Как указать область определения найти нули функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

Свойства функции

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Определение

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Рисунок 2

На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом.
Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

График функции у=k/x выглядит следующим образом:

Рисунок 3

По данному рисунку видно, что нулей функции не существует.
Как найти нули функции?

  1. Для того чтобы найти нули функции, которая задана формулой, надо подставить вместо у число нуль и решить полученное уравнение.
  2. Если график функции дан на рисунке, то ищем точки пересечения графика с осью х.

Рассмотрим примеры нахождения нулей функции.

Пример №1. Найти нули функции (если они существуют):

а) у= –11х +22

б) у= (х + 76)(х – 95)

в) у= – 46/х

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Получим х=2.

Таким образом, мы нашли нуль функции: х=2

б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. Таким образом, так как у нас два множителя, составляем два уравнения: х + 76 = 0 и х – 95 = 0. Решаем каждое, перенося числа 76 и -95 в правую часть, меняя знаки на противоположные. Получаем х = – 76 и х = 95. Значит, нули функции это числа (-76) и 95.

в) в третьем случае: если вместо у подставить 0, то получится 0 = – 46/х, где для нахождения значения х нужно будет -46 разделить на нуль, что сделать невозможно. Значит, нулей функции в этом случае нет.

Пример №2. Найти нули функции у=f(x) по заданному графику.

Рисунок 4

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Определение

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Рисунок 5

Рассмотрим по нашему рисунку, на какие промежутки разбивается область определения данной функции [-3; 7] ее нулями. По графику видно, что это 4 промежутка: [-3; -1), (-1;4), (4; 6) и (6; 7]. Помним, что значения из области определения смотрим по оси х.

На рисунке синим цветом выделены части графика в промежутках [-3; -1) и (4; 6), которые расположены ниже оси х. Зеленым цветом выделены части графика в промежутках (-1;4) и (6; 7], которые расположены выше оси х.

Значит, что в промежутках [-3; -1) и (4; 6) функция принимает отрицательные значения, а в промежутках (-1;4) и (6; 7] она принимает положительные значения. Это и есть промежутки знакопостоянства.

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Рисунок 6

Функция принимает положительные значения в промежутках [-2; -1) и (3; 8). Обратите внимание, что эти части на рисунке выделены зеленым цветом.

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Рисунок 7

На графике видно, что с увеличением значения х от -3 до 2 значения у тоже увеличиваются. Также с увеличением значения х от 5 до 7 значения у опять увеличиваются. Проще говоря, слева направо график идет вверх (синие линии). То есть в промежутках [-3; 2] и [5; 7] функция у=f(x) является возрастающей.

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Определение

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Даниил Романович | Просмотров: 16.1k

Вспомним кратко основные определения функции в математике.

Функция — это зависимость переменной « y » от
независимой переменной « x ».

Функцию можно задать через формулу (аналитически). Например:

у = 2x

  • « x » называют независимым аргументом функции;
  • « y » зависимой переменной или значением функции.

Вместо « x » (аргумента функции) в формулу «у = 2x» подставляем произвольные числовые значения
и по заданной формуле вычисляем
значение « y ».

Подставим несколько числовых значений вместо « x » в формулу «у = 2x» и запишем результаты в таблицу.

x y = 2x
x = −2 у = 2 · (−2) = −4
x = 0 y = 2 · 0 = 0
x =

1
2
y = 2 ·

1
2

=

2 · 1
2

= 1

x = 3 y = 2 · 3 = 6

Запомните!
!

Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).

Обозначают область определения функции как:

D(y)

Вернемся к нашей функции «у = 2x» и найдем её область определения.

Посмотрим ещё раз на таблицу функции «y = 2x», где
мы подставляли произвольные числа вместо « x », чтобы найти « y ».

x y = 2x
−2 −4
0 0
1
2
1
3 6

Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать,
что вместо « x » мы могли подставлять любое действительное число.

Другими словами, вместо « x » можно подставить любые числа, например:

  • −2
  • 0
  • 10
  • 30,5
  • 1 000 000
  • и так далее…

Запомните!
!

Областью определения функции называют множество чисел,
которые можно подставить вместо « x ».

В нашей функции «у = 2x» вместо « x »
можно подставить любое число, поэтому область определения функции «у = 2x» — это любые действительные числа.

Запишем область определения функции «у = 2x» через математические обозначения.

у = 2x
D(y): x
— любое действительное число

Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на
математические символы.
Для этого вспомним понятие числовой оси.

числовая ось для x

Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции «у = 2x».
Так как в функции
«у = 2x» нет ограничений для « x »,
заштрихуем всю числовую ось от минус бесконечности «−∞» до плюс бесконечности
«+∞».

числовая ось для x

Запишем результат по правилам записи неравенств.

