Как зная касательную найти производную

Вы уже знаете, какую прямую называют касательной к окружности. А что понимают, например, под касательной к синусоиде? Прямая Касательная к графику функции и производная с примерами решения

Пусть даны график функции Касательная к графику функции и производная с примерами решения и на ней точка Касательная к графику функции и производная с примерами решения которая не является концом графика (рис. 60). Обозначим на данном графике по разные стороны от Касательная к графику функции и производная с примерами решения произвольные точки Касательная к графику функции и производная с примерами решения Прямые Касательная к графику функции и производная с примерами решения — секущие. Если же точки Касательная к графику функции и производная с примерами решения двигаясь по графику, приближать достаточно близко к Касательная к графику функции и производная с примерами решения как угодно близко будут приближаться к некоторой прямой Касательная к графику функции и производная с примерами решения Такую прямую Касательная к графику функции и производная с примерами решения (если она существует) называют касательной к графику функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Если график функции такой, как показано на рисунке 61, то при неограниченном приближении точек Касательная к графику функции и производная с примерами решения к точке Касательная к графику функции и производная с примерами решения предельные положения секущих — прямые Касательная к графику функции и производная с примерами решения — не совпадут. Говорят, что в точке Касательная к графику функции и производная с примерами решения касательной к графику функции  не существует.

Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

И если Касательная к графику функции и производная с примерами решения — крайняя точка графика, то касательной к нему в точке Касательная к графику функции и производная с примерами решения не существует.

Понятие касательной к графику часто используют для исследования функций. Рассмотрим этот вопрос сначала в общем виде.

Касательная — это прямая. Её уравнение имеет вид Касательная к графику функции и производная с примерами решения где Касательная к графику функции и производная с примерами решения — угловой коэффициент — тангенс угла между лучом касательной, расположенным выше оси Касательная к графику функции и производная с примерами решения и положительным направлением этой оси. Обратите внимание на угловой коэффициент Касательная к графику функции и производная с примерами решения касательной, проведённой к графику какой-либо функции в его точке с абсциссой Касательная к графику функции и производная с примерами решения Если число Касательная к графику функции и производная с примерами решения принадлежит промежутку возрастания функции, то соответствующее значение Касательная к графику функции и производная с примерами решения положительное (рис. 62). Если Касательная к графику функции и производная с примерами решения принадлежит промежутку убывания функции, то Касательная к графику функции и производная с примерами решения — отрицательное (рис. 63). И наоборот: если каждому значению Касательная к графику функции и производная с примерами решения из некоторого промежутка Касательная к графику функции и производная с примерами решения соответствует положительное значение Касательная к графику функции и производная с примерами решения то на Касательная к графику функции и производная с примерами решения данная функция возрастает; если каждому значению Касательная к графику функции и производная с примерами решения из некоторого промежутка Касательная к графику функции и производная с примерами решения соответствует отрицательное значение Касательная к графику функции и производная с примерами решения то на  функция убывает. Заслуживают внимания и те точки графика функции, в которых касательная не существует, и в которых она параллельна оси Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Итак, зная угловые коэффициенты касательных к графику функции в тех или иных точках, можно сделать вывод, возрастает данная функция в этих точках, или убывает.

Поскольку для исследования функций важно уметь определять угловой коэффициент касательной к её графику, то рассмотрим подробнее связь этого коэффициента с исследуемой функцией.

Пусть даны график функции Касательная к графику функции и производная с примерами решения и на ней точку Касательная к графику функции и производная с примерами решения в которой существует касательная к графику (рис. 64). Если абсцисса точки Касательная к графику функции и производная с примерами решения равна Касательная к графику функции и производная с примерами решения то её ордината — Касательная к графику функции и производная с примерами решения Дадим значению аргумента Касательная к графику функции и производная с примерами решения приращение Касательная к графику функции и производная с примерами решения Тогда значению аргумента Касательная к графику функции и производная с примерами решения на графике функции соответствует точка Касательная к графику функции и производная с примерами решения с абсциссой Касательная к графику функции и производная с примерами решения и ординатой Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Через точки Касательная к графику функции и производная с примерами решения проведём прямые Касательная к графику функции и производная с примерами решения параллельные осям абсцисс и ординат. Они пересекутся в некоторой точке Касательная к графику функции и производная с примерами решения Тогда Касательная к графику функции и производная с примерами решения — приращение аргумента, а Касательная к графику функции и производная с примерами решения — приращение функции на Касательная к графику функции и производная с примерами решения

Угловой коэффициент секущей Касательная к графику функции и производная с примерами решения равен тангенсу угла Касательная к графику функции и производная с примерами решения т. е. отношению Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Если Касательная к графику функции и производная с примерами решения то секущая Касательная к графику функции и производная с примерами решения поворачиваясь вокруг точки Касательная к графику функции и производная с примерами решения приближается к касательной, проведённой в точке Касательная к графику функции и производная с примерами решения к графику данной функции. Итак, если Касательная к графику функции и производная с примерами решения — угловой коэффициент этой касательной и Касательная к графику функции и производная с примерами решения то

Касательная к графику функции и производная с примерами решения

Так определяется угловой коэффициент касательной к графику функции Касательная к графику функции и производная с примерами решения в некоторой точке Касательная к графику функции и производная с примерами решения если касательная в ней не параллельна оси Касательная к графику функции и производная с примерами решения Если касательная к графику функции в некоторой точке параллельна оси Касательная к графику функции и производная с примерами решения то угловой коэффициент этой касательной равен нулю.

К вычислению значения выражения Касательная к графику функции и производная с примерами решения  или Касательная к графику функции и производная с примерами решения приводит решение многих задач по механике, электричеству, биологии, экономике, статистике и т. д. Именно поэтому это выражение получило специальное название — производная.

Производной функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения называют предел отношения приращения функции в точке Касательная к графику функции и производная с примерами решения к приращению аргумента, если приращение аргумента стремится к нулю, а предел существует.

Производную функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения обозначают Касательная к графику функции и производная с примерами решения Её определение записывают также в виде равенства:

Касательная к графику функции и производная с примерами решения

Пример:

Найдите производную функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Решение:

Дадим аргументу Касательная к графику функции и производная с примерами решения приращение Касательная к графику функции и производная с примерами решения Соответствующее приращение функции Касательная к графику функции и производная с примерами решения

Тогда Касательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения

Следовательно, Касательная к графику функции и производная с примерами решения

Ответ. Касательная к графику функции и производная с примерами решения

Так решают задачу, пользуясь определением производной функции в точке.

До сих пор речь шла о производной функции в точке. А можно рассматривать производную функции и как функцию. Пусть, например, дана функция Касательная к графику функции и производная с примерами решенияНайдём её производную в произвольной точке Касательная к графику функции и производная с примерами решения Для этого дадим значению Касательная к графику функции и производная с примерами решенияприращение Касательная к графику функции и производная с примерами решения Соответствующее ему приращение функции

Касательная к графику функции и производная с примерами решения

Поэтому Касательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения

Имеем Касательная к графику функции и производная с примерами решения

Следовательно, производная функции Касательная к графику функции и производная с примерами решения в каждой её точке Касательная к графику функции и производная с примерами решения равна Касательная к графику функции и производная с примерами решения Пишут: Касательная к графику функции и производная с примерами решения или, если Касательная к графику функции и производная с примерами решения

Обратите внимание! Производная функции в точке — это число. Когда же говорят о производной, не указывая «в точке», подразумевают производную как функцию: производной функции Касательная к графику функции и производная с примерами решения есть функция Касательная к графику функции и производная с примерами решения производной функции Касательная к графику функции и производная с примерами решения есть функция Касательная к графику функции и производная с примерами решения и т. д.

Зная это, производную функции в точке можно вычислять проще, чем по определению производной функции в точке. Пример 2. Дана функция Касательная к графику функции и производная с примерами решенияНайдите Касательная к графику функции и производная с примерами решения Решение. Производной функции Касательная к графику функции и производная с примерами решения является функция Касательная к графику функции и производная с примерами решения Поэтому Касательная к графику функции и производная с примерами решенияКасательная к графику функции и производная с примерами решения

 Нахождение производной называется дифференцированием.  Функция, которая имеет производную в точке Касательная к графику функции и производная с примерами решения называется дифференцируемой в точке Касательная к графику функции и производная с примерами решения Функция, дифференцируемая в каждой точке некоторого промежутка, называется дифференцируемой на этом промежутке.

Докажем, например, что линейная функция Касательная к графику функции и производная с примерами решения дифференцируема в каждой точке Касательная к графику функции и производная с примерами решения Действительно, приращению Касательная к графику функции и производная с примерами решения её аргумента Касательная к графику функции и производная с примерами решения соответствует приращение функции Касательная к графику функции и производная с примерами решения Поэтому Касательная к графику функции и производная с примерами решения и если Касательная к графику функции и производная с примерами решения А это и значит, что в каждой точке Касательная к графику функции и производная с примерами решения функция Касательная к графику функции и производная с примерами решения имеет производную Касательная к графику функции и производная с примерами решения

 Пишут Касательная к графику функции и производная с примерами решения

 В частности: Касательная к графику функции и производная с примерами решения

 Производная постоянной равна нулю.

Из курса планиметрии известно, что уравнение прямой, проходящей через заданную точку Касательная к графику функции и производная с примерами решения имеет вид Касательная к графику функции и производная с примерами решения где Касательная к графику функции и производная с примерами решения — угловой коэффициент прямой.

Поскольку для касательной к графику функции Касательная к графику функции и производная с примерами решения угловой коэффициент равен значению производной в точке касания Касательная к графику функции и производная с примерами решения то можем записать общий вид уравнения касательной, проведённой к графику функции Касательная к графику функции и производная с примерами решения в точке касания Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

До сих пор речь шла о касательных к криволинейным графикам. Но графиком функции может быть и прямая или часть прямой. Поэтому для обобщения договариваются касательной к прямой в любой её точке считать эту самую прямую. Касательной к отрезку или лучу в любой его внутренней точке считают прямую, которой принадлежит этот отрезок или луч.

Выше было установлено, что производная линейной функции равна коэффициенту при переменной, т.е Касательная к графику функции и производная с примерами решения

Полученный результат имеет очевидный геометрический смысл: касательная к прямой — графику функции Касательная к графику функции и производная с примерами решения — есть эта самая прямая, её угловой коэффициент равен Касательная к графику функции и производная с примерами решения

  • Заказать решение задач по высшей математике

Пример:

Найдите угол, который образуете положительным направлением оси Касательная к графику функции и производная с примерами решениякасательная к графику функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Решение:

Определим сначала угловой коэффициент этой касательной по формуле Касательная к графику функции и производная с примерами решения — приращения функции и приращения аргумента соответственно.

Найдем приращение функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Найдём угловой коэффициент касательной:

Касательная к графику функции и производная с примерами решения

Поскольку Касательная к графику функции и производная с примерами решения

Известно также, что Касательная к графику функции и производная с примерами решения поэтому Касательная к графику функции и производная с примерами решения отсюда Касательная к графику функции и производная с примерами решения

Пример:

Докажите, что для функции Касательная к графику функции и производная с примерами решения производной есть функция Касательная к графику функции и производная с примерами решения

Решение:

 Касательная к графику функции и производная с примерами решенияКасательная к графику функции и производная с примерами решения Если Касательная к графику функции и производная с примерами решения А это и означает, что производной функции Касательная к графику функции и производная с примерами решения является функция Касательная к графику функции и производная с примерами решения

Пример:

Напишите уравнение касательной к графику функции Касательная к графику функции и производная с примерами решения в его точке с абсциссой Касательная к графику функции и производная с примерами решения

Решение:

Способ 1. Уравнение касательной имеет вид Касательная к графику функции и производная с примерами решения Угловой коэффициент Касательная к графику функции и производная с примерами решения равен значению производной функции Касательная к графику функции и производная с примерами решения в точке Касательная к графику функции и производная с примерами решения Значит, уравнение касательной Касательная к графику функции и производная с примерами решенияКоординаты точки касания Касательная к графику функции и производная с примерами решения Точка с такими координатами принадлежит касательной, поэтому Касательная к графику функции и производная с примерами решения отсюда Касательная к графику функции и производная с примерами решенияСледовательно, уравнение касательной имеет вид: Касательная к графику функции и производная с примерами решения

Способ 2. Запишем общий вид уравнения касательной:

Касательная к графику функции и производная с примерами решения

Найдём Касательная к графику функции и производная с примерами решения

Касательная к графику функции и производная с примерами решения

Подставим найденные значения в уравнение касательной:

Касательная к графику функции и производная с примерами решения

  • Предел и непрерывность функции
  • Свойства функций, непрерывных в точке и на промежутке
  • Предел функции на бесконечности
  • Применение производной к исследованию функции
  • Иррациональные неравенства
  • Производная в математике
  • Как найти производную функции
  • Асимптоты графика функции

Уравнение любой прямой в общем виде задается формулой:
$$y=kx+b;$$
Где (k) — это коэффициент наклона прямой, а (b) — свободный член.

Уравнение прямой в условии задачи выглядит так (y=-4). Сопоставьте это уравнение с общим видом прямой, и увидите, что у прямой из условия (k=0), а (b=-4).

Мы получили, что коэффициент наклона прямой из условия равен нулю! Значит у любой прямой, которая будет ей параллельна, коэффициент наклона тоже будет равен нулю. А раз коэффициент наклона ноль, то и производная тоже должна быть ноль.

Переформулируем условие задачи: необходимо найти на графике функции (f(x)) точки, в которых производная равна нулю.

Производная равна нулю в точках минимума и максимума: в «вершинах» и «впадинах». Нам остается только посчитать их количество на графике. Я их отметил красными точками:

План урока:

Производные некоторых элементарных функций

Основные правила дифференцирования

Производная сложной функции

Производные некоторых элементарных функций

Ранее мы для вычисления производных использовали ее определение. То есть каждый раз мы давали функции некоторое приращение ∆х, потом находили соответствующую ему величину ∆у, далее составляли отношение ∆у/∆х, после чего находили предел этого отношения при ∆х →0. Выполнение такого алгоритма довольно трудоемко. Поэтому на практике используются специальные формулы для вычисления производных.

Нам известно несколько основных функций, которые в математике чаще называют элементарными. Например, элементарными являются линейная функция, степенная, показательная, логарифмическая. Также существует несколько различных тригонометрических функций (синус, косинус, тангенс), которые тоже считаются элементарными. Попытаемся вычислить для них производные.

Начнем с линейной функции. В общем случае она выглядит так:

1ytu

где k и b – некоторые постоянные числа.

Выберем произвольную точку х0 и дадим ей приращение ∆х, в результате чего мы придем в новую точку (х0 + ∆х). Вычислим значения линейной функции в этих двух точках:

2yuyui

Теперь мы можем найти приращение функции ∆у:

3mjkh

Находим отношение ∆у/∆х:

4hgfhf

Получилось, что это отношение не зависит ни от приращения ∆х, ни от выбора исходной точки х0. Естественно, что предел этого отношения при ∆х→0 (то есть производная) также будет равен k:

5gdfg

Задание. Вычислите производную функции у = 4х + 9.

6hfgh

Обратите внимание, что в рассмотренном примере запись у′ = 4 означает функцию. Просто при любом значении х она принимает одно и то же значение, равное 4. График производной функции будет выглядеть так:

7jghj

Рассмотрим два особых частных случая линейной функции. Пусть k = 1 и b = 0, тогда она примет вид у = х. Её производная тогда будет равна 1:

8jhghj

Теперь предположим, что коэффициент k = 0. Тогда функция примет вид

9hgfgh

где С – некоторое постоянное число, то есть константа (большая буква Св таких случаях используется из-за латинского термина constanta). Производная такой функции будет равна нулю:

10hfgh

Задание. Найдите вторую производную функции у = 9х + 2.

Решение. Сначала вычислим первую производную:

11hgyut

Очень легко объяснить, почему производная константы равна нулю. Представим себе, что закон движения некоторого тела выглядит как s(t) = C, например, s(t) = 5. Это значит, что тело в любой момент времени находится в точке, находящейся в 5 метрах от какого-то начала отсчета. То есть тело находится в одной и той же точке, а это значит, что оно не двигается. Тогда его скорость равна нулю. Но производная – это и есть скорость, значит, она также равна нулю.

Далее вычислим производную для функции у = 1/х. Выберем некоторую точку х0 и дадим ей приращение ∆х. В результате имеем две точки с координатами х0 и (х0 + ∆х). Вычислим значение функции в каждой из них:

12gfjghj

Осталось найти предел данного отношения при ∆х→0. Ясно, что при этом множитель х0 + ∆х будет стремится к х0, то есть

13gfhuty

Задание. Вычислите производные функции

14nghjg

Обратите внимание, что производная функции у = 1/х оказывается отрицательной при любом значении х (кроме нуля, для которого производную посчитать нельзя, так как получится деление на ноль). Это должно означать, что функция убывает в каждой своей точке, а любая касательная к ней образует с осью Ох тупой угол наклона. И это действительно так:

15fghf

Мы разобрали несколько простейших примеров того, как находить формулы производных. Для этого используется понятие предела функции. Для вывода всех подобных формул требуется хорошо знать тему вычисления пределов, которая не изучается детально в школе. Поэтому мы просто дадим следующие формулы без доказательств.

Начнем со степенной функции у = хn, где n– некоторое постоянное число. Её производная вычисляется по формуле:

16hgfjh

Приведем примеры использования этой формулы:

17hfgh

Задание. Найдите производную функции у = х6 в точке х0 = 10.

18jghjg

Задание. Движение самолета при разгоне описывается законом движения s(t) = t3. Найдите его скорость через 5 секунд после начала разгона.

Решение. Скорость самолета в любой момент времени равна производнойs′(t). Найдем её:

19jhghj

Заметим, что используемая нами формула работает и в том случае, если показатель степени является отрицательным или дробным числом. Действительно, ранее мы вывели формулу

20htyu

По определению отрицательной степени мы можем записать, что

21fgh

Задание. Вычислите производную функции

22gdfg

23gfghgh

Задание. Определите, в какой точке необходимо провести касательную к графику функции

24gfgh

чтобы она образовывала с осью Ох угол в 45°?

Решение. Тангенс угла наклона касательной равен производной. Известно, что tg 45° = 1. Значит, нам надо найти такую точку х0, в которой значение производной квадратного корня будет равно единице. Производная вычисляется по формуле:

25hfgj

26hfgh

Ответ: х0 = 0,25.

Далее изучим формулы производных для тригонометрических функций. Они выглядят так:

27hhj

Рассмотрим несколько примеров использования этих формул.

Задание. Найдите производную функции у = cosx в точке х0 = π.

Решение. Мы знаем, что

28hfgh

Задание. Найдите угол наклона касательной, проведенной к графику у = sinx в начале координат.

Решение. Производная синуса вычисляется по формуле:

29hgj

Получается, что тангенс угла наклона также равен единице. Это значит, что сам угол равен 45°. Построение показывает, что это действительно так:

30hfgh

Задание. Найдите производную функции у = tgx в точке х0 = π/6.

Решение. Для тангенса используется формула:

31gfgh

Далее рассмотрим показательную и логарифмическую функцию. Их производные рассчитываются по следующим формулам:

32gdfh

Обратите внимание, что в этих формулах появился натуральный логарифм, то есть логарифм, основанием которого является число е. Именно из-за наличия натурального логарифма в формулах дифференцирования он играет особо важную роль в математике и имеет отдельное обозначение. Вычислим несколько производных с помощью приведенных формул:

33hfgh

Напомним, что справедлива формула

34gfgh

Стоит обратить внимание, что функции у = ех при дифференцировании не меняется. Эта особенность функции также имеет огромное значение в математическом анализе.

Задание. Найдите угол наклона касательных, проведенных к графику у = ех в точке (0; 1) и к графику у = lnx в точке (1; 0).

Решение. Используем формулы производных:

35hghj

Получили, что тангенс наклона касательной равен 1. Из этого следует, что угол наклона касательной равен 45°. Далее найдем производную натурального логарифма при х = 1:

36hfgh

Производная снова равна 1, значит, угол наклона также составит 45°, что подтверждается рисунком:

37hfgh

Ответ: 45°.

Задание. Вычислите производную функции у = 2х при х0 = 3.

Решение. Используем формулу

38hfgh

Сведем использованные нами равенства в одну таблицу производных основных функций:

39jghj

Основные правила дифференцирования

До этого мы рассматривали довольно простые, то есть стандартные функции, для каждой из которых производную можно узнать из справочника или таблицы. Но что делать, если нам потребовалось продифференцировать функцию, которая состоит из нескольких основных? Например, что делать с функциями у = 5х2 + 6х – 3 или у = x•sinx?

Все более сложные функции можно получить из нескольких простых, комбинируя их. Так, функция у = х3 + х2 получается сложением функций у = х3 и у = х2, а функция у = (lnx)•(cosx) – произведением функций у = lnx и у = сosx.

Есть несколько правил, которые позволяют находить производные в таких случаях. Мы не будем их доказывать, а просто дадим их формулировки. Также будем нумеровать правила. Первое из них помогает находить производную сумму функций.

40jghyu

В данном случае u и v – это просто обозначение каких-то произвольных функций. Рассмотрим пример. Пусть надо найти производную функции

41gfhhk

Правило работает и в том случае, если сумма представляет собой сумму не двух, а большего числа слагаемых:

42ggh

Следующее правило позволяет выносить постоянный множитель за знак производной:

43hfgh

Покажем использование этого правила:

44hfgh

Действительно, зная эти формулы и первые два правила вычисления производных, мы можем записать, что

45hfgh

Задание. Вычислите значение производной функции у = 9х3 + 7х2 – 25х + 7 в точке х0 = 1.

Решение. Пользуясь правилами дифференцирования, находим производную:

46hfghf

Несколько сложнее обстоит дело с дифференцированием функций, получающихся при перемножении простых функций. В таких случаях используется следующее правило:

47hfgh

Предположим, надо найти производную для функции у = х2•sinx. Её можно представить как произведение u•v, где

48hhj

Примечание. В последнем случае мы в конце примера использовали формулу косинуса двойного угла:

49hfgh

Заметим, что иногда одно и то же задание с производной можно решить по-разному, используя или не используя правило для вычисления производной произведения функций.

Задание. Найдите производную функции у = х2•(3х + х3). Вычислите ее значение при х = 1.

Решение. Функция у представляет собой произведение более простых функций u•v, где

50hfgh

Задание. Продифференцируйте функцию

51gdfg

Решение. Здесь перед нами функция, которая представляет собой произведение сразу трех множителей. Что делать в таком случае? Надо всего лишь добавить скобки и их помощью оставить только два множителя (один их них окажется «сложным»):

52hfgh

53gfhgfh

Довольно сложно выглядит формула для поиска производной дроби:

54dfg

Например, пусть надо найти производную функции

55gfdfh

С помощью данного правила можно доказать некоторые равенства. Так, ранее мы уже записали (без доказательства) формулы производных тригонометрических функций:

56hfgh

Оказывается, формула для тангенса может быть выведена из формул для синуса и косинуса. Действительно, тангенс можно записать в виде дроби:

57hfgh

Задание. Найдите, в каких точках надо провести касательную к графику дробно-линейной функции

58hfgh

чтобы эта касательная образовала с осью Ох угол в 135°.

Решение. Угол будет равен 135° только тогда, когда значение производной будет равно (– 1) (так как tg 135° = – 1). Поэтому сначала найдем производную. В данном случае следует использовать правило 4, так как функция у явно записана как дробь:

59jghj

Получили два значения х. Построив график и проведя касательные, мы убедимся, что они действительно образуют с осью Ох угол 135°:

60jghj

Ответ: – 2 и 0.

Заметим, что иногда можно избавиться от необходимости использовать правило 4, если дифференцируемую функцию можно преобразовать. При этом часто помогает использование отрицательных степеней. Пусть надо продифференцировать функцию

61gdfg

Напрашивается решение использовать правило 4.И такой путь позволит получить правильное решение, хотя и будет несколько трудоемким. Однако можно преобразовать функцию:

62gghf

У нас получилось произведение, а потому можно использовать правило 3, которое представляется более простым:

63hfgh

Производная сложной функции

«Сконструировать» громоздкую функцию из нескольких простых можно не только с помощью арифметических действий. Например, возьмем функции

64gfgh

В обоих случаях мы получили некоторую функцию, продифференцировать которую с помощью уже известных нам правил не получится. Функции, сконструированные таким образом, называются сложными. Есть универсальная формула, позволяющая находить производную сложной функции:

65fghf

Посмотрим, как пользоваться эти правилом. Пусть надо вычислить производную функции

66jghj

Она сконструирована из функции у = ex и у = sinx, причем вторая подставлена в первую. Это значит, что первую можно обозначить буквой u, а вторую – буквой v (если использовать обозначения в правиле 5):

67hfghf

Задание. Найдите у′, если у = sin 2x.

Решение. На этот раз в качестве исходной функции выступает

68ghjghj

Убедиться в справедливости правила 5 можно на примере функции

69jghj

Её можно продифференцировать двумя разными способами. Сначала попробуем просто избавиться от квадрата в исходной функции, используя формулу квадрата суммы:

70hfghj

В результате оба способа вычисления производной дали одинаковый ответ.

Задание. Найдите производную сложной функции у = (2х + 5)1000.

Решение. В данном случае мы рассматриваем комбинацию следующих функций:

71hfgh

Теперь мы умеем вычислять производные почти любых функций, которые можно записать с помощью элементарных функций и арифметических операций. При этом нам не надо использовать определение понятия производной и вычислять какие бы то ни было пределы. Достаточно знать производные основных функций и несколько (всего лишь 5) правил дифференцирования. Навыки дифференцирования функций пригодятся в будущем при решении практических задач, связанных с производными.

1. Вычисление производной функции

Правила дифференцирования

    

Дифференцирование сложной функции

    

Таблица производных

    

2. Приложение производной

Уравнение касательной к графику функции y=f(x) в точке (x0;f(x0)):

    y=f(x0)+f ‘(x0)(x-x0); f ‘(x0) – угловой коэффициент касательной (тангенс угла наклона касательной).

Достаточные признаки монотонности функции:

  • если 
    f ‘(x)>0 в каждой точке интервала (a, b), то функция f(x) возрастает на этом интервале. 
  • если 
    f ‘(x)<0 в каждой точке интервала (a, b), то функция f(x) убывает на этом интервале. 

Необходимое условие экстремума: если x0 – точка экстремума функции f(x) и производная f ’ существует в этой точке, то   f ‘(x0)=0.

    Критические точки функции – внутренние точки области определения функции, в которых ее производная равна нулю или не существует. 

Достаточные условия экстремума: 

  • если производная при переходе через точку 
    x0 меняет свой знак с плюса на минус, то 
    x0  – точка максимума. 
  • если производная при переходе через точку x0 меняет свой знак с минуса на плюс, то 
    x0  – точка минимума.

3. Первообразная функции

    Функция F(x) называется первообразной функции f(x) на интервале (a, b), если для любого  выполняется равенство F ‘(x)=f(x).

    Если F(x) – первообразная для f(x) на промежутке (a, b), то любая первообразная может быть записана в виде F(x)+C, где C – некоторое действительное число.

    Для вычисления первообразной рекомендуем пользоваться приведенной выше таблицей производных и приведенными ниже правилами.

Правила нахождения первообразных

Пример 1. Найти производную функции .

    Решение:

        .

    Ответ: .

Пример 2. Найти , если .

    Решение:

        По правилу дифференцирования дроби имеем:  .

        .

 Ответ: 

Пример 3. Чему равен тангенс угла наклона касательной к графику функции у = х2 + 2, в точке хо = – 1.

    Решение:

        Тангенс угла наклона касательной к графику функции есть значение производной данной функции в точке хо.

        .

    Ответ: – 2.

Пример 4. Найдите значение 3tg2t , если t – наименьший положительный корень уравнения .

    Решение:

        .

        Очевидно, что наименьшее положительное решение полученного уравнения . Тогда .

 Ответ: 1. 

Пример 5. Укажите промежутки возрастания и убывания функции .

    Решение:

        Область определения функции: x>0.

        На области определения найдём критические точки функции :

        

        Критические точки: 0; 1.

        На основании достаточного признака возрастания (убывания) функции имеем:

    Ответ: на интервале (0; 1) функция убывает; на интервале  возрастает.

Пример 6. Найти наибольшее и наименьшее значения функции y=ex+2-ex на промежутке [-2; 0].

    Решение:

        Функция y=ex+2-ex на отрезке [-2; 0] непрерывна.

        1) найдём критические точки, принадлежащие отрезку [-2; 0]:

        

        2) найдём значения функции в критической точке и на концах данного отрезка:

        

        3) выберем наибольшее и наименьшее из полученных значений:

        наименьшее y|x=-1=2e наибольшее y|x=0=e2.

    Ответ: 
наименьшее y|x=-1=2e наибольшее y|x=0=e2.

Пример 7. Записать уравнение касательной к графику функции f(x)=x3, параллельной прямой y=3x+1,5.

    Решение:

        Уравнение касательной к графику функции y=f(x) в точке х0 имеет вид: 

        .

        Так как касательная параллельна прямой y=3x+1,5, то f ‘(x0)=3 .

        f ‘(x)=3x2, следовательно, .

        

    Ответ: .

Пример 8. Найдите какую-либо первообразную функции .

    Решение:

        Представим функцию  в виде . Первообразная данной функции будет . Т.к. нужно найти какую-либо первообразную, то пусть это будет . Чтобы проверить правильность найденной первообразной, нужно от  взять производную: .

    Ответ: .

Пример 9. Для функции  найдите первообразную, график которой проходит через точку .

    Решение:

        Первообразная данной функции будет F(x)=-3ctgx-7cox-2sinx+C.

        Так как график первообразной проходит через точку , то координаты этой точки являются корнями уравнения. Получаем: .

    Ответ: F(x)=-3ctgx-7cox-2sinx+11.

Задания для самостоятельного решения

Базовый уровень

Производная функции

    1) Найти производную функции f(x)=2ex+3x2 .

    2) Вычислите производную функции f(x)x•sinx.

    3) Найти производную функции у = (3х – 1)(2 – х).

    4) Вычислите производную функции y=9x2-cosx.

    5) Найдите производную функции y=ex-x7

    6) Вычислить производную функции .

    7) Найти f ‘(1), если f(x)=3x2-2x+1.

     8) Найдите производную функции у = х2(3х5 – 2) в точке х0 = – 1.

    9) Вычислите , если f(x)=(2x-1)cosx.

    10) Найдите f ‘(1), если f(x)=(3-x2)(x2+6).

    11) Вычислите  f ‘(1), если f(x)=(x4-3)(x2+2).

    12) Найдите значение производной функции  в точке х0 = 0,5.

    13) Найдите f ‘(4), если .

    14) Найдите значение производной функции f(x)=3tgx+2ctgx при .

    15) Найдите значение производной функции f(x)=2sinx при .

    16) Найдите значение производной функции f(x)=1-3cosx при .

    17) Определите промежутки возрастания и убывания функции .

    18) Найдите максимум и минимум функции y=5x4-10x2+9.

    19) Найти экстремумы функции у = – х3 + 6х2 + 15х + 1. 

    20) Найдите точки экстремума функции у = – х3 – 3х2 + 24х – 4 на промежутке .

    21) Найдите наибольшее значение выражения 3х5 – 5х3 + 6 на отрезке [–2;2].

    22) Написать уравнение касательной к параболе у = х2 – 6х + 5 в точке пересечения её с осью ординат.

    23) Найдите максимум функции .

    24) Найдите экстремальные значения функции .

    25) Исследуйте на максимум и минимум функцию у = 3х4 – 3х2 + 2.

    26) Найдите тангенс угла наклона касательной, проведённой к графику функции  в его точке с абсциссой          х0 = – 2.

    27) Составьте уравнение касательной к графику функции у = х – 3х2 в точке с абсциссой х0 = 2.

    28) Найдите угловой коэффициент касательной к графику функции y=7x-5sinx в точке с абсциссой .

Найдите первообразные функций:

    29) .

    30) f(x)=-7sinx.

    31) .

    32) f(x)=1,2cosx.

    33) f(x)=-7cosx.

    34) f(x)=sinx-cosx.

    35) .

    36) .

    37) .

Вычислите площадь фигур, ограниченных линиями:

    38) .

    39) .

    40) .

    41) .

Повышенный уровень

Производная функции 

    42) Найдите значение , если .

    43) Найдите значение , если f(x)=sin4x-cos4x.

    44) Найдите значение , если f(x)=cos23x .

    45) Найдите значение , если f(x)=sin4xcos4x.

    46) Найдите значение , если .

    47) Найдите значение , если .

    48) Найдите значение , если f(x)=(1+sinx)2.

    49) При каком значении параметра а функция  имеет минимум в точке x0=1?

    50) Решите уравнение f ‘(x)=0, если .

    51) Найдите наименьшее целое значение функции у = 4х – 5∙2х + 3,25.

    52) При каких значениях а функция  убывает на всей числовой прямой?

    53) На кривой у = 4х2 – 6х + 3 найдите точку, в которой касательная параллельна прямой у = 2х + 3. 

    54) Найти значение выражения tg2t, где t – наибольший отрицательный корень уравнения f ‘(x)=0, 

Первообразная

    55) Найдите значение первообразной функции , график которой проходит через данную точку .

    56) Найдите значение первообразной функции , график которой проходит через данную точку .

    57) Найдите значение первообразной функции  при , график которой проходит через данную точку .

Задача о площади криволинейной трапеции

    58) Найдите площадь фигуры, ограниченной линиями .

    59) Найдите площадь фигуры, ограниченной линиями .

    60) Найдите площадь фигуры, ограниченной линиями .

Геометрический смысл производной

Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!

Рассмотрим график какой-то функции ( y=fleft( x right)):

Выберем на линии графика некую точку ( A). Пусть ее абсцисса ( {{x}_{0}}), тогда ордината равна ( fleft( {{x}_{0}} right)).

Затем выберем близкую к точке ( A) точку ( B) с абсциссой ( {{x}_{0}}+Delta x); ее ордината – это ( fleft( {{x}_{0}}+Delta x right)):

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).

Обозначим угол наклона прямой к оси ( Ox) как ( alpha ).

Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Какие значения может принимать угол ( alpha )?

Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – ( 180{}^circ ), а минимально возможный – ( 0{}^circ ).

Значит, ( alpha in left[ 0{}^circ ;180{}^circ right)). Угол ( 180{}^circ ) не включается, поскольку положение прямой в этом случае в точности совпадает с ( 0{}^circ ), а логичнее выбирать меньший угол.

Возьмем на рисунке такую точку ( C), чтобы прямая ( AC) была параллельна оси абсцисс, а ( BC) – ординат:

По рисунку видно, что ( AC=Delta x), а ( BC=Delta f).

Тогда отношение приращений:

( frac{Delta f}{Delta x}=frac{BC}{AC}={tg}alpha )

(так как ( angle C=90{}^circ ), то ( triangle ABC) – прямоугольный).

Давай теперь уменьшать ( Delta x).

Тогда точка ( B) будет приближаться к точке ( A). Когда ( Delta x) станет бесконечно малым ( left( Delta xto 0 right)), отношение ( frac{Delta f}{Delta x}) станет равно производной функции в точке ( {{x}_{0}}).

Что же при этом станет с секущей?

Точка ( B) будет бесконечно близка к точке ( A), так что их можно будет считать одной и той же точкой.

Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки ( A), но этого достаточно).

Говорят, что при этом секущая занимает предельное положение.

Угол наклона секущей к оси ( displaystyle Ox) назовем ( varphi ). Тогда получится, что производная

( {f}’left( {{x}_{0}} right)underset{Delta xto 0}{mathop{=}},frac{Delta f}{Delta x}= {tg}varphi ),

то есть

Производная равна тангенсу угла наклона касательной к графику функции в данной точке

Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:

( y=kx+b).

За что отвечает коэффициент ( displaystyle k)? За наклон прямой. Он так и называется: угловой коэффициент.

Что это значит? А то, что равен он тангенсу угла между прямой и осью ( displaystyle Ox)!

То есть вот что получается:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k).

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?

Посмотрим: Теперь углы ( alpha ) и ( displaystyle varphi ) тупые. А приращение функции ( Delta f) – отрицательное.

Снова рассмотрим ( triangle ABC): ( angle B=180{}^circ -alpha text{ }Rightarrow text{ } {tg}angle B=- {tg}alpha ).

С другой стороны, ( {tg}angle B=frac{AC}{BC}=frac{-Delta f}{Delta x}).

Получаем: ( frac{-Delta f}{Delta x}=- {tg}alpha text{ }Rightarrow text{ }frac{Delta f}{Delta x}= {tg}alpha ), то есть все, как и в прошлый раз.

Снова устремим точку ( displaystyle B) к точке ( displaystyle A), и секущая ( displaystyle AB) примет предельное положение, то есть превратится в касательную к графику функции в точке ( displaystyle A).

Итак, сформулируем окончательно полученное правило:

Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k)

Это и есть геометрический смысл производной.

Окей, все это интересно, но зачем оно нам? Вот пример:

На рисунке изображен график функции ( displaystyle y=mathsf{f}left( x right)) и касательная к нему в точке с абсциссой ( {{x}_{0}}).

Найдите значение производной функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}).

Решение.

Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: 

( displaystyle f’left( x right)=k= {tg}varphi).

Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.

На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси ( displaystyle Ox) – это ( displaystyle angle BAC). Найдем тангенс этого угла:

( displaystyle {tg}angle BAC=frac{BC}{AC}=frac{6}{5}=1,2).

Таким образом, производная функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}) равна ( displaystyle 1,2).

Ответ: ( displaystyle 1,2).

Теперь попробуй сам.

Уравнение касательной к графику функций

А сейчас сосредоточимся на произвольных касательных.

Предположим, у нас есть какая-то функция, например, ( fleft( x right)=left( {{x}^{2}}+2 right)). Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке ( {{x}_{0}}). Например, в точке ( {{x}_{0}}=2).

Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости?

Поскольку прямая – это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты ( k) и ( b) в уравнении

( y=kx+b).

Но ведь ( k) мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

( k={f}’left( {{x}_{0}} right)).

В нашем примере будет так:

( {f}’left( x right)={{left( {{x}^{2}}+2 right)}^{prime }}=2x;)

( k={f}’left( {{x}_{0}} right)={f}’left( 2 right)=2cdot 2=4.)

Теперь остается найти ( b) . Это проще простого: ведь ( b) – значение ( y) при ( displaystyle x=0).

Графически ( b) – это координата пересечения прямой с осью ординат (ведь ( displaystyle x=0) во всех точках оси ( displaystyle Oy)):

Проведём ( BCparallel Ox) (так, что ( triangle ABC) – прямоугольный).

Тогда ( angle ABC=alpha )(тому самому углу между касательной и осью абсцисс). Чему равны ( displaystyle AC) и ( displaystyle BC)?

По рисунку явно видно, что ( BC={{x}_{0}}), а ( AC=fleft( {{x}_{0}} right)-b). Тогда получаем:

( {f}’left( {{x}_{0}} right)= {tg}alpha =frac{AC}{BC}=frac{fleft( {{x}_{0}} right)-b}{{{x}_{0}}}text{ }Rightarrow text{ }b=fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right)).

Соединяем все полученные формулы в уравнение прямой:

( y=kx+b={f}’left( {{x}_{0}} right)cdot x+fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right);)

( y={f}’left( {{x}_{0}} right)cdot left( x-{{x}_{0}} right)+fleft( {{x}_{0}} right))

Это и есть уравнение касательной к графику функции ( fleft( x right)) в точке ( {{x}_{0}}).

Пример:

Найди уравнение касательной к графику функции ( fleft( x right)={{x}^{2}}-2x+3) в точке ( {{x}_{0}}=3).

Решение:

На этом примере выработаем простой…

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

ЕГЭ №7. Производная функции — геометрический смысл, дифференцирование

На этом видео мы вспомним, что такое функция и её график, научимся искать производную некоторых функций, например, такой: y = 2×3 – 3×2 + x + 5. 

Мы разберём от А до Я все 7 типов задач, которые могут попасться в задаче №7 из ЕГЭ. Узнаем, на какие 3 фразы в условии задачи нужно обратить особое внимание, чтобы с лёгкостью решить задачу и не потерять баллы на ровном месте.  

Разберём все возможные ошибки, которые можно допустить в этих задачах. Мы поймём, что многие из этих задач решаются обычным подсчётом клеточек на графике! Главное – не перепутать, что нужно считать.

P.S. Не забудьте потом посмотреть родственную тему: «Интегралы на ЕГЭ. Первообразные элементарных функций».

Понравилась статья? Поделить с друзьями:
  • Как исправить баги с квестами в скайриме
  • Как найти учителя шамана
  • Как составить краткое описание бизнеса
  • Как найти адрес модели
  • Как составить сочинение диалог