Как составить задачу по биологии по генетике

Управление образования
администрации города Шахтёрска

Методический кабинет

Муниципальное
общеобразовательное учреждение

«Шахтёрская гимназия»

УЧЕБНОЕ ПОСОБИЕ

«ТЕХНОЛОГИЯ РЕШЕНИЯ
ГЕНЕТИЧЕСКИХ ЗАДАЧ»

Кобелева
Елена Владимировна,

учитель  
биологии                                             Муниципального
общеобразовательного учреждения  «Шахтёрская  
гимназия»                                                      

Шахтёрск — 2018

Автор-составитель Кобелева Е.В., учитель
биологии Муниципального общеобразовательного учреждения «Шахтёрская гимназия»,
специалист высшей квалификационной категории.

Рецензенты:

1.           
Гагулина В.В., методист методического кабинета Управления
образования города Шахтёрска

2.           
Ямковая О.Б, МОУ заместитель директора по УВР         «СШ №1»,
учитель биологии специалист высшей квалификационной категории.

3.           
Фуникова О.А., учитель биологии УВК№1, специалист

Методическое пособие представляет собой 
сборник   школьного курса биологии 11класса, тематически соответствует
программе обучения и  учебнику.

В пособии представлены  алгоритмы
решения задач по изучаемым темам раздела «Генетика»,   краткий теоретический
материал, необходимый для решения задач  в виде карты-памяти, образец решения
задачи по предложенному алгоритму и задачи для самостоятельного решения.

Работа со сборником позволит
учащимся усвоить основные понятия, термины и законы генетики, разобраться в
генетической символике, применять теоретические знания на практике, объяснять
жизненные ситуации с точки зрения генетики, подготовиться к сдаче ГИА.

Содержание

Введение

Основные
термины и понятия генетики

Глава
1. Общие рекомендации по решению генетических задач

1.1.         
Техника решения задач

1.2.         
Оформление задач по генетике

1.3.         
Законы Менделя

1.4.         
Закон Моргана

1.5.         
Правила при решении задач по
генетике

1.6.         
Список доминантных и рецессивных
признаков человека

Глава 2. Алгоритм решения
задач

2.1.    Решение прямых задач

2.2.    Алгоритм решения обратных задач

2.3.    Алгоритм решения задач «Моногибридное скрещивание»

2.4.    Алгоритм решения задач «Дигибридное скрещивание»

2.5. Алгоритм решения задач «Анализирующее скрещивание»

2.6. Алгоритм решения задач «Сцепленное наследование»

2.7. Алгоритм решения задач «Генетика пола»

2.8. Алгоритм решения задач «Наследование признаков, сцепленных с
полом»

Глава 3. Примеры решения задач по генетике

Заключение

Литература

Введение

Разделы «Основы генетики» и
«Молекулярная биология» являются одними из самых сложных для понимания в
школьном курсе общей биологии. Облегчению усвоения этих разделов может
способствовать решение задач по генетике разных уровней сложности.

Решение задач, как
учебно-методический прием изучения генетики, имеет важное значение. Его
применение способствует качественному усвоению знаний, получаемых теоретически,
повышая их образность, развивает умение рассуждать и обосновывать выводы,
существенно расширяет кругозор изучающего генетику, т.к. задачи, как правило,
построены на основании документальных данных, привлеченных из области частной
генетики растений, животных, человека. Использование таких задач развивает у
школьников логическое мышление и позволяет им глубже понять учебный материал, а
преподаватель имеет возможность осуществлять эффективный контроль уровня
усвоенных учащимися знаний. Несмотря на это школьные учебники содержат минимум
информации о закономерностях наследования, а составлению схем скрещивания и
решению генетических задач в школьной программе по общей биологии отводится
очень мало времени. Поэтому возникла необходимость в создании данного сборника. Учебное пособие составлено согласно обновленным ГОС, программе основного
общего и среднего общего образования по биологии

Метопредметные связи, реализуемые
при составлении данного сборника:

·       
Математика —
умение производить простейшие вычисления, анализировать и прогнозировать
результаты.

·       
История —
знание родословных основных персон мира для составления генеалогических древ
при выполнении различных творческих работ.

·       
Биология —
основы цитологии, молекулярной биологии, строения клетки.

·       
Органическая
химия — строение углеводов, белков, аминокислот, нуклеиновых кислот.

Цель: развитие у учащихся умения и навыков
решения задач по основным разделам классической генетики.

Задачи:

1.                
Развивать
познавательный интерес к предмету;

2.                
Показать
практическую значимость общей биологии для различных отраслей производства,
селекции, медицины;

3.                
Создать
условия для формирования и развития у учащихся УУД, интеллектуальных и
практических умений в области генетики.

4.                
Ликвидировать 
пробелы в знаниях учащихся;

Результат работы со сборником

Учащиеся  знают:

·       
основные
понятия, термины и законы генетики;

·       
генетическую
символику.

Учащиеся умеют:

·       
правильно
оформлять условия, решения и ответы генетических задач;

·       
решать
типичные задачи;

·       
логически
рассуждать и обосновывать выводы.

Учащиеся  умеют характеризовать:

·       
причины
биологической индивидуальности на разных уровнях;

·       
модификационную,
мутационную и комбинативную изменчивость, ее причины;

·       
норму реакции;

·       
значение
генотипа и условий среды в формировании фенотипа;

·       
значение
мутаций в эволюции, генетике, здравоохранении и экологической безопасности
населения.

Учащиеся  умеют  характеризовать
основные положения:

·       
мутационной
теории;

·       
закона
гомологических рядов наследственной изменчивости;

·       
закономерностей
модификационной изменчивости;

·       
Закона Харди —
Вайнберга;

·       
Вклад Н.И.
Вавилова, И.А. Рапопорта, В.В. Сахарова, А.С. Серебровского, С.С.
Четверикова, Н.П. Дубинина в развитие науки генетики, синтетической теории
эволюции, селекции.

Описание: 669Основные термины и
понятия генетики.

Ген (с современных позиций) – это участок
молекулы ДНК, содержащий информацию о  первичной структуре одного белка. Гены
находятся в хромосомах, где они расположены линейно, образуя «группы
сцепления».

Аллельные
гены
– это пара генов, определяющих контрастные (альтернативные)
признаки организма. Каждый ген этой пары называется аллелью. Аллельные гены
расположены в одних и тех же участках локусах гомологичных  (парных) хромосом.

Альтернативные
признаки
– это взаимоисключающие, контрастные признаки
(например, жёлтые и зелёные семена гороха). Часто один из альтернативных
признаков является доминантным, а другой – рецессивным.

Доминантный признак – это признак, проявляющийся у гибридов первого
поколения при скрещивании представителей чистых линий. Например, у гороха
доминантными признаками являются жёлтая окраска семян, гладкая поверхность
семян, пурпурная окраска цветков

Рецессивный признак не проявляется у гибридов первого поколения при
скрещивании представителей чистых линий.

Гомозигота
– клетка или организм, содержащие одинаковые аллели одного и того же гена (АА
или аа).

Гетерозигота
– клетка или организм, содержащие разные аллели одного и того же
гена (Аа).

Генотип
совокупность всех генов организма.

Фенотип
совокупность признаков организма, формирующихся при взаимодействии
генотипа с окружающей средой.

Гибридологический метод – изучение признаков родительских форм, проявляющихся в
ряду поколений у потомства, полученного путём гибридизации (скрещивания).

Моногибридное скрещивание – это скрещивание форм, отличающихся друг от друга по
одной паре изучаемых контрастных (альтернативных) признаков, которые передаются
по наследству.

Дигибридное скрещивание – это скрещивание форм, отличающихся друг от друга по
двум парам изучаемых альтернативных признаков.

Полигибридное скрещивание – это сложное скрещивание, при котором родительские
организмы отличаются по трём, четырём, и более парам контрастных
(альтернативных) признаков.

https://www.oncotrust.ru/news-images/Genler-icin-de-Egitim-Sart-Kanserde-Epigenetik-Tedaviler-620x420-245760.jpgРаздел 1 . Общие рекомендации по решению генетических
задач
.

1.1.         
Техника решения задач

Алгоритм

Символика

1. Краткая запись условий задачи. Введение
буквенных обозначений генов, обычно А и В. Определение типа наследования
(доминантность, рецессивность), если это не указано.

2. Запись фенотипов и схемы скрещивания
словами.

3.Определение фенотипов в соответствии с
условиями. Запись генотипов символам генов под фенотипами.

4. Определение гамет. Выяснение их числа и
находящихся в них генов на основе установленных генотипов.

5. Составление решетки Пеннета.

6. Анализ решетки согласно поставленным
вопросам.

7. Краткая запись ответов

1. Р – перента – родители.
Родительские организмы, взятые для скрещивания, отличающиеся наследственными
задатками.

2.F – филис – дети.
Гибридное потомство.

3. F1 –гибриды I
поколения, F2 – гибриды
II поколения.

4. G
гаметы А а ….

5. А, В – доминантные гены,
отвечающие за доминантные признаки (например, желтую окраску и гладкую
поверхность семян гороха).

6. а, в – рецессивные  гены,
отвечающие за развитие рецессивных признаков (например, зелёной окраски семян
гороха и морщинистой поверхности семян гороха).

7. А, а – аллельные гены,
определяющие конкретный признак.

8. АА, ВВ – доминантные
гомозиготы, аа, вв – рецессивные гомозиготы.

9. Х – знак скрещивания.

10. ♀ — символ, обозначающий
женский пол особи (символ Венеры – зеркальце с ручкой).

11.♂ — символ, обозначающий мужской пол особи (символ Марса –
копьё и щит).

1.2.         
Оформление задач по генетике.

2.                  
Первым  принято записывать генотип женской особи, а затем –
мужской (верная запись — ♀ААВВ  х  ♂аавв;  неверная
запись — ♂аавв  х  ♀ААВВ).

3.                  
Гены одной аллельной пары всегда пишутся рядом (верная запись
– ♀ААВВ; неверная запись ♀АВАВ).

4.                  
При записи генотипа, буквы, обозначающие признаки, всегда пишутся
в алфавитном порядке, независимо, от того, какой признак – доминантный или
рецессивный – они обозначают (верная запись — ♀ааВВ; неверная запись
-♀ ВВаа).

5.                  
Если известен только фенотип особи, то при записи её генотипа
пишут лишь те гены, наличие которых бесспорно.  Ген, который невозможно
определить по фенотипу, обозначают значком «_» (например, если жёлтая окраска
(А) и гладкая форма  (В) семян гороха –  доминантные признаки, а
зелёная окраска (а) и морщинистая форма (в) – рецессивные, то генотип особи с
жёлтыми морщинистыми семенами записывают А_вв).

6.                  
Под генотипом всегда пишут фенотип.

7.                  
У особей определяют и записывают типы гамет, а не их количество:

               верная запись      
                     
                     
   неверная запись

                     ♀
АА             
                                                        ♀ АА

                        
 А          
                                                              А
     А

8.                  
Фенотипы и типы  гамет пишутся строго под соответствующим
   генотипом.

9.                  
Записывается ход решения задачи с обоснованием каждого вывода
 и полученных результатов.

10.              
При решении задач на ди- и полигибридное скрещивание для
определения генотипов потомства рекомендуется пользоваться решёткой Пеннета. По
вертикали записываются типы гаметы от материнской особи, а по горизонтали –
отцовской. На пересечении записываются сочетание гамет, соответствующие
генотипу образующейся  дочерней особ
и.

1.3.         
Законы Г.
Менделя

Первый закон Менделя — закон
единообразия гибридов F1

Этот закон выведен
на основании результатов моногибридного скрещивания. Для опытов было взято
два сорта гороха, отличающихся друг от друга одной парой признаков —
цветом семян: один сорт имел желтую окраску, второй — зеленую.
Скрещивающиеся растения были гомозиготными.

Для записи результатов скрещивания
Менделем была предложена следующая схема:

А —желтая окраска семян
а — зеленая окраска семян

Р (родители)

АА

аа

Г (гаметы)

А

а

F1 (первое поколение)

Аа
(все растения имели желтые семена)

Формулировка закона: при скрещивании организмов,
различающихся по одной паре альтернативных признаков, первое поколение единообразно
по фенотипу и генотипу
.

Второй закон Менделя — закон
расщепления

Из семян, полученных при
скрещивании гомозиготного растения с желтой окраской семян
с растением с зеленой окраской семян, были выращены растения,
и путем самоопыления было получено F2.

Р (F1)

Aa

Aa

Г

А; a

А; a

F2

АА; Аа; Аа; аа 
(75% растений
имеют доминантный признак,25% — рецессивный)

Формулировка закона: у потомства, полученного
от скрещивания гибридов первого поколения, наблюдается расщепление
по фенотипу в соотношении
 3:1, а по генотипу — 1:2:1.

Третий закон Менделя — закон
независимого наследования

Этот закон был выведен
на основании данных, полученных при дигибридном скрещивании. Мендель
рассматривал наследование двух пар признаков у гороха: окраски
и формы семян.

В качестве родительских форм
Мендель использовал гомозиготные по обоим парам признаков растения: один
сорт имел желтые семена с гладкой кожицей, другой — зеленые
и морщинистые.

А — желтая окраска семян, а — зеленая окраска семян,
В — гладкая форма, в — морщинистая форма.

Р

ААВВ

аавв

Г

АВ

ав

F1

АаВв
100% (желтые
гладкие).

Затем Мендель из семян F1 вырастил растения и путем
самоопыления получил гибриды второго поколения.

Р

АаВв

АаВв

Г

АВ, Ав, аВ, ав

АВ, Ав, аВ, ав

F2

Для записи и определения генотипов используется решетка
Пеннета

Гаметы

АВ

Ав

аВ

ав

АВ

ААВВ

ААВв

АаВВ

АаВв

Ав

ААВв

Аавв

АаВв

Аавв

аВ

АаВВ

АаВв

ааВВ

ааВв

ав

АаВв

Аавв

ааВв

аавв

В F2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1. 9/16 всех семян имели оба доминантных
признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный
(желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный
(зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые
и морщинистые).

При анализе наследования каждой
пары признаков получаются следующие результаты. В F2 12 частей
желтых семян и 4 части зеленых семян, т.е.
соотношение 3:1.
Точно такое же соотношение будет и по второй паре признаков
(форме семян).

Формулировка закона: при скрещивании организмов,
отличающихся друг от друга двумя и более парами альтернативных
признаков, гены и соответствующие им признаки наследуются независимо
друг от друга и комбинируются во всевозможных сочетаниях
.

Третий закон Менделя выполняется
только в том случае, если гены находятся в разных парах гомологичных
хромосом.

Закон (гипотеза) «чистоты» гамет

При анализе признаков гибридов
первого и второго поколений Мендель установил, что рецессивный ген
не исчезает и не смешивается с доминантным. В F2 проявляются оба гена, что возможно
только в том случае, если гибриды F1 образуют два типа гамет: одни несут доминантный
ген, другие — рецессивный. Это явление и получило название гипотезы
чистоты гамет: каждая гамета несет только один ген из каждой аллельной
пары. Гипотеза чистоты гамет была доказана после изучения процессов,
происходящих в мейозе.

Гипотеза «чистоты» гамет — это
цитологическая основа первого и второго законов Менделя.
С ее помощью можно объяснить расщепление по фенотипу
и генотипу.

Анализирующее скрещивание

Этот метод был предложен Менделем
для выяснения генотипов организмов с доминантным признаком, имеющих
одинаковый фенотип. Для этого их скрещивали с гомозиготными
рецессивными формами.

Если в результате скрещивания
все поколение оказывалось одинаковым и похожим на анализируемый
организм, то можно было сделать вывод: исходный организм является
гомозиготным по изучаемому признаку.

Если в результате скрещивания
в поколении наблюдалось расщепление в соотношении 1:1,
то исходный организм содержит гены в гетерозиготном состоянии.

Наследование групп крови (система АВ0)

Наследование групп крови
в этой системе является примером множественного аллелизма (это
существование у вида более двух аллелей одного гена). В человеческой
популяции имеется три гена (i0, IА, IВ),
кодирующие белки-антигены эритроцитов, которые определяют группы крови людей.
В генотипе каждого человека содержится только два гена, определяющих его
группу крови: первая группа i0i0; вторая IАi0 и IАIА;
третья IВIВ и IВi0 и четвертая IАIВ.

Наследование признаков, сцепленных
с полом

У большинства организмов пол
определяется во время оплодотворения и зависит от набора
хромосом. Такой способ называют хромосомным определением пола.
У организмов с таким типом определения пола есть аутосомы
и половые хромосомы — Y и Х.

У млекопитающих (в т.ч.
у человека) женский пол обладает набором половых хромосом ХХ, мужской
пол — ХY. Женский пол называют гомогаметным (образует один тип гамет);
а мужской — гетерогаметным (образует два типа гамет). У птиц
и бабочек гомогаметным полом являются самцы (ХХ), а гетерогаметным —
самки (ХY).

В  задания ГИА  включены
задачи только на признаки, сцепленные с Х-хромосомой. В основном
они касаются двух признаков человека: свертываемость крови (ХН —
норма; Xh — гемофилия), цветовое зрение (ХD —
норма, Xd — дальтонизм). Гораздо реже встречаются задачи
на наследование признаков, сцепленных с полом, у птиц.

У человека женский пол может быть
гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим
возможные генетические наборы у женщины на примере гемофилии (аналогичная
картина наблюдается при дальтонизме): ХНХН —
здорова; ХНXh — здорова, но является
носительницей; ХhХh — больна. Мужской пол
по этим генам является гомозиготным, т.к. Y-хромосома не имеет
аллелей этих генов: ХНY — здоров; XhY — болен.
Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины
являются их носителями.

1.4.    
Закон Моргана

Число признаков организма многократно превышает число хромосом.
Следовательно, в одной хромосоме располагается множество генов. Наследование признаков,
гены которых находятся в одной паре гомологичных хромосом, называется сцепленным
наследованием
 (закон Моргана). Гены,
расположенные в одной хромосоме, образуют группу сцепления.
Число групп сцепления равно гаплоидному числу хромосом.

1.5.    
Правила при решении задач по генетике.

  Правило первое. Если при
скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается
расщепление признаков, то эти особи гетерозиготны.

  Правило второе.
Если в результате скрещивания особей, отличающихся фенотипически по одной паре
признаков, получается потомство, у которого наблюдается расщепление по этой же
паре признаков, то одна из родительских особей гетерозиготна, а другая –
гомозиготна по рецессивному признаку.

 Правило третье. Если при скрещивании
фенотипически одинаковых особей (по одной паре признаков) в первом поколении
гибридов происходит расщепление признаков на три фенотипические группы в
отношениях 1:2:1 , то это свидетельствует о неполном доминировании и о том, что
родительские особи гетерозиготны.

  Правило четвертое.
Если при скрещивании двух фенотипически одинаковых особей в потомстве
происходит расщепление признаков в соотношении 9:3:3:1, то исходные особи были
дигетерозиготны.

  Правило пятое.
Если при скрещивании двух фенотипически одинаковых особей в потомстве
происходит расщепление признаков в соотношении 9:3:4  9:6:1 , 9:7 , 12:3:1, то
это свидетельствует о взаимодействии генов, а расщепление в отношениях 12:3:1,
13:3 и 15:1 – об эпистатическом взаимодействии генов.

1.6.         
Список доминантных и рецессивных признаков человека

в этом списке приведены основные признаки человека и их доминантность/рецессивность.

Доминантный

Рецессивный

Кожа

Нормальная
пигментация кожи, глаз, волос

Альбинизм

Смуглая
кожа

Светлая
кожа

Нормальный
цвет кожи

Пегая
пятнистость (белопегость)

Пигментированное пятно в области крестца

Отсутствует

Кожа
толстая

Кожа
тонкая

Зрение

Близорукость

Нормальное зрение

Дальнозоркость

нормальное зрение

Нормальное зрение

Ночная слепота

Цветовое зрение

Дальтонизм

Отсутствие катаракты

Катаракта

Отсутствие косоглазия

Косоглазие

Рост

Низкий
рост (ниже 165 см)

Нормальный
рост

Руки

Нормальное
число пальцев

Полидактилия
(добавочные пальцы)

Нормальная
длина пальцев

Брахидактилия (короткие пальцы)

Праворукость

Леворукость

Нормальное
строение пальца

Большой
палец руки толстый и короткий (расплющенный)

Ногти
тонкие и плоские

Нормальные

Ногти
очень твердые

Нормальные

Узоры
на коже пальцев эллиптические

Узоры
на коже пальцев циркулярные

Ноги

Норма

Предрасположенность
к варикозному расширению вен

Второй
палец ноги длиннее большого

Второй
палец ноги короче

Повышенная
подвижность большого пальца

Норма

Слух

Нормальный
слух

Врожденная
глухота

Процессы в организме

Нормальное
усвоение глюкозы

Сахарный диабет

Нормальная
свёртываемость крови

Гемофилия

Черты лица

Веснушки

Отсутствие
веснушек

Круглая
форма лица (R–)

Квадратная
форма лица (rr)

Круглый
подбородок (K–)

Квадратный
подбородок (kk)

Ямочка
на подбородке (А–)

Отсутствие
ямочки (аа)

Ямочки на щеках (D–)

Отсутствие
ямочек (dd)

Густые
брови (B–)

Тонкие
брови (bb)

Брови
не соединяются (N–)

Брови
соединяются (nn)

Длинные
ресницы (L–)

Короткие
ресницы (ll)

Волосы

Тёмные

Светлые

Не
рыжие

Рыжие

Кучерявые

Волнистые

Волнистые
(???)

Прямые

Облысение
(у мужчин)

Норма

Норма

Облысение
(у женщин)

Норма

Белая
прядь

Преждевременное
поседение

Норма

Обильная
волосатость тела

Мало
волос на теле

Норма

Широкие
пушистые брови

Нос

Круглый
нос (G–)

Заострённый
нос (gg)

Круглые
ноздри (Q–)

Узкие
ноздри (qq)

Высокая
и узкая переносица

Низкая
и широкая переносица

Нос
с горбинкой

Прямая
или согнутая переносица

Кончик
носа направлен прямо

Курносый
нос

Рот

Способность
загибать язык назад

Нет

Способность
свертывать язык трубочкой

Нет

Отсутствие
зубов при рождении

Зубы при рождении

Выступающие
вперед зубы и челюсти

Зубы и челюсти не выступают

Щель
между резцами

Отсутствует

Предрасположенность
к кариесу зубов

Норма

Полные
губы

Тонкие губы

Норма

Габсбургская губа

Уши

Острая
верхушка уха (дарвиновский бугорок имеется)

Отсутствует

Свободная
мочка уха (S–)

Сросшаяся
мочка уха (ss)

Кровь

Группы крови А, В и O

Группа
крови AB

Наличие резус-фактора (Rh+)

Отсутствие
резус-фактора (Rh-)

Раздел  2. Алгоритм решения  задач.

2.1. Решение прямых задач

Под прямой задачей подразумевается такая,
в которой известны генотипы родителей, необходимо определить возможные генотипы
и фенотипы потомства в первом и втором поколениях.

Для решения задачи следует составить
схему, аналогичную той, что использовалась для записи результатов
моногибридного скрещивания.

Алгоритм действий

Пример решения задачи.

1. Чтение условия задачи.

1. Задача. При скрещивании двух сортов томатов с гладкой и
опушенной кожицей в первом поколении все плоды оказались с гладкой кожицей.
Определите генотипы исходных родительских форм и гибридов первого поколения.
Какова вероятность получения в  потомстве плодов с гладкой кожицей? Плодов с
опушенной кожицей?

2. Введение буквенного обозначения доминантного и рецессивного
признаков.

2. Решение. Если в результате скрещивания все потомство имело
гладкую кожицу, то этот признак  — доминантный (А), а опушенная кожица –
рецессивный признак (а).

3. Составление схемы 1-го скрещивания, запись фенотипов, а затем
генотипов родительских особей.

3. Так как скрещивались чистые линии томатов, родительские особи
были гомозиготными.

Р   фенотип        ♀ гладкая                х             
♂опушенная 

                               
кожица                                кожица

Р    генотип             ♂  АА                  х             ♀
аа

4. Запись типов гамет, которые могут образовываться во время
мейоза.

4.                                    
↓                                       ↓

G                                    
А                                       а

(Гомозиготные особи дают только один тип гамет.)

5. Определение генотипов и фенотипов потомков, образующихся в
результате оплодотворения.

5.

F генотип                                         
Аа

      фенотип                                 гладкая кожица 

6. Составляем схему второго скрещивания.

6.

Р  фенотип                ♀гладкая            х             
♂гладкая

                                   
кожица                              кожица    

Р  генотип                      ♂Аа               
х                ♀Аа 

7. Определяем гаметы, которые дает каждая особь.

7.                                   ↓        
↓                             ↓         ↓

G                                   А        
а                            А         а

(Гетерозиготные особи дают два типа гамет).

8. Составляем решетку Пеннета и определяем генотипы и фенотипы
потомков.

8.              

F2                                            Генотип

                            Аа     
Аа      Аа       аа

                        гл.       гл.      гл.      опуш.

9. Отвечаем на вопросы задачи полными предложениями, записывая
все вычисления.

Вероятность появления в F2 плодов с гладкой кожицей:

4  —  100%

3  —   х                х = (3х100):4 =75%

Вероятность появления в F2 плодов с опушенной кожицей:

100%-75% =25%.

10. Записываем ответ по образцу:

Ответ: АА, аа, Аа /
75%, 25%.

2.2.  Алгоритм решения обратных задач.

Под обратной задачей имеется в виду такая задача, в которой даны
результаты скрещивания, фенотипы родителей и полученного потомства; необходимо определить
генотипы родителей и потомства.

1. Читаем условие задачи.

1. Задача. При скрещивании двух дрозофил с нормальными крыльями
у 32 потомков были укороченные крылья, а у 88 потомков – нормальные крылья.
Определите доминантный и рецессивный признаки. Каковы генотипы родителей и
потомства?

2. По результатам скрещивания F1 или F2 определяем доминантный и рецессивный признаки и вводим
обозначение.

2. Решение. Скрещивались мухи с нормальными крыльями, а в
потомстве оказались мухи с редуцированными крыльями. Следовательно,
нормальные крылья – доминантный признак (А), а редуцированные крылья –
рецессивный признак (а).

3. Составляем схему скрещивания и записываем генотип особи с
рецессивными признаком или особи с известным по условию задачи генотипом.

3.

Р   фенотип      ♀норм.                х                  ♂норм.

                            
крылья                                    крылья

Р    генотип           ♂А_                х                 ♀ А_

F фенотип        88 норм.
крылья           32 редуц. крылья

      генотип                 
А_                                       аа
                         

4. Определяем типы гамет, которые может образовать каждая
родительская особь.

4. Родительские особи обязательно образуют гаметы с доминантным
геном. Так как в потомстве появляются особи с рецессивным признаком, значит у
каждого из родителей есть один ген с рецессивным признаком. Отсюда:

Р   фенотип           норм. крылья        х   норм. крылья

Р   генотип                   Аа                  
х              Аа

                                 ↓          
↓                        ↓           ↓

G                              А         
а                        А           а
 

5. Определяем генотип и фенотип потомства, полученного в
результате оплодотворения, записываем схему.

5.

Fгенотип              
АА           Аа            Аа            аа       

    фенотип         88 (норм.       норм.       норм.      
редуц.)

6.Записываем ответ задачи.

Ответ: доминантный признак – нормальные крылья/ Аа и Аа/ АА,
2Аа, аа.

2.3.
Алгоритм решения задач  «Моногибридное
скрещивание».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1

 ТИП
СКРЕЩИВАНИЯ

СХЕМА СКРЕЩИВАНИЯ

ЗАКОН. АВТОР

  Моногибридное скрещивание по одной паре
признаков.

1. При полном доминировании проявляется только доминантный признак.

2. При неполном доминировании признак имеет среднее (промежуточное) значение
между доминантным и рецессивным

Скрещивание гибридов при полном доминировании.

 

при неполном доминировании.

I.
Закон единообразия первого
поколения.         (Г. Мендель).

При скрещивании двух особей с противоположными
признаками в первом поколении все гибриды одинаковы и похожи на одного из
родителей.

II. Закон расщепления. (Г.Мендель).
При скрещивании гибридов I поколения во втором
поколении наблюдается расщепление в соотношении 3:1 по фенотипу.

2.4.
Алгоритм решения задач  «Дигибридное
скрещивание».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите буквенные
обозначения: А — доминантный а — рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1

Тип скрещивания

Схема скрещивания

Закон. автор

Скрещивание
гибридов

Закон единообразия I поколения соблюдается.

Дигибридное — это скрещивание по двум парам признаков

II. Закон независимого наследования признаков 

(Г. Мендель).

При скрещивании гибридов

I поколения по двум парам признаков
наследование по каждой паре признаков идет независимо друг от друга и
образуются четыре фенотипические группы с новыми сочетаниями.
Расщепление по фенотипу 9:3:3:1

2.5.
Алгоритм решения задач  «Анализирующее
скрещивание».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Анализирующее — это скрещивание особи с доминантным фенотипом
с
особью с
рециссивными признаками (гомозиготой)
для определения генотипа особи с доминантным
признаком

I
вариант

Если при скрещивании
особи с
доминантным
признаком с рецессивной гомозиготной особью полученное
потомство единообразно,
то анализируемая особь с доминантным признаком гомозиготна (АА).

II
вариант

Если при скрещивании
особи с доминантным признаком с рецессивной гомозиготой полученное потомство
дает
расщепление
1 : 1 , то анализируемая особь с доминантным признаком гетерозиготна (Аа).

2.6. Алгоритм решения задач  «Сцепленное наследование».

·       
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.

·       
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·       
Запишите генотип гибридов F1.

·       
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·       
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Сцепленное наследование — это наследование признаков, расположенных в одной
хромосоме

Без
кроссинговера

При кроссинговере

Закон сцепленного наследования генов, находящихся в одной хромосоме (Т. Морган).

Гены,
находящиеся в одной хромосоме, наследуются совместно, сцеплено
.

Сцепление
генов может нарушаться в результате кроссинговера. Количество кроссверных
особей всегда значительно меньше, чем количество основных особей (Т. Морган).

1. Полное сцепление

Перед решением задач на сцепленное
наследование
 целесообразно сравнить результаты анализирующего
скрещивания при независимом и сцепленном
наследовании
:

Независимое
наследование

А – желтая окраска, а – зеленая окраска,
В – гладкие семена, b – морщинистые семена.

 Сцепленное
наследование
 (кроссинговер отсутствует)

А – серое тело, а – черное тело,
В – нормальные крылья, b – короткие крылья.

2. Определение типов гамет

Количество
гамет равно 2n, где n – не число гетерозиготных пар генов, а
количество пар разнородных хромосом, содержащих гетерозиготные гены. Например,
тригетерозигота АаВbСс будет давать
8 типов гамет, если гены расположены в разных парах хромосом (n = 3) и только 2
типа, если гены находятся в одной паре (n = 1).

 3. Неполное сцепление

При неполном
сцеплении гомологичные хромосомы могут обмениваться аллельными генами. Причиной
этого является кроссинговер, который, в свою очередь, является результатом
того, что при мейозе гомологичные хромосомы конъюгируют и могут обмениваться
участками.

В результате этого
при скрещивании дигетерозигот с генотипом ab-ab     
с гомозиготами по рецессиву, имеющими генотип ab-ab , в
потомстве, наряду с обычными, появляется некоторое количество особей,
образовавшихся в результате слияния кроссоверных гамет (рекомбинантов), имеющих
генотип ab-ab     
или ab-ab     .

4.Составление схем кроссинговера

При
составлении схем кроссинговера следует помнить, что основное количество гамет
будут составлять некроссоверные, а кроссоверные гаметы будут встречаться в
небольших количествах. Образование кроссоверных гамет можно легко определить,
воспользовавшись схемой:

 Напишите  возможные варианты
кроссинговера между генами в группе сцепления ABC-abc  .

 Решение

1) Одиночный кроссинговер между
генами А и В:

Схема кроссинговера-1

2) Одиночный кроссинговер между
генами В и С:

Схема кроссинговера-2

3) Двойной кроссинговер между генами А и С:

Схема кроссинговера-3

5.Определение типа наследования (сцепленное или независимое) и
расстояния между генами

Для
определения типа наследования необходимо выяснить
количество особей, получающихся при анализирующем скрещивании.

Соотношение
фенотипических классов в F1, близкое к 1:1:1:1, позволяет с большой
вероятностью предположить наличие независимого наследования,
а присутствие в потомстве двух фенотипов в пропорции, близкой к 1:1, указывает
на сцепленное наследование. Наличие небольшого количества
рекомбинантов является результатом кроссинговера.

Количество таких организмов
пропорционально вероятности кроссинговера между сцепленными генами и,
следовательно, расстоянию между ними в хромосоме. Это расстояние измеряется
в морганидах (М) и может быть определено по формуле:

где x –расстояние
между генами (в морганидах),
а и с –количество кроссоверных особей,
n – общее число особей.

Таким образом,
одна морганида равна 1% кроссинговера.

Если
число кроссоверных особей дано в процентах, то расстояние между
генами
 равно сумме процентного состава.

Определение числа кроссоверных гамет или
полученного соотношения особей в потомстве в зависимости от расстояния между
генами в хромосомах

Число кроссоверных гамет определяется
по формуле (3), выведенной из 
формулы (2) для определения расстояния между
генами в хромосоме
:

где а и с –
количество рекомбинантов каждого вида,
n – общее количество потомства,
x – расстояние между генами в морганидах.

Картирование хромосом

Для
составления карт хромосом рассчитывают
взаимное 
расстояние между отдельными парами генов и
затем определяют расположение этих генов относительно друг друга.

Так, например,
если три гена расположены в следующем порядке: А
В С
, то расстояние между генами А и С (процент рекомбинаций) будет равно сумме
расстояний (процентов рекомбинаций) между парами генов АВ и ВС.

Если
гены расположены в порядке: А С В,
то расстояние между генами А и С будет равно разности расстояний между парами
генов АВ и СВ.

ABC – 47,5%
abc – 47,5%
Abc – 1,7%
aBC – 1,7%
ABc – 0,8%
abC –          0,8%

Построить
карту этого участка хромосомы.

 Решение

1.                
Расщепление при анализирующем скрещивании, близкое к 1:1,
указывает на то, что все три пары генов находятся в одной хромосоме.

2.                
Расстояние между генами А и В равно:
1,7 + 1,7 = 3,4 М.

3.                
Расстояние между генами В и С равно:
0,8 + 0,8 = 1,6 М.

Ген В находится между
генами А и С. Расстояние между генами А и С равно:
1,7 + 1,7 + 0,8 + 0,8 = 5,0 М.

Задача 1

Гены АВ и С находятся
в одной группе сцепления. Между генами А и В кроссинговер
происходит с частотой 7,4%, а между генами В и С –
с частотой 2,9%. Определить взаиморасположение генов АВ и С,
если расстояние между генами А и С равняется
10,3% единиц кроссинговера. Как изменится взаиморасположение этих генов, если
частота кроссинговера между генами А и С будет
составлять 4,5%?

 Решение

1.                
По условию задачи расстояние от гена А до
гена С (10,3 М) равно сумме расстояний между генами А и В (2,9
М) и генами В и С(7,4 М), следовательно, ген В располагается
между генами А и С и расположение генов
следующее: А В С.

2.                
Если бы расстояние от гена А до гена С равнялось
разности расстояний между парами генов АВ и ВС (4,5 = 7,4 – 2,9),
то гены располагались бы в следующей последовательности: А С В.
И в этом случае расстояние между крайними генами было бы равно сумме расстояний
между промежуточными: АВ = АС + СВ.

Задача 2

При анализирующем скрещивании
тригетерозиготы АаВbСс были получены организмы,
соответствующие следующим типам гамет:

ABC – 47,5%
abc – 47,5%
Abc – 1,7%
aBC – 1,7%
ABc – 0,8%
abC –            0,8%

Построить карту этого участка хромосомы.

 Решение

1.                
Расщепление при анализирующем скрещивании, близкое к 1:1,
указывает на то, что все три пары генов находятся в одной хромосоме.

2.                
Расстояние между генами А и В равно:
1,7 + 1,7 = 3,4 М.

3.                
Расстояние между генами В и С равно:
0,8 + 0,8 = 1,6 М.

4.                
Ген В находится между генами А и С.
Расстояние между генами А и С равно:
1,7 + 1,7 + 0,8 + 0,8 = 5,0 М.

5.                
Карта участка хромосомы:

карта участка хромосомы

2.7.
Алгоритм решения задач  «Генетика пола».

·               
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.

·               
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·               
Запишите генотип гибридов F1.

·               
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·               
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Генетика пола

Пол определяется наличием пары половых
хромосом. Все остальные пары хромосом в кариотипе называются аутосомами.

I
вариант

Соотношение полов 1:1

Пол организма
определяется сочетанием половых хромосом.

Пол, содержащий одинаковые половые хромосомы
(XX), называется гомогаметным, а различные половые хромосомы (XY) —
гетерогаметным.

Гетерогаметные особи образуют два типа гамет.
У большинства организмов (млекопитающих, амфибий, рептилий, многих
беспозвоночных) женский пол гомогаметный, а мужской — гетерогаметный (I
вариант)

II
вариант
Соотношение полов 1:1

У птиц, некоторых рыб, бабочек гетерогаметны
самки, а гомогаметны самцы (II вариант)

III
вариант
Соотношение полов 1:1

У прямокрылых, пауков,
жуков самцы не имеют Y хромосому из пары. Тип ХО.

2.8. Алгоритм решения задач «Наследование
признаков, сцепленных с полом».

·               
Определите доминантный и рецессивный признак по результатам
скрещивания первого поколения (F1) и второго (F2) (по условию задачи). Введите
буквенные обозначения: А — доминантный а — рецессивный.

·               
Запишите генотип особи с рецессивным признаком или особи с
известным по условию задачи генотипом и гаметы.