числовая ось для x

D(y): x ∈ (−∞ ; +∞)

Запись выше читается как: « x » принадлежит промежутку от минус бесконечности
до плюс бесконечности.

Запишем окончательный ответ для области определения функции.

Ответ:

D(y): x ∈ (−∞ ; +∞)

По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как
«x ∈ R».

Читается «x ∈ R» как: « x » принадлежит всем действительным числам».

Записи « x ∈ (−∞ ; +∞) » и
«x ∈ R» одинаковы по своей сути.

Область определения функции с дробью

Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.

Разбор примера

Найдите область определения функции:

Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x »
в функции

« f(x) = ».

По законам математики из школьного курса мы помним, что на ноль делить нельзя.
Иначе говоря,
знаменатель (нижняя часть дроби) не может быть равен нулю.

Переменная « x » находится в знаменателе функции «f(x) = ».
Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.

x + 5 ≠ 0

Решим полученное линейное уравнение.

Получается, что « x » может принимать любые числовые значения кроме «−5».
На числовой оси заштрихуем все доступные значения для « x ».

Число «−5» отмечено
«пустой»
точкой на числовой оси, так как не входит в область допустимых значений.

числовая ось для x

Запишем заштрихованную область на числовой оси через знаки неравенства.

числовая ось для x

Запишем промежутки через математические символы. Так как число «−5» не входит
в область определения функции, при записи ответа рядом с ним будет стоять
круглая скобка.

Вспомнить запись ответа через математические символы можно в уроке
«Как записать ответ неравенства».

числовая ось для x

x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Запишем окончательный ответ для области определения функции
«f(x) = ».

Ответ:

D(y): x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Область определения функции с корнем

Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.

Разбор примера

Найти область определения функции:

y = 6 − x

Из урока «Квадратный корень» мы помним,
что подкоренное выражение корня чётной степени должно быть больше или равно нулю.

Найдём, какие значения может принимать « x » в функции
«у = 6 − x».
Подкоренное выражение
«6 − x» должно быть больше или равно нулю.

6 − x ≥ 0

Решим линейное неравенство по правилам урока «Решение линейных неравенств».

6 − x ≥ 0

−x ≥ −6 | ·(−1)

x 6

Запишем полученный ответ, используя числовую ось и математические символы. Число «6» отмечено
«заполненной»
точкой на числовой оси, так как входит в область допустимых значений.

числовая ось для x

x ∈ (−∞ ; 6]

Запишем окончательный ответ для области определения функции
«y = 6 − x» .
Так как число «6» входит
в область определения функции, при записи ответа рядом с ним будет стоять
квадратная скобка.

Ответ:

D(y): x ∈ (−∞ ; 6]

Правило для определения области определения функции

Запомните!
!

Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:

  1. на ноль делить нельзя (другими словами, знаменатели дробей с « x » не должны быть равны нулю);
  2. подкоренные выражения корней чётной степени должны быть больше или равны нулю.

При нахождении области определения функции необходимо всегда задавать себе два вопроса:

  1. есть ли в функции дроби со знаменателем, в котором есть « x »?
  2. есть ли корни четной
    степени с « x »?

Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.

Рассмотрим пример поиска области определения функции с корнем и дробью.

Разбор примера

Найдите область определения функции:

Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.

В функции «
f(x) = x + 3 +

»

есть дробь «

»,
где « x » расположен в знаменателе. Запишем условие, что знаменатель
« x 2 − 9 »
не может быть равен нулю.

Решаем квадратное уравнение через
формулу квадратного уравнения.

x1;2 =

x2 − 9 ≠ 0

x1;2 =

−0 ±
02 − 4 · 1 · (−9)
2 · 1

x1;2

x1;2

x1;2

x1;2 ≠ ±3

Запомним полученный результат. Задаем себе
второй
вопрос.
Проверяем, есть ли в формуле функции

«
f(x) = x + 3 +

»

корень четной степени.

В формуле есть квадратный корень «
x + 3
».

Подкоренное выражение «x + 3»
должно быть больше или равно нулю.

x + 3 ≥ 0

Решим линейное неравенство.

x + 3 ≥ 0
x ≥ −3

числовая ось для x

Объединим полученные ответы по обоим вопросам:

  • знаменатель дроби
    «
    » не равен нулю ;
  • подкоренное выражение «
    x + 3
    » должно быть больше или равно нулю.

Объединим все полученные результаты на числовых осях.
Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.

сравнение ограничений для поиска области определения

Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях.
Обратим внимание, что числа «−3» и «3» отмечены «пустыми» точками и не входят в итоговое решение.

поиск общих промежутков

Получаем два числовых
промежутка «−3 < x < 3» и «x > 3», которые являются областью определения функции
«f(x) = x + 3 + ».
Запишем окончательный ответ.

