Эта запись действительно удобная. А хотелось бы и мне попробовать такую
запись задачи выражением.
Ваше
величество, госпожа королева. Не могли бы Вы задать нам ещё одну задачу?
—
Ну что же, слушайте:
В
моём саду растёт 6 яблонь. А груш на 2больше. Сколько всего яблонь и груш
растёт в моём саду?
Я
хочу видеть у вас оба способа записи решения — и по действиям, и выражением.
—
Хорошо.
—
Хорошо.
—
Ну вот что у меня получилось. Прежде, чем узнать, сколько всего яблонь и груш,
необходимо узнать, сколько груш. Ведь нам это неизвестно. Сказано, что их на 2
больше, чем яблонь.
Получаем:
Значит,
в саду царицы растёт 14 яблонь и груш.
А
вот как получилась запись выражением:
Сначала
я нашёл, количество груш. Но, так как это действие стоит не в начале записи, я
выделил его скобками. А потом нашёл сумму чисел. Ответ такой же, как и при
записи по действиям — 14.
—
Хорошо. Задача решена, верно. А теперь расскажите, чему вы научились.
—
Можно я начну первый.
Записывать
решение задачи можно по действиям и выражением.
—
При записи по действиям мы пишем номер действия и пояснения к каждому действию,
а при записи выражением только пояснение к значению записанного выражения.
—
При записи выражения первое действие часто записываем в скобках, и конечно, не
забываем записать ответ задачи.
—
Ну что же, молодцы, Плюс и Минус. Вы справились с заданием. И сейчас вы можете
пойти погулять в мой сад и полакомиться яблоками и грушами.
—
Ура!!!
- Главная
- Справочники
- Справочник по математике для начальной школы
- Задачи
- Образцы оформления задачи
В разделе «Задачи» мы рассмотрели несколько видов задач. Теперь поучимся оформлять решения к ним.
1. Задачи на нахождение суммы
В вопросе задач такого типа всегда есть «Сколько всего?»
На школьном участке ребята посадили 7 лип и 4 клёна.
Сколько всего деревьев посадили ребята?
2. Задачи на нахождение остатка
В вопросе «Сколько … осталось?»
Мама с Юлей посадили 7 кустов смородины. Затем они полили 4 куста.
Сколько кустов смородины осталось полить?
3. Задачи на увеличение или уменьшение числа на несколько единиц
В условии «на … больше»
Папа с Володей собирали грибы. Папа нашёл 8 грибов, а Володя на 3 гриба больше.
Сколько грибов нашёл Володя?
В условии «на … меньше»
У Ани было 10 рублей, а у Оли на 2 рубля меньше.
Сколько денег было у Оли?
4. Задачи на разностное сравнение
В вопросе «На сколько больше…?»
Краски стоят 15 рублей, а альбом 8 рублей.
На сколько рублей краски дороже альбома?
«На сколько меньше…?»
Дыня весит 3 кг, а арбуз 7 кг.
На сколько кг дыня легче арбуза?
5. Задачи на нахождение неизвестного слагаемого
В условии «Было…Стало…»
В вопросе «Сколько добавили?»
У Саши было 4 карандаша. Когда ему купили еще несколько карандашей, у него их стало 9.
Сколько карандашей купили Саше?
6. Задачи на нахождение неизвестного вычитаемого
В условии «Было… Осталось…»
В вопросе «Сколько уехало?»
«Сколько человек вышло?»
В гараже было 9 машин. Когда несколько машин уехало, в гараже осталось 5 машин.
Сколько машин уехало?
7. Задачи на нахождение неизвестного уменьшаемого
В условии «Убрали… Осталось…»
В вопросе «Сколько было сначала?»
После того, как Дима отдал 2 свои машинки младшему брату, у него осталось 6 машинок.
Сколько машинок было у Димы сначала?
Задачи в 2 и 3 действия
Первый вид
Бабушка испекла пончики и разложила их по тарелкам. На первую тарелку она положила 5 пончиков, а на вторую на вторую на 2 пончика меньше.
Сколько всего пончиков испекла бабушка?
Второй вид
В классе два маленьких аквариума. В первом аквариуме 4 рыбки, а во втором — на 2 рыбки больше.
Сколько рыбок в двух аквариумах?
Третий вид
У Тани было 10 тетрадей. Она использовала 4 тетради.
На сколько больше тетрадей осталось, чем Таня использовала?
Четвёртый вид
У Юры было 12 счетных палочек. Для решения примеров он использовал сначала 3, а потом еще 4 палочки.
Сколько палочек у него осталось?
или
У Вани было 20 рублей. На покупку карандаша и ручки он истратил 6 и 8 рублей.
Сколько рублей осталось у Вани?
Задачи с составлением таблиц по из условию:
I тип:
На 3 одинаковые шторы израсходовали 18 м ткани. Сколько таких штор можно сшить из 30 м такой же ткани?
II тип:
В двух одинаковых пакетах 4 кг муки. Сколько килограммов муки в пяти таких пакетах?
Задачи с составлением рисунка по условию:
Два года назад Юле было 10 лет. Сколько лет будет Юле через 6 лет?
Советуем посмотреть:
Обратные задачи
Цена. Количество. Стоимость
Скорость, время, расстояние
Задачи
Правило встречается в следующих упражнениях:
1 класс
Страница 15,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 19,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 23,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 24,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 25,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 27,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 30,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 32,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 44,
Моро, Волкова, Степанова, Учебник, часть 2
Страница 5,
Моро, Волкова, Рабочая тетрадь, часть 2
2 класс
Страница 93,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 14,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 22,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 31,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 32,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 44,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 88,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 90,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 110,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 80,
Моро, Волкова, Рабочая тетрадь, часть 2
3 класс
Страница 65,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 75,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 5,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 66,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 70,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 78,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 6,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 7,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 13,
Моро, Волкова, Рабочая тетрадь, часть 2
Страница 74,
Моро, Волкова, Рабочая тетрадь, часть 2
4 класс
Страница 13,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 63,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 68,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 72,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 78,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 95,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 1
Страница 40,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 79,
Моро, Волкова, Рабочая тетрадь, часть 1
Страница 7,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
Страница 59,
Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, часть 2
5 класс
Задание 385,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Номер 137,
Мерзляк, Полонский, Якир, Учебник
Номер 164,
Мерзляк, Полонский, Якир, Учебник
Номер 248,
Мерзляк, Полонский, Якир, Учебник
Номер 265,
Мерзляк, Полонский, Якир, Учебник
Номер 266,
Мерзляк, Полонский, Якир, Учебник
Номер 293,
Мерзляк, Полонский, Якир, Учебник
Номер 294,
Мерзляк, Полонский, Якир, Учебник
Номер 295,
Мерзляк, Полонский, Якир, Учебник
Номер 495,
Мерзляк, Полонский, Якир, Учебник
6 класс
Задание 361,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 362,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 363,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 386,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 393,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 395,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 404,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 405,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 419,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник
Задание 435,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник