L 2pr формула как найти

Как найти длину окружности?

Длину окружности можно найти одним из представленных способов:

  • если известен диаметр окружности, то формула выглядит так — L = ПD
  • если известен радиус окружности, то формула имеет следующий вид — L = 2Пr.

Где П — 3,14.

модератор выбрал этот ответ лучшим

дольф­аника
[379K]

8 лет назад 

Окружностью в геометрии называют фигуру на плоскости, все точки, лежащие на окружности круга, удалены на равном расстоянии от центра окружности

текст при наведении

Радиусом окружности называют в геометрии величину расстояния, отрезок от центра окружности до ее любой точки на окружности.

текст при наведении

Длину окружности с радиусом вычисляют по формуле

Длина окружности L равно 2pi умножить на R.

Или выглядит формула так. Чтобы не путаться, запомните, что длина окружности это есть периметр круга.

текст при наведении

текст при наведении

r — это радиус

D — диаметр

π — приблизительно 3,14

Но окружность — это не круг

Смотрите картинку, на которой видна разница между кругом и окружностью

текст при наведении

Афана­сий44
[443K]

8 лет назад 

Окружность это такая геометрическая фигура, которая является совокупностью всех своих точек на плоскости, равноудаленных от ее центра, на расстояние, называемое радиусом.

Для того, чтобы вычислить длину окружности, обозначаемую обычно как L, надо радиус, обозначаемый как R, умножить на 2 и на число Пи. L=2ПиR. Пи — величина постоянная и равна 3,14.

Или можно взять удвоенный радиус, то есть диаметр (D) и тогда формула будет выглядеть так: L=ПиD.

Selen­a-Ursus
[19.8K]

8 лет назад 

Окружность это кривая, ограничивающая круг. Все ее точки находятся на равном от центра расстоянии. В формуле вычисления длины окружности используются значения радиуса или двойная величина радиуса — диаметр и число π, всегда имеющее значение 3,14.

Формула, таким образом, выглядит так: L=πd или L=2πR, где L — значение длины окружности, получаемое умножением числа π (3,14) на величину радиуса окружности или двойного диаметра.

eLear­ner
[822K]

10 лет назад 

Формула длины окружности

текст при наведении

Если воспользоваться Яндексом, то длину окружности можно посчитать в самом поисковом интерфейсе. Введите в Яндексе формула длины окружности, он вам выдаст формулу расчета и окошко для ввода значения. Дальше нужно будет нажать кнопку «Посчитать».

Edvar­d
[10.5K]

9 лет назад 

Еще из средней школьной программы отчетливо помню формулу измерения длины окружности. Эта формула выглядит так- 2Пr, где r- это радиус окружности, которая равна половине диаметра, а число П неизменна и равна 3.14.

chela
[51.2K]

10 лет назад 

Можно найти длину окружности не зная радиуса. Для этого нужно знать площадь круга.

Формула для расчета длины окружности по известной площади круга выглядит так:

L=2*корень квадратный пи*S

где S площадь круга.

gemat­ogen
[29.9K]

9 лет назад 

Формула длины окружности равна Пи умноженное на Диаметр или Пи умноженное на Радиус умноженный на 2.

88Sky­Walke­r88
[429K]

8 лет назад 

Известно, что независимо от длины окружности, ее отношение к диаметру является постоянным числом. Если известен диаметр окружности, то нужно эту величину умножить на число Пи (3,14).

Формула выглядит так:

L=πd

Если известен радиус, то чтобы найти диаметр, умножаем его на два, а для нахождения длины окружности опять же на число Пи.

Формула:

L=2πR

morel­juba
[62.5K]

6 лет назад 

Итак, длина окружности может быть рассчитана, например, вот таким способом как L=πd (где d — это будет диаметр).

А вот если известен радиус, то длину вы уже сможете найти так L=2πr (где r будет соответственно радиус вашей окружности).

Ну а пи считаем равным 3,14.

Annet­007
[26.3K]

8 лет назад 

Длина окружности

Можете скопировать себе на компьютер нижеприведенную табличку с основными формулами окружности и круга. Она вас, при решении геометрических задач, еще не раз выручит.

Здесь же присутствует формула длины окружности. Она имеет вид: L=2ПR

Знаете ответ?

Радиус — что это такое и как найти радиус окружности

Через длину стороны

Формула для нахождения длины окружности через радиус:

, где r — радиус окружности.

Найти радиус круга, зная окружность

Окружность круга P

Результат

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

Длина диаметра равна удвоенной длине радиуса.