Ответ:

D(y): x ∈ (−3 ; 3) ∪ (3 ; +∞)

Примеры определения области определения функции

Разбор примера

Найти область определения функции:

y = 6x +
51 + x

Для поиска области определения функций задаем себе
первый вопрос.

Есть ли знаменатель, в котором содержится « x »?

Ответ: в формуле функции

«y = 6x +
51 + x
»
нет дробей.

Задаем
второй вопрос.

Есть ли в функции корни четной степени?

Ответ: в функции есть корень шестой степени:
«6x».

Степень корня — число «6». Число «6» — чётное,
поэтому подкоренное выражение корня «6x»
должно быть больше или равно нулю.

x ≥ 0

В формуле функции «y = 6x +
51 + x
»
также есть корень пятой степени
«51 + x
».

Степень корня «5» — нечётное число, значит, никаких ограничений на подкоренное выражение
«1 + x»
не накладывается.

Получается, что единственное ограничение области определения функции

«y = 6x +
51 + x
»
— это ограничение подкоренного выражения
«6x».

x ≥ 0

Нарисуем область определения функции на числовой оси и запишем ответ.

поиск общих промежутков

Ответ:

D(y): x ∈ [0 ; +∞)


Разбор примера

Найдите область определения функции:

Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два.
Выделим знаменатели с « x » красным цветом.

Запишем условие, что каждый из знаменателей не должен быть равен нулю.

x + 2 ≠ 0
x2 − 7x + 6 ≠ 0

Обозначим их номерами «1» и
«2» и решим каждое уравнение отдельно.

x + 2 ≠ 0            (1)
x2 − 7x + 6 ≠ 0     (2)

Решаем первое уравнение.

x + 2 ≠ 0     (1)

Если значение квадратного корня
«x + 2 ≠ 0» не должно быть равно нулю,

значит, подкоренное выражение
«x + 2 ≠ 0»

также не должно быть равно нулю.

x + 2 ≠ 0     (1)

x + 2 ≠ 0
x ≠ −2

Теперь решим уравнение под номером «2», используя
формулу квадратного уравнения.

x1;2 =

x2 − 7x + 6 ≠ 0     (2)

x1;2 =

−(−7) ±
(−7)2 − 4 · 1 · 6
2 · 1

x1;2 =

x1;2 =

x1;2 =

Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.

Знаменатели с « x »
мы проверили. Настала очередь
проверить
формулу функции
на
наличие корней четной степени .

В формуле функции

«f(x) =

+
»

есть два корня
«x − 4» и
«x + 2». Их подкоренные
выражения должны быть больше или равны нулю.

Решим полученную
систему неравенств.

Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.

решение системы неравенств

Выпишем результат решения системы неравенств.

x ≥ 4

Объединим в таблицу ниже полученные ответы по обеим
проверкам:

  1. проверка, что знаменатели
    дробей
    с « x »
    не равны нулю;
  2. проверка, что
    подкоренные выражения корней четной степени должно быть больше или равны нулю.
Условие проверки Результат

Результат проверки, что знаменатели дробей

с « x »

не равны нулю

Результат проверки, что подкоренные выражения должно быть больше или равны нулю

x ≥ 4

Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет
всем полученным условиям.

пример поиска области определения функции

Запишем окончательный ответ для области определения функции
«f(x) =

+
»

с использованием математических символов.

Ответ:

D(y): x ∈ [4 ; 6) ∪ (6; +∞)


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

17 декабря 2016 в 18:02

Татьяна Цыганова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Цыганова
Профиль
Благодарили: 0

Сообщений: 1

Найти ОДЗ функции у=?(р1+р2х+x2
Я не могу понять за какое число воспринимать p1, p2

0
Спасибоthanks
Ответить

17 декабря 2016 в 19:10
Ответ для Татьяна Цыганова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


x2 + p2x + p1 ? 0.

0
Спасибоthanks
Ответить

24 февраля 2016 в 20:29

Влад Алексеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Влад Алексеев
Профиль
Благодарили: 0

Сообщений: 1

Постройте график функции y=-

 . Укажите область определения функции

0
Спасибоthanks
Ответить

25 февраля 2016 в 8:10
Ответ для Влад Алексеев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Область определения функции: знаменатель не равен 0.
x+1?0
x?-1
Графиком является гипербола, смещеная влево относительно оси Y.

0
Спасибоthanks
Ответить

5 февраля 2018 в 14:30
Ответ для Влад Алексеев

Кирилл Косован
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Кирилл Косован
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

11 февраля 2018 в 15:44
Ответ для Влад Алексеев

Татьяна Мирная
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Мирная
Профиль
Благодарили: 0

Сообщений: 1


у=- 

0
Спасибоthanks
Ответить

7 октября 2015 в 21:21

Катерина Яроцкая
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Катерина Яроцкая
Профиль
Благодарили: 0

Сообщений: 1

Помогите найти область определения функции

0
Спасибоthanks
Ответить

12 сентября 2016 в 15:59
Ответ для Катерина Яроцкая

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


К сожалению, картинка не отражается.

0
Спасибоthanks
Ответить


1. Понятие функции

    Функция y=f(x) – соответствие, при котором каждому числу x из множества D сопоставляется единственное число y из множества E.

    xаргумент функции, y – значение функции; D или D(f) – область определения функции; это совокупность всех значений x, для которых можно вычислить значение функции. E или E(f) – область значений функции; это совокупность всех значений, которые может принимать выражение f(x).

    График функции y=f(x) – множество точек (x,y) на координатной плоскости, где x принимает все возможные значения из D(f), а y=f(x).

    Четная функция: f(-x)=f(x) для всех ;

    Нечетная функция: f(-x)=-f(x) для всех ;

    График четной функции симметричен относительно оси OY. График нечетной функции симметричен относительно начала координат.

    Периодическая функция с периодом T>0: f(x+T)=f(x) для всех .

    Нули функции – значения x такие, что f(x)=0. Интервалы знакопостоянства – множества значений аргумента, при которых значения функции только положительны или только отрицательны.

    На рисунке изображена функция с областью определения [a, e]. Нули функции: x=b, x=c, x=d; интервалы знакопостоянства: y>0  при ; y<0 при .

    Функция возрастает на множестве X, если большему значению аргумента соответствует большее значение функции. То есть для любых , если x1<x2, то f(x1)<f(x2). Функция убывает на множестве X, если большему значению аргумента соответствует меньшее значение функции. Т.е. для любых , если x1<x2, то  f(x1)>f(x2).

2. Основные элементарные функции

    а) степенная функция .

    б) показательная функция .

    в) логарифмическая функция .

    г) тригонометрические функции 

       y=sinx, y=cosx

       y=tgx

       y=ctgx 

    д) обратные тригонометрические функции

        y=arcsin x, y=arccos x, y=arctg x, y=arcctg x

3. Некоторые алгебраические функции

    а) линейная .

    График функции – прямая линия, проходящая через точки (0, b) и .

    Функция возрастает при a>0, убывает при a<0.

    Частные случаи: y=b – прямая, параллельная оси OX;

    y=ax – прямая, проходящая через начало координат.

    б) квадратичная .

    График функции – парабола. Ветви параболы направлены вверх при a>0, вниз при a<0. Вершина параболы:

.

    Точки пересечения с осями координат:

    с осью OX  – (x1, 0) и (x2, 0),

    где , D=b2-4ac – корни квадратного трехчлена;

    с осью OY – (0, c).

Пример 1. График какой функции является возрастающим:

    а) ; б) у = х3 – 27; в) y=2-x?

    Решение:

        Рассмотрим каждую из функций в отдельности:

        а)  – степенная функция. Область определения этой функции: . На всей области определения функция монотонна.

        Возьмём два значения х1 = 1 и х2 = 4. Им соответствует у1 = – 1, у2 = – 2. Видим, что если х1 < x2 , то у1 > у2.         Функция убывающая.

        б) у = х3 – 27 – алгебраическая функция. Область определения – множество всех действительных чисел. На всей области определения функция монотонна. Возьмём два значения х1 = 3, х2 = 4. Им соответствует у1 = 0, у2 = 37.

        Видим, что если х1 < x2 , то и у1 < у2. Функция возрастающая.

        в) y=2-x – показательная функция. Областью определения является множество всех действительных чисел. На всей области определения функция монотонна. Пусть х1 = 0, х2 = 1. Им соответствуют у1 = 1, у2 = 0,5.

        Видим, что если х1 < x2 , то у1 > у2. Функция убывающая.

    Ответ: б) у = х3 – 27.

Пример 2. Парабола у = 2х2 – (а – 3)х + а + 3 проходит через начало координат. Найдите абсциссу вершины параболы.

    Решение:

        Найдём значение параметра а. Т.к. парабола проходит через начало системы координат, то координаты точки (0; 0) являются корнями уравнения параболы:  0 = 2 ∙ 02 – (а – 3) ∙ 0 + а + 3;  а = – 3. 

        Уравнение параболы примет вид: у = 2х2 + 6х.

        Абсцисса вершины параболы находится по формуле: . Получаем .

    Ответ: – 1, 5.

Пример 3. В каких точках график функции f(x) = x2 – 3 пересекает прямую у(х) = х – 1?

    Решение:

        Ответом на данный вопрос является решение системы

        х2 – 3 = х – 1;  х2 – х – 2 = 0;  х1= – 1, или х2 = 2. 

        Соответственно, у1 = – 2, у2 = 1.

    Ответ: (– 1; – 2), (2; 1).

Пример 4. При каких значениях k прямые – kх + 7у = – 13 и 14у – 3х + 5 = 0 параллельны?

    Решение:

        Две различные прямые у = k1х + b1 и у = k2х + b2 параллельны, если k1 = k2, но при этом b1 ≠ b2.

        В обоих уравнениях выразим у через х.

        . Следовательно, . При этом .

    Ответ: при k = – 1,5.

Пример 5. Найти точки пересечения прямой у = 5 + х с осями координат.

    Решение:

        Когда график функции пресекает ось ОХ, значение у = 0.

        Получаем уравнение 5 + х = 0, х = – 5. 

        Когда график функции пересекает ось OY, значение х = 0, т.е. у = 5.

    Ответ: (– 5; 0), (0; 5).

Пример 6. Найти нули функции у = (х + 1)∙(х – 2).

    Решение:

        Решаем уравнение (х + 1)∙(х – 2) = 0.

        х + 1 = 0 или х – 2 = 0; х1 = – 1, х2 = 2.

    Ответ: (– 1; 0), (2; 0).

Пример 7. Найти область значений функции .

    Решение:

       Оцениваем последовательно:

       .

    Ответ: .

Пример 8. Найдите сумму целых значений функции у = 3 – 2 sin x.

    Решение:

        Оценим значение 3 – 2 sin x.

        .

        Сумма целых чисел: 1 + 2 + 3 + 4 + 5 = 15.

    Ответ: 15.

Пример 9. Найти область определения функции .

    Решение:

        Функция задана аналитически, следовательно, область определения совпадает с областью допустимых значений выражения 

        х2 + х ≠ 0, т.к. на нуль делить нельзя.

        х (х + 1) ≠ 0;  х ≠ 0 или х ≠ – 1.

    Ответ.

Пример 10. Найдите область определения функции .

    Решение:

        Допустимые значения выражения :

        .

    Ответ: .

Пример 11. Найдите область определения функции .

    Решение:

        Допустимые значения выражения: .

    Ответ: (– 1; + ∞).

Пример 12. Графиком квадратичной функции является парабола с вершиной в точке А(0; 2), проходящая через точку В(2; – 6). Задайте эту функцию формулой.

    Решение:

        Уравнение квадратичной функции у = ах2 + bх + с.

        1) точка А является вершиной параболы, следовательно .

          Уравнение примет вид: у = ах2 + с.

        2) точка А принадлежит графику, следовательно её координаты удовлетворяют уравнению, т.е. 2 = а ∙ 0 + с; с = 2. 

            Уравнение примет вид: у = ах2 + 2.

        3) график проходит через точку В. Её координаты также удовлетворяют уравнению: – 6 = а ∙ 22 + 2, – 8 = 4 ∙ а,          а = – 2.

        Получили уравнение у = – 2х2 + 2.

    Ответ: у = – 2х2 + 2.

Пример 13. Найдите g (x) , если f (x) = 2x – 3, g (f (x)) = x. Вычислите g (1).

    Решение:

        Так как нужно вычислить g (1), то это значит, что нужно найти x такое, что f (x) = 1.

        2x – 3 = 1, х = 2.

        Следовательно, g (f (x)) = 2, т.е. g (1) = 2.

    Ответ: g (1) = 2.

Пример 14. Написать уравнение прямой, проходящей через точку пересечения кривых y=52x, y=53x-1 и через точку параболы y=(2x-1)2, в которой производная функции, задающей параболу, равна 8.

    Решение:

        1) найдём точку пересечения кривых:

          

        2) найдём точку параболы, в которой производная равна 8:  

         

        3) прямая проходит через две точки (1; 25) и (1,5; 4). Согласно уравнению прямой, проходящей через две точки, имеем: 

        – 21х + 21 = 0,5у – 12,5;  – 42х + 42 = у – 25;  у = – 42х + 47.

    Ответ: у = – 42х + 47.

Задания для самостоятельного решения

Базовый уровень

    1) Вычислите значение функции  в точке х0 = 1.

    2) Найдите значение функции  при х = 4.

    3) Для функции  вычислите f(-1)-f(1).

    4) Найдите g(f(x)), если  Вычислите g(f(2)).

Найдите области определения функций: 

    5) .

    6)

    7) .

     8) .

    9) .

    10) .

    11) .

    12)   

    13) .

    14) y=log5(x+3).

    15) y=log5(x2-4).

    16) .

При каких значениях х функции не определены?

    17) .

    18) .

    19) .

    20) .

    21) y=ctgx+tgx.

    22) .

    23) .

Укажите длину интервала области определения для функций: 

    24) .

    25) y=log4(5x+6-x2)  

    26) y=log6(x2+3).

Укажите области значения функций:

    27) y=-3sinx.

    28) y=0,7cos3x.

    29) .

Решите задачи:

    30) Сколько натуральных значений может принять функция y=log2(4-x2) на всей области определения?

    31) Найдите сумму целых значений функции y=3cosx-5.

    32) Укажите функцию, областью значений которой является множество .

   .

    33) Укажите график функции, возрастающей на отрезке [-3; 2]. 

    

    34) Укажите функцию, которая возрастает на всей области определения.

    1) y=-x0,5; 2) y=1-e-x; 3) y=ctg2x; 4) y=|-x|.

    35) Найдите нули функции .

    36) Найдите нули функции  

    37) Найдите наименьшее значение функции f(x)=32x-1 на промежутке [-3; 1].

    38) Вычислите координаты точек пересечения графика функции у = – 2х2 + 4х + 6 с осью OY.

    39) Вычислите ординату точки пересечения прямой у = 5 – 2х с осью ОY.

    40) Укажите точки пересечения графиков функций у = 2х + 4 и у = – 2х.

    41) В каких точках график функции f (x) = 3x2 + 6x пересекает прямую у = 6 – х?

    42) Укажите промежутки возрастания функции y=sin3x на интервале .

    43) Укажите промежутки убывания функции y=-2cosx на интервале .

Повышенный уровень

    44) При каких значениях а графики функций у = 3х – 4х3 и у = а имеют единственную общую точку?

    45) Найдите длину промежутка области значений функции .

    46) Найдите середину промежутка области значений функции y=cosx+|cosx|.

    47) Найдите наибольшее целое значение выражения 2t, где t – число, принадлежащее области значений функции y=cos2x•tg2x.

    48) Найдите наименьшее значение функции .

    49) Укажите наименьшее значение функции y=log2(x2-4x+12).

    50) Укажите наибольшее значение функции .

    51) Вычислите значение функции y=4•sin7x при , если при функция принимает значение – 2.

    52) Вычислите значение функции y=|tg2x| при , если значение данной функции при  равно 1.

    53) Найдите значение 2sint, где t – сумма точек максимума функции на промежутке .

    54) Укажите наибольшее значение функции y=cos(tgx) на промежутке .

Мы знакомы с примерами функций и способами их задания. Рассмотрим понятия области определения и области значения функции, а также свойства функции.
1.  Область определения и область значений функции
Найти область определения функции можно как по формуле, задающей функцию, так и по графику.

Определение:
Область определения функции — это допустимые значения независимой переменной (переменной x). Обозначается область определения функции D(f).

Чтобы лучше понять что такое область определения функции рассмотрим несколько примеров.
Если функция задана аналитически:

Найти область определения функции, если она задана формулой:

1) y=12x+7

2)f(x)=(5x-3)/(8x-16)

Функция задана формулой значит, для того чтобы найти ее область определения, нужно ответить на вопрос: «Какие значения можно подставлять в формулу вместо х?»
1) В формулу функции вместо х можно подставлять

любые

действительные числа. Значит область определения функции — любые действительные числа. Записывают следующим образом:

D(y)=(-ထ; +ထ)

2) Поскольку знаменатель функции не должен равняться нулю:

8x-16≠0

х≠2

Значит, D(y)=(-ထ; 2)U(2; +ထ)

Найти область определения функции если она задана графически еще проще, для этого необходимо обратить внимание на то, какие значения принимает «х» на графике. Попробуйте выполнить задание самостоятельно, а затем сравните с решением.

По графику видно что D(f)=[-7;7]

Далее рассмотрим понятие область значений функции

Определение:
Область значений функции — это множество всех действительных значений y, которые принимает функция. Обозначается область значений функции E(f).

Рассмотрим примеры на нахождение области определения если функция задана аналитически и графически.

Для того чтобы найти область значений функции необходимо ответить на вопрос: » какие значения может принимать у«

1) Если вместо х любое действительное число, то у, в данном случае, также может принимать любые значения, следовательно

E(y)=(-ထ; +ထ)

2) Так как, при подстановке любого действительного числа вместо х, функция (у) из-за модуля будет принимать только неотрицательные значения, то

E(y)=[0; +ထ)

Для нахождения области значений функции, если она задана графически необходимо обратить внимание на то, какие значения принимает «у» на графике. Попробуйте выполнить задание самостоятельно, а затем сравните с решением.

По графику видно что E(f)=[-7;7]

2.  Нули функции

Нули функции можно найти как по формуле, задающей функцию, так и по графику.

Определение:
Нули функции– это значение аргумента, при которых функция обращается в ноль.

Если необходимо найти нули функции по графику, то нужно определить точки пересечения графика с осью ОХ:

На данном примере график функции пересекает ось ОХ при х=-4; х=5,5 и х=8. Эти точки пересечения выделены красным цветом.
Обратите внимание!:

Существуют функции, которые не будут иметь точек пересечения с осью ОХ, следовательно нулей у такой функции нет

Для того чтобы найти нули функции заданной аналитически нужно:

  1. Прировнять «у» к нулю
  2. Решить получившееся уравнение

а. y=-11х+22
б. y=(х+76)(х-95)

а. y=-11х+22
1) у=0
т.е:

-11х+22=0

2) Решим получившееся уравнение

-11х+22=0

-11х=-22

х=2

Ответ: 2
б. y=(х+76)(х-95)
1) у=0
получим:

(х+76)(х-95)=0

2) Решим уравнение

(х+76)(х-95)=0

х+76=0 или х-95=0

х=-76 х=95

Ответ: -76; 95

3.  Промежутки знакопостоянства

Промежутки знакопостоянства функции также можно определить как по формуле, задающей функцию, так и по графику.

Определение:
Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

Если необходимо найти промежутки знакопостоянства у функции заданной графически, то достаточно определить по графику где функция принимает положительные и отрицательные значения. Для примера возьмем график функции для которой мы находили нули функции :

На рисунке синим цветом выделены части графика в промежутках [-8; -4) U (-4; 5,5) U (8;9] , которые расположены выше оси ОХ. Зеленым цветом выделены части графика в промежутке (5,5 ; 8) который расположен выше оси х.
Значит, что в промежутках [-8; -4) U (-4; 5,5) U (8;9] функция принимает положительные значения, а в промежутке (5,5 ; 8) она принимает отрицательные значения. Это и есть промежутки знакопостоянства.

Что делать если функция задана аналитически?
Чтобы определить знаки постоянства достаточно понимать как решаются неравенства и запомнить алгоритм:

  1. Рассматриваем случай когда у>0
  2. Решаем получившееся неравенство, полученный промежуток показывает при каких «х» функция положительна
  3. Аналогично рассматриваем случай у<0
  4. Решаем неравенство, полученный промежуток показывает при каких «х» функция отрицательна

Рассмотрите пример с решением или попробуйте выполнить задание самостоятельно с помощью алгоритма описанного выше:

а. y=-11х+22
1) y>0
Следовательно

-11х+22>0

2)

-11(x+2)>0

x+2<0

x<-2

3) y<0
Следовательно

-11х+22<0

4)

-11(x+2)<0

x+2>0

x>2

Ответ: Функция положительна (у>0) при х∈ (-∞;-2)

Функция отрицательна (у<0) при х∈ (-2;+∞)

б. y=|x+14|
1) y>0
Следовательно

|x+14|>0

2) |x+14|>0

Неравенство верно при любых «х» кроме х=-14

3) y<0
Следовательно

|x+14|<0

4) |x+14|<0

Неравенство неверно при любых «х»

Ответ: Функция положительна (у>0) при х∈ (-∞;-14) U (-14;+∞)

Функция не принимает отрицательных значений

4.  Монотонность

В курсе средней школы монотонность функции будем определять исключительно по ее графическому заданию, но в старших классах промежутки возрастания и убывания можно определить и аналитически с помощью производной

Определение:
Функцию у=f(x) называют возрастающей на промежутке, если для любых двух точек x1 и x2 промежутка, таких, что x1 < x2, выполняется неравенство f(x1) < f(x2)

Функцию у=f(x) называют убывающей на промежутке, если для любых двух точек x1 и x2 промежутка, таких, что x1 < x2, выполняется неравенство f(x1) > f(x2)

Иными словами формальное определение можно интерпретировать следующим образом:
Функция называется возрастающей на промежутке если график визуально «идет наверх», аналогично функция называется убывающей если график визуально «идет вниз».
В качестве примера найдем промежутки монотонности графика функции, рассматриваемого выше:

На рисунке голубым цветом выделены части графика в промежутках (-4; 1) U (7;9) на которых график функции возрастает. Розовым цветом выделены части графика в промежутке (-8 ; 4) U (1;7) на которых график функции убывает. Это и есть промежутки монотонности исходной функции.

5.  Четность и нечетность

Исследовать функцию на четность и нечетность можно как аналитически так и графически. Рассмотрим определения четной и нечетной функции, а также алгоритмы для ее проверки.

Определение:
Функцию у=f(x) называют четной, если для любого значения «х» выполняется равенство f(-x)=f(x)
Функцию у=f(x) называют нечетной, если для любого значения «х» выполняется равенство f(-x)=-f(x)

Важно!

Существуют четные функции, нечетные функции, а также функции которые не являются ни четными, ни нечетными.

Не существует функций которые одновременно являются четными и нечетными

Если функция y=f(x) задана аналитически, то для ее исследования на четность и нечетность применим следующий алгоритм:

  1. Записать выражение y=f(-x). Для этого необходимо в формуле задания функции заменить «х» на «-х»;
  2. Сопоставить выражения f(-x) и f(x):

Если f(-x) = f(x), то функция является четной;
Если f(-x) = -f(x), то функция является нечетной;
Если ни первое, ни второе условие не выполняется то функция не является ни четной, ни нечетной.