·               
Запишите генотип гибридов F1.

·               
Составьте схему второго скрещивания. Запишите гаметы гибридов F1 в
решетку Пеннета по горизонтали и по вертикали.

·               
Запишите генотипы потомства в клетках пересечения гамет.
Определите соотношения фенотипов в F1.

Тип скрещивания

Схема скрещивания

Закон. автор

Наследование признаков, сцепленных с полом.

Признаки, гены которых локализованы в половых
хромосомах, называются сцепленными с полом

Если одна из X хромосом
содержит рецессивный ген, определяющий проявления аномального признака, то
носителем признака является женщина, а признак проявляется у мужчин.

Рецессивный признак от матерей передается
сыновьям и проявляется, а от отцов передается дочерям
.

Примером наследования признаков, сцепленных с
полом у человека, является гемофилия и дальтонизм.

Раздел 3. Примеры решения задач по генетике

1.    
У дрозофилы доминантный ген
красной окраски глаз (
W) и рецессивный ген белой окраски (w) находятся в Х –
хромосамах. Белоглазая самка скрещивалась с красноглазым самцом. Какой цвет
глаз будет у самцов и самок в первом и втором поколении?

               Р ♀ Хw Xw  × ♂  XWY
гаметы     
Xw              XW, Y
F
XW Xw
– красноглазая самка- 50%
XwY
белоглазый самец – 50%
            Р ♀ Х
W Xw  × ♂  XwY
гаметы     
Xw, XW        XW, Y
F
XW Xw
– красноглазая самка —  25%
 
XwXw
– белоглазая самка – 25%
XWY
– красноглазый самец – 25%
XwY
– белоглазый самец – 25%

 

Дано:
W – красный окрас глаз
w – белый окрас глаз
Х
W Х W – самки красной
Х
W Х w – самка крас.
Х
w Х w – самки белые глаза

Ответ: Среди потомства F1 50% будет красноглазых самок и 50% белоглазых самцов. Во втором
поколении 25% — красноглазая самка, 25% — белоглазая самка, 25% — красноглазый
самец, 25% — белоглазый самец.

2.    
У домашних кур сцепленный с
Х-хромосомой ген d имеет летальное действие. Какая часть потомства погибнет,
если скрестить курицу с гетерозиготным петухом?

Дано:

А   
ген, сцепленный с Х-хромосомой d имимеет летальное действие

        

F1 гибель-?

                   
Решение:

1) Р ♀ XA
x  ♂ XAXa 

          G   XA Y       
XA Xa 

        F1  XAXYXA  
XAXa   YXa 

  XAXA — норм.петух

   YXнорм.курица

   XAXa   норм. петух

   YXa гибель 

Ответ: 25% погибнет потомства

3.    
У человека рецессивный ген гемофилии (h) и рецессивный ген
дальтонизма (d) локализованы в X-хромосоме на расстоянии 9,8 морганид.
Известно, что женщина гетерозиготна по обоим признакам, аномальные гены
локализованы в разных X-хромосомах. Определите, какие дети у нее могут быть от
брака со здоровым мужчиной, и какова вероятность их рождения.

Дано:

Xh
гемофилия

XH
норма

Xd
дальтонизм

XD
норма

L(hd) = 9,8 мн = 9,8% кроссинговера

Решение

1) Проанализировав условие задачи, определим
генотипы родителей:

 P:                         
                
×            ♂

2) В результате кроссинговера с общей
вероятностью 9,8% у матери образуется два новых типа гамет – кроссоверные
гаметы. Вероятность появления каждого из типов кроссоверных гамет –
 = 4,9%. На долю
некроссоверных гамет остается 100 – 9,8 = 90,2%, на каждый тип некроссоверных
гамет по
 = 45,1%. Вероятность
проявления каждой из гамет отца – 50%.

G:

некроссоверные,

вероятность – 90,2%

 = 45,1%

 = 50%

 = 45,1%

Y = 50%

кроссоверные,

вероятность – 9,8%

 = 4,9%

 = 4,9%

3) Определим вероятность появления детей
с различными сочетаниями исследуемых признаков. Для этого по теореме
умножения вероятностей вычислим произведение вероятностей материнской и
отцовской гамет.

F1:  =  = 22,55% – здоровая девочка

       =  = 22,55%  – мальчик с
гемофилией

       =  = 22,55% – здоровая девочка

       =  = 22,55% –
мальчик-дальтоник

      =  = 2,45% – здоровая девочка

       = = 2,45%  – здоровый мальчик

       =  = 2,45% – здоровая девочка

       =  = 2,45% – мальчик-дальтоник
с гемофилией

 F1 – ?

Ответ:
вероятность рождения здоровой девочки в данном браке – 50%; вероятность
рождения здорового мальчика – 2,45%; вероятность рождения мальчика с гемофилией
– 22,55%; вероятность рождения мальчика-дальтоника – 22,55%; вероятность
рождения мальчика-дальтоника с гемофилией – 2,45%.

4.    
У коров гены A и B расположены в одной хромосоме на расстоянии 24
морганиды. Определите генотипические группы потомков и вероятности их появления
при скрещивании двух дигетерозигот с генотипом
.

Дано:

L(AB) = 24 мн = 24% кроссинговера

Решение

1) P:           ♀                        
×                  ♂

2) В результате кроссинговера с общей
вероятностью 24% у матери и отца образуется два новых типа гамет –
кроссоверные гаметы. Вероятность появления каждого из типов кроссоверных
гамет –
 = 12%. На долю
некроссоверных гамет остается 100 – 24 = 76%, на каждый тип некроссоверных
гамет по
 38%.

G:

некросс.,

76%

 = 38%

некросс.,

76%

 = 38%

 = 38%

 = 38%

кросс.,

24%

 = 12%

кросс.,

24%

 = 12%

ab = 12%

ab = 12%

3) Определим вероятность появления детей
с различными сочетаниями исследуемых признаков. Для этого по теореме
умножения вероятностей вычислим произведение вероятностей материнской и
отцовской гамет.

F1:

 =  = 14,44%

 =  = 4,56%

 =  = 14,44%

 =  = 4,56%

 =  = 4,56%

 =  = 1,44%

 =  = 4,56%

 =  = 1,44%

 =  = 14,44%

 =  = 4,56%

 =  = 14,44%

 =  = 4,56%

 =  = 4,56%

 =  = 1,44%

 =  = 4,56%

 =  = 1,44%

 F1 – ?

Ответ: в потомстве наблюдается 16 групп генотипов; вероятность проявления
генотипа
 = 14,44%,  = 14,44%,  = 4,56%,  = 4,56%,  = 14,44%, = 4,44%,
 = 4,56%,  = 4,56%,  = 4,56%,  = 4,56%,  = 1,44%,  = 1,44%,
 = 4,56%,  = 4,56%,  = 1,44%,  = 1,44%.

Заключение.

Дорогие ребята!

 Это пособие
создавалось в первую очередь для вас.

 Практика показывает, что именно  умение решать задачи вызывает у
вас наибольшие затруднения.

Если вы хотите научиться решать задачи по 
генетике, следуйте  советам:

1.                
Каждая гамета получает гаплоидный набор хромосом (генов). Все
хромосомы (гены) имеются в гаметах.

2.                
В каждую гамету попадает только одна гомологичная хромосома из
каждой пары (только один ген из каждой аллели).

3.                
Число возможных вариантов гамет равно 2n,
где n – число хромосом, содержащих гены в гетерозиготном
состоянии.

4.                
Одну гомологичную хромосому (один аллельный ген) из каждой пары
ребенок получает от отца, а другую (другой аллельный ген) – от матери.

5.                
Гетерозиготные организмы при полном доминировании всегда проявляют
доминантный признак. Организмы с рецессивным признаком всегда гомозиготны.

6.                
Решение задачи на дигибридное скрещивание при независимом
наследовании обычно сводится к последовательному решению двух задач на
моногибридное (это следует из закона независимого наследования).

Кроме того, для успешного решения
задач по генетике
 следует уметь выполнять некоторые несложные операции
и использовать методические приемы, которые приводятся ниже.

Прежде всего необходимо внимательно
изучить условие задачи. Даже те учащиеся, которые хорошо знают
закономерности наследования и успешно решают генетические задачи, часто
допускают грубые ошибки, причинами которых является невнимательное или
неправильное прочтение условия.

Следующим этапом является
определение типа задачи. Для этого необходимо выяснить, сколько пар
признаков рассматривается в задаче, сколько пар генов кодирует эти признаки, а
также число классов фенотипов, присутствующих в потомстве от скрещивания
гетерозигот или при анализирующем скрещивании, и количественное соотношение
этих классов. Кроме того, необходимо учитывать, связано ли наследование
признака с половыми хромосомами, а также сцепленно или независимо наследуется
пара признаков. Относительно последнего могут быть прямые указания в условии.
Также, свидетельством о сцепленном наследовании может являться соотношение
классов с разными фенотипами в потомстве.

Для облегчения решения можно
записать схему брака (скрещивания) на черновике, отмечая
фенотипы и генотипы особей, известных по условию задачи, а затем начать
выполнение операций по выяснению неизвестных генотипов. Для удобства
неизвестные гены на черновике можно обозначать значками *, _ или ?.

Выяснение генотипов особей,
неизвестных по условию, является основной методической операцией,
необходимой для решения генетических задач. При этом решение всегда надо
начинать с особей, несущих рецессивный признак, поскольку они гомозиготны и их
генотип по этому признаку однозначен – аа.

Выяснение генотипа организма, несущего
доминантный признак, является более сложной проблемой, потому что он может быть
гомозиготным (АА) или гетерозиготным (Аа).

Гомозиготными (АА) являются
представители «чистых линий», то есть такие организмы, все предки которых несли
тот же признак. Гомозиготными являются также особи, оба родителя которых были
гомозиготными по этому признаку, а также особи, в потомстве которых (F1)
не наблюдается расщепление.

Организм гетерозиготен (Аа), если
один из его родителей или потомков несет рецессивный признак, или если в его
потомстве наблюдается расщепление.

В некоторых задачах предлагается
выяснить, доминантным или рецессивным является
рассматриваемый признак. Следует учитывать, что доминантный признак во всех
случаях, кроме неполного доминирования, проявляется у гетерозиготных особей.
Его несут также фенотипически одинаковые родители, в потомстве которых
встречаются особи, отличные от них по фенотипу. При моногенном наследовании
доминантный признак всегда проявляется у потомства F1 при
скрещивании гомозиготных родителей (чистых линий) с разным фенотипом
(исключение – неполное доминирование).

При определении возможных вариантов
распределения генов в гаметах следует помнить, что каждая гамета содержит
гаплоидный набор генов и что в нее попадает только один ген из каждой пары,
определяющей развитие признака. Число возможных вариантов гамет равно 2n,
где n – число рассматриваемых пар хромосом, содержащих
гены в гетерозиготном состоянии.

Распространенной ошибкой при определении
вариантов гамет является написание одинаковых типов гамет, то есть содержащих
одни и те же сочетания генов. Для определения возможных типов гамет более
целесообразным представляется запись генотипов в хромосомной форме.
Это упрощает определение всех возможных вариантов сочетания генов в гаметах
(особенно при полигибридном скрещивании). Кроме того, некоторые задачи
невозможно решить без использования такой формы записи.

Сочетания гамет, а также соответствующие
этим сочетаниям фенотипы потомства при дигибридном или полигибридном
скрещивании равновероятны, и поэтому их удобно определять с помощью решетки
Пеннета
. По вертикали откладываются типы гамет, продуцируемых матерью, а по
горизонтали – отцом. В точках пересечения вертикальных и горизонтальных линий
записываются соответствующие сочетания генов. Обычно выполнение операций,
связанных с использованием решетки Пеннета, не вызывает затруднений у учащихся.
Следует учитывать только то, что гены одной аллельной пары надо писать рядом
(например, ААВВ, а не АВАВ).

Конечным этапом решения является запись
схемы скрещивания (брака)
 в соответствии с требованиями по оформлению,
описанными ниже, а также максимально подробное изложение всего хода рассуждений
по решению задачи с обязательным логическим обоснованием каждого вывода.
Отсутствие объяснения даже очевидных, на первый взгляд, моментов может быть
основанием для снижения оценки на экзамене.

Список литературы

1.    
Биология. 11 класс: учеб. Для общеобразоват. организаций: базовый
уровень/ Д.К. Беляев, Г.М. Дымшиц, Л.Н. Кузнецова – М.: Просвещение, 2016. –
223с.

2.    
Капранова Г.В. Сборник задач по генетике. – Луганск: Янтарь, 2003.
– 68с.

3.    
Пепеляева О.А., Сунцова И.В. Поурочные разработки по общей
биологии: 11 класс.- М.: ВАКО, 2006. -464с.

Дополнительная литература

1.  
Анастасова Л.П. Самостоятельные работы учащихся по общей биологии:
Пособие для учителя. М.: Просвещение, 1989. — 175 с.

2.  
Борисова, Л.В. Тематическое и поурочное планирование по биологии:
11 кл.: к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И. «Биология. Общие
закономерности. 11 класс»: Методическое пособие/Борисова Л.В. – М.:
Издательство «Экзамен», 2006. – 159 с.

3.  
Донецкая Э.Г. Общая биология. Тетрадь с печатной основой для
учащихся 11кл. – Саратов, «Лицей», 1997.,80с.

4.  
Ловкова Т.А. Биология. Общие закономерности. 11 класс:
Методическое пособие к учебнику Мамонтова С.Г., Захарова В.Б, Сонина Н.И.
«Биология. Общие закономерности. 9 класс»/ Ловкова Т.А., Сонин Н.И. – М.;
Дрофа, 2003. – 128 с.

5.  
Сухова Т.С. Общая биология. 10-11 кл.: рабочая тетрадь к учебникам
«Общая биология. 10 класс» и «Общая биология. 11 класс»/Сухова Т.С, Козлова
Т.А, Сонин Н.И; под редакцией Захарова В.Б. – М.: Дрофа, 2006. -171 с.

Умение решать задачи по генетике очень важно, особенно, если школьник собирается сдавать Единый Государственный Экзамен по предмету биология. На первый взгляд, генетические задачи представляют собой что-то запутанное и непонятное. Но если разобраться в процессе решения, то все окажется не так уж и страшно. Давайте разберемся, как решать задачи по генетике.

История

Генетика — это сравнительно новая наука, заключающаяся в изучении наследования и изменчивости живых организмов. Огромный вклад в ее развитие привнес знаменитый ученый-биолог Грегор Мендель. Именно он сформулировал три самых главных закона, от которых в дальнейшем оттолкнулось развитие данной научной области и ввел понятие «генетика».

Грегор Мендель

Несмотря на то, что имя этого выдающегося ученого фигурирует во многих учебниках как имя первооткрывателя данной биологической области, не стоит думать, что он первый задумался о наследственности. За его открытиями и тремя постулатами генетики стоит титанический труд его последователей, пытавшихся изучить данную область. Ведь, как показывает история, уже более шестисот лет назад люди понимали примитивные закономерности наследования, но не могли их объяснить.

Законы Менделя

Без знания трех основных законов наследования и изменчивости невозможно заниматься решением задач по генетике.

Первый закон объясняет принципы единообразия гибридов первого поколения и звучит следующим образом:

При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, все первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Данный закон означает, что если скрестить две чистые линии по одному признаку, например, зеленый и желтый горох, то абсолютно у всех потомков проявится только один цвет (либо желтый, либо зеленый), в зависимости от того, чей признак более сильный (доминантный).

Второй закон, который объясняет расщепление признаков, звучит следующим образом:

При скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу -3:1, по генотипу — 1:2:1.

Это означает, что у родителей, которые не являются чистыми линиями, в любом случае, с меньшей вероятностью, но появится у потомства внешнее различие, не говоря уже о генотипе.

Третий закон о независимом наследовании звучит как:

При скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Это означает то, что один независимо наследуемый признак никак не может повлиять на проявление или не проявление другого независимого признака.

Общие правила

Чтобы научиться решать задачи по генетике, необходимо:

  • Уметь читать условие задачи, выбирая из него необходимую информацию.
  • Уметь различать аллельные и неаллельные гены.
  • Различать наследование, сцепленное с полом и аутосомное.
  • Уметь пользоваться терминологией и правилами оформления задач.
  • Уметь пользоваться решеткой Пеннета.

Если вы уже имеете представление о генетике как о науке, знаете терминологию и теорию, то половина пути уже пройдена — можно приступать к решению задач.

Ученые генетики

Оформление

Задачи по биологии на генетику имеют свою специфику оформления, для который необходимо знать и уметь пользоваться особой символикой. Данные символы представлены в таблице.

Обозначения в генетике

Пользование данной символикой поможет облегчить решение задач и уменьшит громоздкие записи сложных заданий.

Решетка Пеннета

Решетка Пеннета — это специальная таблица, которой очень удобно пользоваться при решении задач по генетике, в условиях которых фигурируют более одной пары признаков.

Она представляет собой таблицу, по правую сторону которой вертикально пишется мужской генотип, а горизонтально сверху — женский. Середина заполняется предполагаемым генотипом потомков.

Если задачи по теме генетика даются школьнику с трудом, то рекомендовано решать даже самые легкие из них с помощью этой решетки. Она поможет правильно расписать генотип, не запутавшись.

Многибридное скрещивание

Теперь, когда основные генетические принципы рассмотрены, можно приступать к объяснению задач по генетике. Начнем изучение с самых простых примеров на моногибридное скрещивание, в которых рассматривается только одна пара признаков.

Возьмем такой пример задачи по генетике: ген глухоты является рецессивным, в отличие от гена нормального слуха. У неслышащего мужчины и нормальной женщины родился ребенок с нарушением слуха. Необходимо определить генотипы всех членов семьи.

Как решить задачу по генетике? Начнем разбор по-порядку:

  1. Ген глухоты рецессивный, значит обозначим его «а», ген нормального слуха будет «А».
  2. В задаче ничего не сказано про половые хромосомы, значит ген локализуется в аутосоме.
  3. Подберем генотип отца. Он не слышит, и, учитывая, что ген глухоты рецессивный, этот мужчина должен иметь чистую линию следующего типа — «аа».
  4. Тот же принцип будет у потомка. Полная глухота возможна лишь при чистой линии рецессивного признака, иначе бы доминантный ген нормального слуха перекрыл его.
  5. Подберем генотип матери, у который по условию нормальный слух. Согласно первому закону Менделя о том, что при скрещивании двух чистых линий потомки всегда носят доминантный фенотип, можно сделать вывод, что мать является гетерозиготной по данному признаку.

Таким образом ответ этой задаче по генетике следующий: аа — отец, аа — ребенок, Аа — мать.

Дигибридное скрещивание

Решение задач по биологии на генетику такого типа предполагает использование решеток Пеннета. В данных задачах рассматривается наследование двух независимых признаков.

Итак, условие, взятое из учебника:

У томатов красная окраска плодов доминирует над желтой, а гладкая кожица плодов доминирует над опушенной. Скрестили между собой гомозиготные растения томатов с красными и гладкими плодами с гомозиготным растением томатов с желтыми и опушенными плодами. Определите генотип и фенотип потомства.

Приступим к решению данной задачи по генетике:

  • Определим важные моменты задачи: красную окраску, которая является более сильным признаком, обозначим, как «А», соответственно желтую, как — «а». Гладкую кожицу, как «В», а кожицу с пушком, как «в».
  • Известно, что родители являются чистыми линиями, следовательно их генотипы примут следующий вид: ААВВ и аавв.
  • Чтобы определить генотипы и фенотипы потомков в первом поколении не нужно даже составлять решетку Пеннета. Согласно первому закону все потомки будут гетерозиготны (АаВв) и иметь фенотип доминантный фенотип, то есть красную окраску и гладкую кожицу.

Задачи с решеткой Пеннета

Рассмотрим задачи по генетике также с дигибридным скрещиванием, но уже по-сложнее.

Возьмем потомков первого поколения из условия выше, то есть томаты с красной гладкой кожицей и генотипом АаВв и скрестим их с рецессивной чистой линией (аавв).

Чтобы узнать генотипы и фенотипы потомков, для удобства нам необходимо составить таблицу.

Родители АВ Ав аВ ав
ав АаВв Аавв ааВв аавв

Теперь по известным генотипам очень легко определить внешний вид потомков:

  • 1 потомок с красной кожурой и гладкой кожицей (АаВв);
  • 1 с красной кожурой и пушком (Аавв);
  • 1 с желтой кожурой и гладкой кожицей (ааВв);
  • 1 желтый с пушком.

Вот так легко решается задача по генетике на скрещивание по двум и более признакам.

Дигибридное скрещивание томатов

Наследование, сцепленное с полом

Помимо признаков, наследуемых по аутосомному типу, у человека и животных существует огромное количество признаков, которые локализуются в половых хромосомах.

Известно, что у человека, не страдающего какими-либо серьезными генетическими отклонениями, их две (ХХ у женщин; ХУ у мужчин). Большинство признаков несет именно Х хромосома.

Рассмотрим пример решения задач по генетике на данную тему. Возьмем условие из учебника:

От родителей, по фенотипу имеющих нормальное зрение, родилось несколько детей с нормальным зрением и один мальчик-дальтоник (не различает красный и зеленый цвета). Чем это объяснить? Каковы генотипы родителей и детей?

Решение данной биологической задачи по генетике будет следующим:

  • Как известно, дальтонизм сцеплен с Х хромосомой как рецессивный признак. Обозначим дальтонизм как Ха, а нормальное зрение, как ХА.
  • Определим генотип родителем. Если отец имеет нормальное зрение, то он не может быть носителем гена дальтонизма в виду своей половой особенности. Его генотип — ХАУ. Учитывая то, что в семье все-же появился дальтоник, мать была носителем этого дефекта, хотя сама им не страдала. Ее генотип ХАХа.
  • Чтобы определить генотипы детей, составим для большего удобства специальную таблицу:
Родители ХА У
ХА ХАХА ХАУ
Ха ХАХа ХаУ

Таким образом мы определили все генотипы в данной задаче по генетике.

Задачи на группы крови

Это особый тип задач, при решении которых надо знать, каким именно образом наследуется та или иная группа крови. Для этого необходимо воспользоваться специальной таблицей, изображенной на рисунке ниже.

Таблица группы крови

Теперь, узнав главные закономерности, давайте попробуем решить задачу по генетике следующего содержания: у матери 1-я группа крови, а у отца — 4-я. Определите группы крови ребенка.

Разберем задачу по-порядку:

  • Согласно таблице, данной выше, 1-я группа крови обозначается, как IOIO, а 4-я — IAIB.
  • Учитывая генотипы родителей, группа крови ребенка будет либо 2(IAIO), либо 3 (IBIO), в соотношении 50 процентов.

Попробуем решить еще одну задачу, но уже на резус-фактор. Для этого воспользуемся другой показательной таблицей, представленной на рисунке.

Наследование резус-фактора

Итак, дано: оба родителя имею отрицательный резус фактор, а ребенок — положительный. Отец решил сделать тест на подтверждение родства. Какой будет результат данного теста?

Ответ: по результатам теста на определение отцовства, ребенок не будет являться родным. Так как положительный резус-фактор означает, что он должен иметь хотя бы одного родителя с положительным резус-фактором.

Задачи повышенной сложности

Рассмотрев, простые задачи по генетике, давайте попытаемся решить более сложные. Возьмем, пример, задачу, которая будет содержать в совокупности и аутосомные признаки и половые.

Итак, дано: у человека генетически обусловлено доминирование карих глаз над голубыми. А дальтонизм считается рецессивным по отношению к нормальному зрению.

Кареглазая женщина с нормальным зрением, отец которой имел голубые глаза и страдал цветовой слепотой, выходит замуж за голубоглазого мужчину с нормальным зрением. Составьте схему решения задачи. Определите генотипы родителей и возможного потомства, вероятность рождения в этой семье детей — дальтоников с карими глазами и их пол.

Решаем пошаговым способом:

  • Как известно из ранее решенных задач, дальтонизм сцеплен с полом, а, если конкретно, то с Х хромосомой, и обозначается, как Ха. Про признак цвета глаз ничего не сказано, значит делаем вывод, что он аутосомный и обозначаем его В(карие) и в(голубые).
  • Определим генотип матери. Известно, что она кареглазая и имеет нормальное зрение, но она не может быть чистой линией, потому что ее отец имел голубые глаза и проблемы с восприятием цвета. Таким образом, ее генотип будет ВвХАХа.
  • Определим генотип отца. Из условия это сделать не сложно: он имеет голубые глаза и нормальное зрение, значит — ввХАУ.
  • Для того, чтобы определить генотип потомков, составляем решетку:
Родители ВХА ВХа вХА вХа
вХА ВвХАХА ВвХАХа ввХАХА ввХАХа
вУ ВвХАУ ВвХаУ ввХАУ ввХаУ

Наглядные генотипы готовы. Теперь осталось определить вероятность появления в этой семье кареглазых детей с нарушениями цветовосприятия и определить их пол. Для этого внимательно рассмотрим таблицу. Кареглазый дальтоник появится только в одном случае, и это будет мальчик. Таким образом вероятность его появления равна 1/8.

Генетика в Едином Государственном Экзамене

Выпускники, нацеленные на сдачу биологии в этом году, должны знать, что встречаются в ЕГЭ задачи по генетике. Чтобы успешно сдать экзамен, не достаточно уметь решать простые задания на изменчивость и наследование, но еще обладать навыками решения более сложных заданий.

Согласно статистке в Едином государственном тестировании встречаются несколько вариантов генетических задач, как в первой части, так и в последней, которая дает большее количество баллов.

Задачи по генетике на моногибридное скрещивание очень часто фигурируют в части А демонстрационных вариантов, под номерами (7, 8 и 30).

А вот задания на дигибридное и полигибридное скрещивание, на половое наследование и на группы крови чаще всего составляют последнюю, саму сложную часть вопросов Единого Государственного экзамена. Они фигурируют под номером 6.

За правильно решенную и, что немаловажно, правильно оформленную задачу могут дать три балла.

Также возможно встретить и смешанный тип, который рассмотрен в данной статье как задачи повышенной сложности. Им тоже необходимо уделять внимание при подготовке к поступлению, потому что на первом курсе профиля естественных наук будут решаться такие задачи.

Подготовка к экзамену

Чтобы успешно сдать ЕГЭ, необходимо уделять внимание не только теоретической подготовке, но и практиковаться в решении задач. Систематичность и регулярность в этом деле вознаградят выпускников высокими баллами за экзамен и поступлением в выбранный институт на хорошую специальность.

Моногибридное скрещивание

№1. Один ребёнок в семье родился
здоровым, а второй имел тяжёлую наследственную
болезнь и умер сразу после рождения.

Какова вероятность того, что следующий ребёнок
в этой семье будет здоровым? Рассматривается
одна пара аутосомных генов.

Решение. Анализируем генотипы родителей:
оба родителя здоровы, они не могут иметь данную
наследственную болезнь, т.к. она приводит к
гибели организма сразу после рождения.

Если предположить, что данное заболевание
проявляется по доминантному типу и здоровый
признак является рецессивным, тогда оба родителя
рецессивны. Тогда у них не может родиться больной
ребёнок, что противоречит условию задачи.

Если данная болезнь является рецессивной, а ген
здорового признака наследуется по доминантному
типу, тогда оба родителя должны быть
гетерозиготными и у них могут быть как здоровые
дети, так и больные. Составляем схему
скрещивания:

Ответ: Соотношение в потомстве 3:1,
вероятность рождения здорового ребёнка в этой
семье составляет 75%.

№2. Растение высокого роста подвергли
опылению с гомозиготным организмом, имеющим
нормальный рост стебля. В потомстве было
получено 20 растений нормального роста и 10
растений высокого роста.

Какому расщеплению соответствует данное
скрещивание – 3:1 или 1:1?

Решение: Гомозиготный организм может быть
двух видов: доминантным (АА) или
рецессивным (аа). Если предположить, что
нормальный рост стебля определяется доминантным
геном, тогда всё потомство будет
“единообразным”, а это противоречит условию
задачи.

Чтобы произошло “расщепление”, растение
нормального роста должно иметь рецессивный
генотип, а растение высокого роста должно быть
гетерозиготным.

Ответ: Соотношение по фенотипу и генотипу в
потомстве составляет 1:1.

№3. При скрещивании чёрных кроликов
между собой в потомстве получили чёрных и белых
крольчат.

Составить схему скрещивания, если известно, что
за цвет шерсти отвечает одна пара аутосомных
генов.

Решение: Родительские организмы имеют
одинаковые фенотипы – чёрный цвет, а в потомстве
произошло “расщепление”. Согласно второму
закону Г. Менделя, ген, ответственный за развитие
чёрного цвета, доминирует и скрещиванию
подвергаются гетерозиготные организмы.

№4. У Саши и Паши глаза серые, а у их
сестры Маши глаза зелёные. Мать этих детей
сероглазая, хотя оба её родителя имели зелёные
глаза. Ген, ответственный за цвет глаз расположен
в неполовой хромосоме (аутосоме).

Определить генотипы родителей и детей.
Составить схему скрещивания.

Решение: По материнскому организму и по её
родителям определяем, что серый цвет глаз
является рецессивным признаком (второй закон Г.
Менделя).

Т.к. в потомстве наблюдается “расщепление”, то
отцовский организм должен иметь зелёный цвет
глаз и гетерозиготный генотип.

№5. Мать брюнетка; отец блондин, в его
родословной брюнетов не было. Родились три
ребёнка: две дочери блондинки и сын брюнет.

Ген данного признака расположен в аутосоме.

Проанализировать генотипы потомства и
родителей.

Решение: Генотип отцовского организма
должен быть гомозиготным, т.к. в его родословной
наблюдается чистая линия по цвету волос.
Гомозиготный генотип бывает доминантным (АА)
или рецессивным (аа).

Если генотип отца гомозиготный доминантный, то
в потомстве не будет детей с тёмными волосами –
проявится “единообразие”, что противоречит
условию задачи. Следовательно, генотип отца
рецессивный. Материнский организм должен быть
гетерозиготным.

Ответ: Соотношение по фенотипу и генотипу в
потомстве составляет 1:1 или 50% 50%.

№6. У человека проявляется
заболевание – серповидно-клеточная анемия. Эта
болезнь выражается в том, что эритроциты крови
имеют не круглую форму, а серповидную, в
результате чего транспортируется меньше
кислорода.

Серповидно-клеточная анемия наследуется как
неполностью доминантный признак, причём
гомозиготное состояние гена приводит к гибели
организма в детском возрасте.

В семье оба супруга имеют признаки анемии.

Какова процентная вероятность рождения у них
здорового ребёнка?

Решение: Составляем схему скрещивания:

Ответ: 25% здоровых детей в данной семье.

Дигибридное скрещивание
независимое наследование генов

№1. Мутации генов, вызывающие
укорочение конечностей (а) и
длинношерстость (в) у овец, передаются в
следующее поколение по рецессивному типу. Их
доминантные аллели формируют нормальные
конечности (А) и короткую шерсть (В).
Гены не сцеплены.

В хозяйстве разводились бараны и овцы с
доминантными признаками и было получено в
потомстве 2336 ягнят. Из них 425 длинношерстых с
нормальными конечностями и 143 длинношерстых с
короткими конечностями.

Определить количество короткошерстых ягнят и
сколько среди них с нормальными конечностями?

Решение. Определяем генотипы родителей по
рецессивному потомству. Согласно правилу
“чистоты гамет” в потомстве по каждому признаку
один ген от отцовского организма, другой ген от
материнского организма, следовательно, генотипы
родителей дигетерозиготные.

1). Находим количество длинношерстных ягнят: 425 +
143 = 568.
2). Находим количество короткошерстных: 2336 – 568 =
1768.
3). Определяем количество короткошерстных с
нормальными конечностями:

1768 ———- 12 ч.
х ———— 9 ч. х = 1326.

№2. У человека ген негритянской
окраска кожи (В) полностью доминирует
над геном европейской кожи (в), а
заболевание серповидно-клеточная анемия
проявляется неполностью доминантным геном (A),
причём аллельные гены в гомозиготном состоянии (AA)
приводят к разрушению эритроцитов, и данный
организм становится нежизнеспособным.

Гены обоих признаков расположены в разных
хромосомах.

Чистородная негроидная женщина от белого
мужчины родила двух мулатов. Один ребёнок не имел
признаков анемии, а второй умер от малокровия.

Какова вероятность рождения следующего
ребёнка, не имеющего признаков анемии?

Решение. Составляем схему скрещивания:

Ответ: Вероятность рождения здорового
ребёнка в данной семье составляет 1/4 = 25%

№3. Рецессивные гены (а) и (с)
определяют проявление таких заболеваний у
человека, как глухота и альбинизм. Их доминантные
аллели контролируют наследование нормального
слуха (А) и синтез пигмента меланина (С).

Гены не сцеплены.

Родители имеют нормальный слух; мать брюнетка,
отец альбинос. Родились три однояйцовых близнеца
больные по двум признакам.

Какова вероятность того, что следующий ребёнок
в этой семье будет иметь оба заболевания?

Решение.

По правилу “чистоты гамет” определили, что
родители дигетерозиготные:

Ответ: Вероятность рождения ребёнка
имеющего оба заболевания составляет 1/8 = 12,5%

№4. Изучаются две пары аутосомных
генов, проявляющих независимое наследование.

Петух с розовидным гребнем и оперёнными ногами
скрещивается с двумя курицами, имеющих
розовидный гребень и оперённые ноги.

От первой курицы были получены цыплята с
оперёнными ногами, из них часть имела розовидный
гребень, а другая часть – простой гребень.

Цыплята от второй курицы имели розовидный
гребень, и часть из них с оперёнными ногами и
часть с неоперёнными.

Определить генотипы петуха и двух куриц.

Решение.

По условию задачи оба родителя имеют
одинаковые фенотипы, а в потомстве от двух
скрещиваний произошло расщепление по каждому
признаку. Согласно закону Г.Менделя, только
гетерозиготные организмы могут дать
“расщепление” в потомстве. Составляем две схемы
скрещивания.

Взаимодействие неаллельных генов

№1. Изучаются две пары неаллельных
несцепленных генов определяющих окраску меха у
горностая.

Доминантный ген одной пары (А)
определяет чёрный цвет, а его рецессивный аллель (а)
– голубую окраску.

Доминантный ген другой пары (В)
способствует проявлению пигментации организма,
его рецессивный аллель (в) не
синтезирует пигмент.

При скрещивании чёрных особей между собой в
потомстве оказались особи с голубой окраской
меха, чёрные и альбиносы.

Проанализировать генотипы родителей и
теоретическое соотношение в потомстве.

Решение.

Ответ: 9 чёрных, 3 альбиноса, 4 голубой
окраски.

№2. Наследование окраски оперения у
кур определяется двумя парами неаллельных
несцепленных генов, расположенных в аутосоме.

Доминантный ген одной пары (А)
определяет синтез пигмента меланина, что
обеспечивает наличие окраски. Рецессивный ген (а)
не приводит к синтезу пигмента и куры
оказываются белыми (перьевой альбинизм).

Доминантный ген другой пары (В)
подавляет действие генов первой пары, в
результате чего синтез пигмента не происходит, и
куры также становятся альбиносами. Его
рецессивный аллель (в) падавляющего
действия не оказывает.

Скрещиваются два организма гетерозиготные по
двум парам аллелей.

Определить в потомстве соотношение кур с
окрашенным оперением и альбиносов.

Решение.

Ответ: 13 белых, 3 окрашенных.

№3. У овса цвет зёрен определяется
двумя парами неаллельных несцепленных генов.
Один доминантный ген (А) определяет
чёрный цвет, другой доминантный ген (В)
– серый цвет. Ген чёрного цвета подавляет ген
серого цвета.

Оба рецессивных аллеля определяют белый цвет
зёрен.

При опылении дигетерозиготных организмов в
потомстве оказались растения с чёрными, серыми и
белыми зёрнами.

Определить генотипы родительских организмов и
фенотипическое соотношение в потомстве.

Решение.

Ответ: 12 чёрных, 3 серых, 1 белый.

Наследование генов, расположенных
в половых хромосомах

№1. Ген нормальной свёртываемости
крови (А) у человека наследуется по
доминантному типу и сцеплен с Х-хромосомой.
Рецессивная мутация этого гена (а)
приводит к гемофилии – несвёртываемости крови.

У-хромосома аллельного гена не имеет.

Определить процентную вероятность рождения
здоровых детей в молодой семье, если невеста
имеет нормальную свёртываемость крови, хотя её
родная сестра с признаками гемофилии. У жениха
мать страдает этим заболеванием, а отец здоров.

Решение. 1) Определяем генотип невесты. По
условию задачи сестра невесты имеет рецессивный
генотип ХаХа, значит
обе сестры получают ген гемофилии (от своего
отца). Поэтому здоровая невеста гетерозиготна.

2) Определяем генотип жениха. Мать жениха с
признаками гемофилии ХаХа,
следовательно, по хромосомной теории пола,
рецессивный ген она передаёт сыну ХаУ.

Ответ: соотношение по фенотипу 1:1, 50% детей
здоровы.

№2. Изучается одна пара аллельных
генов в Х-хромосоме, регулирующая
цветовое зрение у человека.

Нормальное цветовое зрение является
доминантным признаком, а дальтонизм проявляется
по рецессивному типу.

Проанализировать генотип материнского
организма.

Известно, что у матери два сына, у одного из них
больная жена и здоровый ребёнок. В семье второго
– дочь с признаками дальтонизма и сын, цветовое
зрение которого в норме.

Решение. 1) Определяем генотип первого сына.
По условию задачи у него больная жена и здоровый
ребёнок – это может быть только дочь ХАХа.
Рецессивный ген дочь получила от матери, а
доминантный ген от отца, следовательно, генотип
мужского организма доминантный АУ).

2) Определяем генотип второго сына. Его дочь
больна ХаХа, значит,
один из рецессивных аллелей она получила от отца,
поэтому генотип мужского организма рецессивный аУ).

3) Определяем генотип материнского организма по
её сыновьям:

Ответ: генотип матери гетерозиготный ХАХа.

№3. Альбинизм у человека определяется
рецессивным геном (а),
расположенным в аутосоме, а одна из форм диабета
определяется рецессивным геном (в),
сцепленным с половой Х-хромосомой.

Доминантные гены отвечают за пигментацию (А)
и нормальный обмен веществ (В).

У-хромосома генов не содержит.

Супруги имеют тёмный цвет волос. Матери обоих
страдали диабетом, а отцы – здоровы.

Родился один ребёнок больной по двум признакам.

Определить процентную вероятность рождения в
данной семье здоровых и больных детей.

Решение. Применяя правило “чистоты гамет”
определяем генотипы родителей по цвету волос –
генотипы гетерозиготные Аа.

По хромосомной теории пола определили, что отец
болен диабетом ХвУ, а мать
здорова ХВХв.

Составляем решётку Пеннета – по горизонтали
выписывают гаметы отцовского организма, по
вертикали гаметы материнского организма.

Ответ: шесть организмов из шестнадцати
доминантны по двум признакам – вероятность
рождения составляет 6/16 = 37,5%. Десять больных: 10/16 =
62,5%, из них двое больных по двум признакам: 2/16 = 12,5%.

№4. Два рецессивных гена,
расположенных в различных участках Х-хромосомы,
вызывают у человека такие заболевания как
гемофилия и мышечная дистрофия. Их доминантные
аллели контролируют нормальную свёртываемость
крови и мышечный тонус.

У-хромосома аллельных генов не
содержит.

У невесты мать страдает дистрофией, но по
родословной имеет нормальную свёртываемость
крови, а отец был болен гемофилией, но без каких
либо дистрофических признаков.

У жениха проявляются оба заболевания.

Проанализировать потомство в данной семье.

Решение.

Ответ: все дети имеют заболевание, 50% с
гемофилией и 50% с дистрофией.

Наследование сцепленных генов.
Явление кроссинговера.

№1. Ген роста у человека и ген,
определяющий количество пальцев на конечностях,
находятся в одной группе сцепления на расстоянии
8 морганид.

Нормальный рост и пять пальцев на кистях рук
являются рецессивными признаками. Высокий рост и
полидактилия (шестипалость) проявляются по
аутосомно-доминантному типу.

Жена имеет нормальный рост и по пять пальцев на
руке. Муж гетерозиготен по двум парам аллелей,
причём ген высокого роста он унаследовал от отца,
а ген шестипалости от матери.

Определить в потомстве процентное соотношение
вероятных фенотипов.

Решение.

Ответ: 46% 46% 4% 4%

№2. Два гена, регулирующих реакции
обмена веществ в организме человека, сцеплены с Х-хромосомой
и расположены друг от друга на расстоянии 32
морганид. У-хромосома аллельных генов
не содержит.

Доминантные гены контролируют нормальный
обмен веществ.

Воздействия различных мутагенных факторов
изменяют последовательностъ нуклеотидов в
данных участках Х-хромосомы, что
приводит к отклонениям в синтезе веществ и
наследственным заболеваниям по рецессивному
типу.

От здоровых родителей рождается больной
ребёнок, имеющий два мутантных гена в генотипе.

Какова процентная вероятность рождения
следующего ребёнка с нарушением обмена веществ?

Решение. По условию задачи в данной семье
больной ребёнок – это сын вХаУ
т.к. от здорового отца дочери больными быть не
могут.

Сын получил рецессивные гены от матери,
следовательно, генотип матери гетерозиготный

Составляем схему скрещивания:

Ответ: вероятность рождения больных детей
составляет 33%, из них 17% больных по двум
заболеваниям обмена веществ, 8% по одному
заболеванию и 8% по другому.

14 ноября 2021

В закладки

Обсудить

Жалоба

Алгоритм решения задач по генетике

В помощь преподавателю, студенту и школьнику, для решения задач по генетике.

Алгоритм решения прямых задач.
Алгоритм решения обратных задач.
Алгоритм решения задач: «Моногибридное скрещивание».
Алгоритм решения задач: «Дигибридное скрещивание».
Алгоритм решения задач: «Анализирующее скрещивание».
Алгоритм решения задач: «Сцепленное наследование».
Алгоритм решения задач: «Генетика пола».
Алгоритм решения задач: «Наследование признаков, сцепленных с полом».

al-gen.docx
al-gen.pdf

На ЕГЭ по биологии вам попадается неожиданная новая задача! Вы решали много задач и не понимаете, с чего начать? Вас беспокоят типы наследования, законы наследственности и варианты записи схем задач? Вы не понимаете, как и по каким принципам текст задачи многие легко превращаются в запись генотипов? Вам неясно, как уверенно записывать каждый символ родителей и потомков?

Ниже представлены универсальные инструкции для решения всех типов задач. В них вы увидите рекомендации перейти на другие инструкции, а также единую логическую последовательность работы с каждой задачей.

Основные этапы решения задачи.

1.      Введение символики, определение типа скрещивания.

2.      Запись всех обозначений аллелей в виде признаков фенотипа, если аллели частично даны в задаче.

3.      Запись обозначений аллелей в виде признаков фенотипа, если в задаче с моногибридным скрещиванием они НЕ даны.

4.      Запись генотипов родителей и потомков в задаче с моногибридным скрещиванием, если обозначения доминантных и рецессивных аллелей явно НЕ даны.

5.      Анализ задачи с дигибридным скрещиванием в виде двух параллельных моногибридных для определения генотипов родителей.

6.      Идентификация в задачах с дигибридным скрещиванием независимого и сцепленного наследования (если о них не указано).

Очень удобно, когда все символы (аллели) в задачах даны. Я буду использовать фрагменты текста разных задач, чтобы показывать отдельные предложения в задачах и анализировать их в процессе решения задачи.

Например, как во фрагменте текста этой задачи: «У человека тёмный цвет волос (А) доминирует над светлым цветом (а), карий цвет глаз (В) — над голубым (в)…» Однако такое бывает не всегда. Много задач, в которых вам самостоятельно нужно ввести нужные символы. Часто в задаче требуется определить, за что символ (аллель) отвечает. Смотрите инструкции ниже.

Инструкция 1. Введите верные символы в задаче, если они не даны, определите тип скрещивания.

Цели инструкции 1.

1)      Введение символов в задаче (не их обозначений).
В любой задаче введите символы, даже если вы пока не уверены, что они обозначают (обозначения могут быть не даны в задаче).

2)      Почему важно ввести символы?
После этого вы сможете адекватно записать обозначения символов (конкретные признаки) и схему скрещивания. Схемы часто требуются в задаче, их проверяют. В генотипах особей может быть разное количество символов (аллелей).

3)      Определение типа скрещивания для выявления количества символов в схеме решения. Символов в ЕГЭ по биологии может быть либо 2 при моногибридном, либо 4 при дигибридном скрещивании.

Инструкция 1.1.  Определите тип наследования в задаче – сцепленное с полом, либо аутосомное.

Цели инструкции 1.1. 

1)      Вводить верные символы для сцепленного с полом и аутосомного наследования в задаче.

2)      Уметь определить, что конкретно ввести в задаче: символы сцепленного с полом наследования, символы аутосомного наследования, либо оба вида символов.

Шаги инструкции 1.1.

1.      Читайте каждое слово задачи. Определите, сказано ли в задаче о признаках, сцепленных с полом, о половой принадлежности не только родителей, но и потомков.

2.      Если об этом написано, вводите обозначение половых хромосом с индексами Ха, ХА, Y и т.п.

3.      Вот пример такой задачи. «Две красноглазые длиннокрылые особи дрозофилы при скрещивании между собой дали следующее потомство: самок: 3/4 красноглазых длиннокрылых, 1/4 красноглазых с зачаточными крыльями; самцов: 3/8 красноглазых длиннокрылых, 3/8 белоглазых длиннокрылых, 1/8 красноглазых с зачаточными крыльями, 1/8 белоглазых с зачаточными крыльями.  Объясните расщепления. Как наследуются данные признаки? Каковы генотипы родителей?»

4.      Обратите внимание, в этой задаче сказано именно о самках и самцах в потомстве. На этом сделан акцент. Явный признак сцепления с полом. Однако в этой задаче есть еще и аутосомное наследование. Как его определить, читайте ниже.

5.      Также в задаче могут писать о гемофилии и дальтонизме. Ученик должен знать, что их гены сцеплены с полом.

6.      Если в задаче ничего не сказано о сцеплении с полом, о половой принадлежности потомков, о расположении гена в Х-хромосоме, о дальтонизме, гемофилии, значит, наследование аутосомное.

7.      Вводите символы аутосомных генов, например, А, а, либо В, b.

Инструкция 1.2.  Определите количество аллелей — символов в задаче и запишите их.

1.      Если вы видите, что в задаче фигурируют только два альтернативных признака одного гена, вводите два аллеля: А и а.  

2.      Запишите эти два символа в системе «дано» к вашей задаче. Не стоит спешить ставить тире и писать обозначения к каждому символу. В разных задачах может быть не указано, что они обозначают. Не делайте ошибок заранее!

3.      Например, в задаче речь об аллелях цвета глаз. И речь о двух аллелях: один аллель отвечает за карие глаза, другой за голубые. Вы просто вводите А и а.  Даже, если не указано, что за А — аллель карих глаз, а — голубых (хотя об этом написано во многих учебниках). Пока просто напишите две аллели. Что вы должны представить визуально? Эти аллели относятся к одному гену — гену цвета глаз. Скрещивание особей, отличающихся аллелями одного гена, является моногибридным.

4.      Вот фрагмент задачи, в которой всего 2 аллели. В ней фактически через текст даны обозначения аллелей. «Женщина, носительница рецессивного гена гемофилии, вышла замуж за здорового мужчину. Составьте схему решения задачи. Обратите внимание, здесь вы вводите половые хромосомы Хd, ХD, Y. Из текста задачи вы можете вынести такое: Хd
– наличие гена гемофилии, ХD
– здоровый человек. Если женщина-носительница гена гемофилии вы ее записываете так: ХDХd. Генотип здорового мужчины: ХDY.

5.      Если в задаче два гена и у каждого по 2 аллеля, вы вводите не только А, а, но и В, b. Подобное скрещивание называется дигибридным.  Вы можете ввести и другую символику. Важно, чтобы вы видели ясный смысл, визуально представляли в задаче два гена и два аллеля каждого их этих генов.

6.      Например, в задаче о горохе вы четко увидели два гена: ген цвета семени и ген формы. Ваша цель ввести аллели. В дальнейшем, по мере решения, вы будете выяснять, за что они отвечают, если не даны. Об этих 4 аллелях написано во всех учебниках.

7.      У каждого из двух генов имеются две аллели, которые вы также должны визуально представлять. Ген цвета имеет аллель А — она отвечает за желтый цвет (первый альтернативный признак гена цвета), аллель а — за зеленый (второй альтернативный признак гена цвета). Ген формы имеет аллель В — он ответственен за гладкую форму семян (первый альтернативный признак гена формы) и аллель b, реализующий морщинистую форму (второй альтернативный признак гена формы). В задачах на ЕГЭ у вас могут быть новые неизвестные аллели и надо самостоятельно вводить обозначения. Об этом смотрите инструкцию 3 ниже.

Инструкция 2. Запишите обозначения аллелей в виде признаков фенотипа, если обозначения частично даны в задаче.

Я буду использовать фрагменты текста разных задач, чтобы показывать отдельные предложения в задачах и анализировать их в процессе решения задачи.

Задача 1.
Альбинизм (а) и фенилкетонурия (
b) — за­болевание, связанное с нарушением обмена веществ (ФКУ) — на­следуются у человека как рецессивные аутосомные несцепленные признаки.

Цели инструкции 2.

1)      Решить и записать, за какой признак фенотипа отвечает символ (аллель). Зачем? В дальнейшем это позволит вам визуально представить ясную схему решения задачи.

2)      Внимательно вынести из задачи все указанные составителями аллели с их признаками. Зачем? Чтобы верно написать в дальнейшем генотипы скрещиваемых особей.

Шаги инструкции 2.

1.      Выпишите в черновик символы аллелей и укажите, за что они отвечают. Например, а — альбинизм, b — фенилкетонурия (ФКУ).

2.      Если в задаче два гена и указаны только две аллели, а не четыре, запишите другие две аллели «от обратного». Например, в задаче выше укажите так: А — отсутствие альбинизма, B — отсутствие ФКУ.  Внимательность в обозначении аллелей имеет большое значение для правильного решения задачи.

3.      В задаче 1 фактически в условии даны два гена, у каждого по 2 аллели, значит, скрещивание дигибридное.

Инструкция 3. Запишите обозначений аллелей в виде признаков фенотипа, если в задаче с моногибридным скрещиванием они НЕ даны.

Вот пример такой задачи. Задача 2. От скрещивания комолого быка айширской породы с рогатыми коровами в F1 получили 18 телят (все комолые — безрогие), в F2 – 95. Каково количество комолых телят в F2?

Решение. Признак: наличие рогов (моногибридное скрещивание). Обозначения аллелей: D – комолые, d – рогатые.

Цели инструкции 3.

1)      Верно и быстро записывать в начале задачи фенотипические обозначения аллелей, если они не даны.

2)      Использовать данные обозначения для записи генотипов родителей и потомков.

3)      Верно оформлять схему решения задачи, ясно осознавая и записывая внизу генотипов фенотипы всех полученных особей.

Шаги инструкции 3.

1.      Используйте инструкцию только, если в задаче явно не даны фенотипические обозначения доминантных и рецессивный аллелей. Вот задача, в которой дано обозначение рецессивной аллели: «Задача 3. У человека фенилкетонурия наследуется как рецессивный признак. Определите вероятность развития заболевания у детей в семье, где оба родителя гетерозиготны по данному признаку». Для такой задачи не требуется данная инструкция. От обратного вы вводите обозначение доминантной аллели.

2.      Если в результате скрещивания появились единообразные потомки, значит, данные потомки гетерозиготны (Аа). У гетерозиготных потомков доминантная аллель соответствует их фенотипу.

3.      Вводите обозначения в начале задачи (например, D — безрогие телята), если в ней фигурируют всего два фенотипа (при неполном доминировании может появиться третий).

4.      Второй вывод: согласно 1 закону Менделя, родители гомозиготны, один по рецессивному признаку, другой по доминантному.

Инструкция 4. Верно запишите генотипы родителей и потомков в задаче с моногибридным скрещиванием, если обозначения доминантных и рецессивных аллелей явно НЕ даны.

Вот примеры задач.

Задача 4. Плоды арбуза могут иметь зеленую или полосатую окраску. Все арбузы, полученные от скрещивания растений с зелеными и полосатыми плодами, имели только зеленый цвет корки плода. Какая окраска плодов арбуза может быть в F2?

Решение. Так как в первом поколении все особи зеленые, значит А — зеленый цвет корки, а — полосатый.

1)      АА*аа. F1: Aa.

2)      Аа*Aa. F2: АА, 2Аa, аа. В это(й) схеме 3 части плодов имеют зеленую окраску, 1 часть полосатую (соотношение по фенотипу 3:1).

Задача 5. В семье, где оба родителя имели нормальный слух, родился глухой ребенок. Какой признак является доминантным? Каковы генотипы всех членов этой семьи?

Решение. Так как родители здоровы (у них родился больной ребенок), они гетерозиготны (Аа). Значит А — нормальный слух, а — полосатый. (Слух бывает полосатый?)

1)      Генотипы родителей: Аа*Аа.

2)      F1: генотипы всех членов семьи: АА, 2Aa, аа (глухой ребенок).

Задача 6. Голубоглазый мужчина женат на кареглазой женщине, родители которой были также кареглазыми, но сестра – голубоглазая. Может ли у них родиться голубоглазый ребенок? Какой закон действует в данной ситуации? Назовите и сформулируйте его. 

Решение. Так как у кареглазой женщины родители были кареглазыми, а сестра отличалась от них, и была голубоглазой, значит, родители гетерозиготны — Аа (см. пункт 3, инструкция 4). При скрещивании подобных родителей потомство, согласно 2 закону Менделя было таково: АА (кареглазый ребенок), 2Аа (кареглазый ребенок), аа (голубоглазая сестра). Соответственно, А — карие глаза, а — голубые.  Сама кареглазая женщина может иметь генотип либо АА, либо Аа.

1)      Генотипы родителей (первый вариант): аа*Аа. F1: аа (может родиться голубоглазый ребенок), Аа.

2)      Генотипы родителей (второй вариант): аа*АА. F1: Aа (все дети будут кареглазыми). В этом случае действует первый закон Менделя: при скрещивании двух гомозигот (доминантной и рецессивной) все потомство единообразно по фенотипу и гетерозиготно по генотипу.

Цели инструкции 4.

1.      Научиться верно записывать генотипы родителей и потомков в задачах с моногибридным скрещиванием.

2.      В будущем в задачах с дигибридным скрещиванием уметь видеть два параллельных моногибридных и также легко определять прежде всего генотипы родителей (если они не даны).

3.      Научиться верно отвечать на вопрос о типах наследования в задаче с моногибридным скрещиванием.

Шаги инструкции 4.

1.      Используйте инструкцию только, если в задаче явно не даны фенотипические обозначения доминантных и рецессивный аллелей.

2.      Определите, наблюдается ли при скрещивании двух фенотипически различных особей в их потомстве единообразие.

3.      При наличии единообразия, сделайте вывод, что эти особи гомозиготны, а все потомство по 1 закону Менделя гетерозиготно (смотрите задачу 4).

4.      Определите, наблюдается ли в потомстве при скрещивании двух фенотипически одинаковых особей расщепление признаков (появляются новые фенотипы у потомков).

5.      При наличии расщепления, сделайте вывод о том, что особи гетерозиготны, запишите их в схеме задачи. Соответственно, по второму закону Менделя, в потомстве будет расщепление по генотипу: АА, 2 Аа, аа 1:2:1), по фенотипу 3:1 (смотрите задачу 5).

6.      Определите, наблюдается ли в потомстве при скрещивании особей, отличающихся фенотипически по одной паре признаков (часто Аа и аа), расщепление по фенотипу по этой же паре признаков («дети абсолютно внешне похожи на родителей – Аа и аа»).

7.      При наличии такого расщепления, сделайте вывод о том, что одна из родительских особей была гетерозиготна (Аа), а другая – гомозиготна (аа) по рецессивному признаку (смотрите задачу 6).

8.      Если в задаче скрещиваются особи с одинаковым фенотипом (например, полосатые с полосатыми) и в потомстве все единообразны (полосатые), значит, родители и дети имеют абсолютно одинаковые генотипы (либо АА, либо аа).

9.      Пункты 6-8 инструкции 4 надо использовать в задачах с аутосомным наследованием.

10.    При наличии сцепленного с полом наследования по аналогии родители могут быть XAXa
и XaY. Расщепление по фенотипу по признакам, сцепленным с половой хромосомой X, в целом также будет соответствовать фенотипам родителей. Однако в потомстве возникнет своеобразное расщепление по полу. Особи разного пола смогут иметь разные варианты фенотипа каждого из двух родителей.

11.    Если в задаче с моногибридным скрещиванием спросили о типе наследования, то оно может быть либо аутосомным, либо сцепленным с полом.

12.   Для определения типа наследования смотрите инструкцию 1.1.

Инструкция 5.  Рассматривайте задачу с дигибридным скрещиванием в виде двух параллельных моногибридных для важной цели — определения генотипов родителей.

Цели инструкции 5.

1.      Получить полный визуальный обзор задачи с дигибридным скрещиваем (очень частый тип задач в ЕГЭ).

2.      Верно определять обозначения аллелей при дигибридном скрещивании, если они не даны.

3.      Верно определять и записывать генотипы родителей при дигибридном скрещивании, даже если в задаче даны обозначения аллелей.

4.      Научиться видеть в задачах с дигибридным скрещиванием не только два моногибридных скрещивания с аутосомным наследованием, но и одно с аутосомным, другое со сцепленным с полом.

Шаги инструкции 5.

1.      Определите, что в задаче рассматривается два неаллельных гена (дигибридное скрещивание).

2.      Сфокусируйтесь на фенотипах родителей по первому гену. Например, в задаче скрестили белых стелющихся растений с окрашенными кустистыми. В фенотипе белых стелющихся растений сфокусируйтесь сначала на признаке белого цвета. В фенотипе окрашенных кустистых растений сфокусируйтесь сначала на признаке окрашенности. Ваш первый фокус — на гене цвета, но не на гене формы кроны. Именно этим вы как будто выделяете первое моногибридное скрещивание в дигибридном. В гене цвета два варианта (альтернативных признака) — окрашенные и белые.

3.      Если в задаче не указано, какие аллели отвечают за какие признаки, определите это самостоятельно. Каким образом?

4.      Составьте обзорную схему задачи на черновике. Для этого фенотипы скрещиваемых особей напишите кратко словами под чертой, оставив вверху место для внесения в дальнейшем обозначений генотипов (два блока, по четыре аллели в каждом, например, АаВb* aaBb и т.д.). Ни в коем случае не пишите сразу генотипы наугад или без полной уверенности в них!

5.      При анализе фенотипов родителей обратите внимание, станет ли в потомстве любого из указанных в задаче скрещивания какой-нибудь фенотип единообразным.

6.      Лидерство одного признака среди потомков говорит нам о том, что за него отвечает доминантная аллель. Например, при скрещивании длинношерстных хомяков с короткошерстными, в первом поколении все потомки длинношерстные, значит, А — длинная шерсть, а — короткая. Такой вывод нам позволяет делать 1 закон Менделя, который мы изучаем в рамках моногибридного скрещивания. Мы можем пользоваться им и при дигибридном скрещивании, так как оно представляет собой два параллельных моногибридных.

7.      После фиксации обозначений аллелей (рекомендую записать их рядом со схемой скрещивания) досконально составьте генотипы родителей. Каким образом?

8.      Сфокусируйтесь на первом рассматриваемом гене, содержащим две аллели (например, ген цвета растения, две аллели — окрашенные и белые).

9.      Если в схеме скрещивания при анализе этого гена проявился 1 закон Менделя, сделайте вывод согласно п. 3 инструкции 4.

10.    Если в схеме скрещивания при анализе этого гена проявился 2 закон Менделя, сделайте вывод согласно п. 4-5 инструкции 4.

11.    Если родительские фенотипы различаются и в потомстве такие же по фенотипу две группы детей, используйте п. 6 и 7 инструкции 4.

12.    При наличии в схеме одинаковых по фенотипу родителей и потомков, используйте п. 8 инструкции 4.

Инструкция 6.  Идентификация в задачах с дигибридным скрещиванием независимого и сцепленного наследования (если о них не указано).

Цели инструкции 6.

1.      В любой задаче дигибридным скрещиванием легко видеть независимое или сцепленное наследование.

2.      Определять тип сцепленного наследования: сцепленное с кроссинговером или без.

3.      Различать сцепленное с полом наследование и сцепленное наследование.

Шаги инструкции 6.

1.      Введите символы в задаче, определите тип скрещивания согласно инструкциям 1 и 2.

2.      Если в задаче дигибридное скрещивание, оформите схему решения задачи согласно инструкции 5.

3.      Определите, скрещиваются ли в задаче дигетерозиготы АаВb.

4.      Выясните, в каком соотношении по фенотипу появляется потомство в задаче при скрещивании дигетерозигот между собой, либо с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ).

5.      Если в задаче скрещиваются дигетерозиготы АаВb между собой и отсутствует соотношение по фенотипу 9:3:3:1 (согласно 3 закону Менделя), значит, в ней имеется сцепленное наследование, а независимое отсутствует.

6.      Если в задаче скрещиваются дигетерозиготы АаВb с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ) и отсутствует соотношение по фенотипу 1:1:1:1, значит, в ней имеется сцепленное наследование, а независимое отсутствует. Соотношение по фенотипу 1:1:1:1 при подобном скрещивании будет именно при независимом наследовании.

7.      Если в задаче скрещиваются дигетерозиготы АаВb с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ) и появляется соотношение по фенотипу 1:1 (две фенотипические группы), значит имеет место  сцепленное наследование без кроссинговера. Дигетерозигота АаВb дает только два сорта гамет.

8.      Если в задаче скрещиваются дигетерозиготы АаВb с дигомозиготами (например, с ааbb, либо с ААbb, ааВВ) и появляется четыре фенотипические группы в неравном соотношении (в опытах Моргана две группы в процентном соотношении были по 41.5% и две по 8.5%), значит имеет место сцепленное наследование с кроссинговером. Дигетерозигота АаВb дает четыре сорта гамет в неравном соотношении — кроссоверных гамет меньше.

9.      При сцепленном с полом наследовании ген расположен в половой хромосоме. В этом случае часто не идет речи о двух генах. В этом случае мы имеем дело совсем с другой классификацией типов наследования — по критерию расположения генов в аутосомах или половых хромосомах. В сцепленном наследовании мы чаще имеем дело с двумя неаллельными аутосомными генами, расположенными в одной паре аутосом. Однако эти неаллельные гены могут располагаться и в одной паре половых хромосом.

Понравилась статья? Поделить с друзьями:
  • Как найти ответы на тесты по алгебре
  • Как найти вещи в тока бока бесплатно
  • График что это за ошибка как исправить
  • Под исправить как пишется
  • Как найти участок земли для ижс