Вычисление радиуса

Радиус можно посчитать разными способами.

Если известен диаметр

Этот способ самый простой. Диаметр равен двум радиусам. Поэтому радиус будет высчитываться по формуле r=d/2.

Если известна длина окружности круга

Также несложно будет узнать радиус, если известна длина окружности круга. Формула для расчета длины окружности C=2πr, в которой C является длиной окружности, π=3,14, а r — это как раз искомый радиус.

Преобразовав данную формулу, получим: r=C/2π. Вообще, число «Пи» в формуле — это постоянное значение, округленное до 3,14. На самом деле «Пи» выглядит так:

Означает данное значение отношение длины окружности к диаметру той же окружности.

Если известна площадь круга

Формула площади круга выглядит так: A= π(r²). Эту формулу можно преобразовать в формулу радиуса:

В ней A — это площадь круга, число «Пи» мы уже знаем, оно равно округленно 3,14, а r — это и есть искомое значение радиуса.

Как найти радиус круга, все школьники учат на геометрии. Взрослые, конечно, со временем забывают эти формулы. Но, прочитав данную статью, радиус круга может найти каждый: и взрослый, и ребенок.

Способ расчета радиуса круга:

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга:
где P – длина окружности, pi – число π, равное примерно 3.14

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга:
где S – площадь круга, pi – число π, равное примерно 3.14

Через сторону описанного квадрата

Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

  • r — искомый радиус окружности.
  • a — сторона описанного квадрата.

Как посчитать радиус зная длину окружности

Чему равен радиус (r) если длина окружности C?

Формула

r = C / , где π ≈ 3.14

Свойства радиуса

В отношении радиуса действуют несколько важных правил:

  1. Радиус составляет половину диаметра. Это мы продемонстрировали только что.
  2. У окружности может быть сколько угодно радиусов. Но все они будут равны по длине между собой.

Радиус, который перпендикулярен хорде, делит ее на две равные части.

Напомним, хордой называется любой отрезок, который проходит через две точки на поверхности окружности, но не через центр. Этим она принципиально отличается от диаметра.

По площади сектора и центральному углу

  • Например, если площадь сектора равна 50 см 2 , а центральный угол равен 120 градусов, формула запишется следующим образом: .

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла .

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах , получаем

В случае, когда величина α выражена в в радианах , получаем

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Центральный угол, вписанный угол и их свойства

Связанные определения

  • Центральный угол в окружности — это угол , образованный двумя радиусами.
  • Радиус кривизны кривой — это радиус окружности, имеющей с этой кривой касание второго порядка.

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла .

В случае, когда величина α выражена в градусах , справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах , справедлива пропорция

из которой вытекает равенство:

Уравнение окружности

r 2 = ( x – a ) 2 + ( y – b ) 2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами ( a, b ) в декартовой системе координат:

< x = a + r cos t
y = b + r sin t

Углы между двумя хордами

Случай 1: два секущие пересекаются внутри окружности.

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны Случай 2: две секущие пересекаются вне окружности.

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

Через площадь и полупериметр описанного треугольника

Разделите площадь описанного треугольника на его полупериметр.

  • r — искомый радиус окружности.
  • S — площадь треугольника.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Основные свойства касательных к окружности

3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

Обобщения

Радиусом множества , лежащего в метрическом пространстве с метрикой , называется величина . Например, радиус n-размерного гиперкуба со стороной s равен

Через диагональ вписанного прямоугольника

Диагональ прямоугольника является диаметром окружности, в которую он вписан. А диаметр, как мы уже вспомнили, в два раза больше радиуса. Поэтому достаточно разделить диагональ на два.

  • R — искомый радиус окружности.
  • d — диагональ вписанного прямоугольника. Напомним, она делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Поэтому, если диагональ неизвестна, её можно найти через соседние стороны прямоугольника с помощью теоремы Пифагора.
  • a, b — стороны вписанного прямоугольника.

Площадь круга, онлайн расчет

Как найти площадь круга по формуле через радиус либо диаметр круга.

Площадь круга, онлайн расчет

Вместо заключения

Чтобы еще больше понять, насколько важно понятие РАДИУС, вспомните инструмент, с помощью которого можно начертить окружность. Это циркуль и выглядит он вот так.

Пользоваться им просто. Ножка с острым концом ставится в центр будущей окружности. А ножка с грифелем прочерчивает линию. А расстояние, на котором они будут друг от друга, и есть РАДИУС.