Рассмотрим пример:

а. y=-11х+22

1) f(-x)= -11·(-x)+22=11х+22
2) Сравним f(x) и f(-x)
-11х+22 ≠ 11х+22, то есть f(-x) ≠ f(x)
-11х+22 ≠ -(-11х-22), то есть f(-x) ≠ -f(x)
Значит, функция не является четной и не является нечетной

б. y=|x|

1) f(-x)=|-x|
2) Сравним f(x) и f(-x)
|x|=|-x|, то есть f(-x) = f(x)
Значит функция является четной

Если функция y=f(x) задана графически, то для ее исследования на четность и нечетность будем применять следующие правила:

Четная и нечетная функция y=f(x) имеет симметричную область определения D(f)

Если график функции y=f(x) симметричен относительно оси ординат, то y=f(x) — четная функция
Например:

Если график функции y=f(x) симметричен относительно начала координат, то y=f(x) — четная функция
Например:

На этом рассмотрение свойств функций закончено. Помимо тех свойств, которые разобраны в данном разделе существуют и другие, такие как ограниченность и неограниченность функции, периодичность функции и так далее, которые в курсе алгебры 7-9 класса не рассматриваются.

Исследование графика функции

На рисунке изображен график функции y=fleft( x right). Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции;
  • область значений функции;
  • нули функции;
  • промежутки возрастания и убывания;
  • точки максимума и минимума;
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса — это координата точки по горизонтали.
Ордината — координата по вертикали.
Ось абсцисс — горизонтальная ось, чаще всего называемая ось X.
Ось ординат — вертикальная ось, или ось Y.

Аргумент — независимая переменная, от которой зависят значения функции. Чаще всего обозначается x.
Другими словами, мы сами выбираем x, подставляем в формулу функции и получаем y.

Область определения функции — множество тех (и только тех) значений аргумента x, при которых функция существует.
Обозначается: D(f) или D(y).

На нашем рисунке область определения функции y=fleft( x right) — это отрезок left[ -6; 6 right]. Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции — это множество значений, которые принимает переменная y. На нашем рисунке это отрезок left[ -3; 7 right] — от самого нижнего до самого верхнего значения y.

Нули функции — точки, где значение функции равно нулю, то есть y=0. На нашем рисунке это точки x=-4 и x=1.

Значения функции положительны там, где y textgreater 0. На нашем рисунке это промежутки left[ -6; -4 right] и left[ 1; 6 right].
Значения функции отрицательны там, где y textless 0. У нас это промежуток (или интервал) от -4 до 1.

Важнейшие понятия — возрастание и убывание функции на некотором множестве M. В качестве множества M можно взять отрезок left[ a; b right], интервал left( a; b right), объединение промежутков или всю числовую прямую.

Функция y=fleft( x right) возрастает на множестве M, если для любых x_1 и x_2, принадлежащих множеству M, из неравенства x_2 textgreater x_1 следует неравенство fleft( x_2 right) textgreater fleft( x_1 right).

Иными словами, чем больше x, тем больше y, то есть график идет вправо и вверх.

Функция y=fleft( x right) убывает на множестве M, если для любых x_1 и x_2, принадлежащих множеству M, из неравенства x_2 textgreater x_1 следует неравенство fleft( x_2 right) textless fleft( x_1 right).

Для убывающей функции большему значению x соответствует меньшее значение y. График идет вправо и вниз.

На нашем рисунке функция fleft( x right) возрастает на промежутке left[ -2; 4 right] и убывает на промежутках left[ -6; -2 right] и left[ 4; 6 right].

Определим, что такое точки максимума и минимума функции.

Точка максимума — это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума — такая точка, значение функции в которой больше, чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке x=4 — точка максимума.

Точка минимума — внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума — такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке x= -2 — точка минимума.

Точка x= -6 — граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и x=6 на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции. В нашем случае это x=4 и x= -2.

А что делать, если нужно найти, например, минимум функции y=fleft ( x right ) на отрезке left[ -4; 0 right]? В данном случае ответ: y= -3. Потому что минимум функции — это ее значение в точке минимума.

Аналогично, максимум нашей функции равен 4. Он достигается в точке x=4.

Можно сказать, что экстремумы функции равны 4 и -3.

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке left[ -6; 6 right] равно -3 и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно 7. Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Исследование графика функции» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти ледовый каток
  • Как найди частоту собственных колебаний
  • Ошибка в кредитной истории как исправить куда обращаться
  • Как найти товарную продукцию в экономике
  • Как исправить отверстие в металле