Как найти радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Нахождение радиуса круга: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус круга (окружности) и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса круга

1. Через длину окружности/периметр круга

Радиус круга/окружности рассчитывается по формуле:

C – это длина окружности/периметр круга; равняется удвоенному произведению числа π на его радиус:

C = 2 π R

π – число, приближенное значение которого равно 3,14.

2. Через площадь круга

Радиус круга/окружности вычисляется таким образом:

S – это площадь круга; равна числу π , умноженному на квадрат его радиуса:

S = π R 2

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:

источники:

http://skysmart.ru/articles/mathematic/radius-okruzhnosti

Нахождение радиуса круга: формула и примеры


Загрузить PDF


Загрузить PDF

Окружность – это плоская замкнутая кривая, все точки которой равноудалены от центральной точки.[1]
Длина окружности (С) – это длина замкнутой кривой, которая и образует окружность.[2]
Площадь круга (А) – это величина пространства, которое ограничено окружностью.[3]
Площадь круга и длина окружности вычисляются по формулам, в которых присутствует радиус (или диаметр) окружности и число «пи».

  1. Изображение с названием Find the Circumference and Area of a Circle Step 1

    1

    Формула для вычисления длины окружности. Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14)[4]
    , r – радиус окружности, d – диаметр окружности.[5]

    • Приведенные формулы по сути одинаковые, так как диаметр равен удвоенному радиусу.
    • Длина окружности измеряется в любых единицах измерения длины: в метрах, сантиметрах, миллиметрах и так далее.
  2. Изображение с названием Find the Circumference and Area of a Circle Step 2

    2

    Величины формулы. В формулу для нахождения длины окружности входят три величины: радиус, диаметр и число «пи». Радиус и диаметр связаны друг с другом: радиус равен половине диаметра, а диаметр равен удвоенному радиусу.

    • Радиус окружности (r) – это отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.
    • Диаметр окружности (d) – это отрезок, проходящий через центр окружности и соединяющий любые две точки, лежащие на окружности.[6]
    • Число «пи» (π) равно отношению длины окружности к ее диаметру; число «пи» представляет собой иррациональное число, которое примерно равно 3,14159265 и не имеет конечной цифры и повторяющихся сочетаний цифр.[7]
      В большинстве математических вычислений число «пи» округляется до 3,14.
  3. Изображение с названием Find the Circumference and Area of a Circle Step 3

    3

    Измерьте радиус или диаметр окружности. Совместите начало линейки с любой точкой на окружности и сделайте так, чтобы линейка соприкасалась с центром окружности. Измерьте расстояние от точки до центра окружности, чтобы получить значение радиуса. Измерьте расстояние между двумя точками, лежащими на окружности, чтобы получить значение диаметра.

    • В большинстве математических задач радиус или диаметр будет дан.
  4. Изображение с названием Find the Circumference and Area of a Circle Step 4

    4

    Подставьте значения величин в формулу. Найдя радиус и/или диаметр окружности, подставьте значение в соответствующую формулу. Если вы нашли радиус, воспользуйтесь формулой C = 2πr, а если диаметр, формулой C = πd.

    • Пример: найдите длину окружности, радиус которой равен 3 см.
      • Напишите формулу: C = 2πr
      • Подставьте данное значение в формулу: C = 2π3
      • Перемножьте: C = (2*3*π) = 6π = 18,84 см
    • Пример: найдите длину окружности, диаметр которой равен 9 м.
      • Напишите формулу: C = πd
      • Подставьте данное значение в формулу: C = 9π
      • Перемножьте: C = (9*π) = 28,26 м
  5. Изображение с названием Find the Circumference and Area of a Circle Step 5

    5

    Попрактикуйтесь на нескольких примерах. Теперь, когда вы знаете формулу, попробуйте решить несколько задач. Чем больше задач вы решите, тем быстрее научитесь справляться с ними.

    • Найдите длину окружности с диаметром 5 м.
      • C = πd = 5π = 15,7 м
    • Найдите длину окружности с радиусом 10 м.
      • C = 2πr = C = 2π10 = 2*10* π = 62,8 м

    Реклама

  1. Изображение с названием Find the Circumference and Area of a Circle Step 6

    1

    Формула для вычисления площади круга. Площадь круга можно вычислить по двум формулам, включающим диаметр или радиус: A = πr2 или A = π(d/2)2[8]
    , где π – число «пи» (математическая константа, приблизительно равная 3,14)[9]
    , r – радиус круга, d – диаметр круга.

    • Приведенные формулы по сути одинаковые, так как диаметр равен удвоенному радиусу.
    • Площадь круга измеряется в любых единицах измерения длины, возведенных в квадрат: в квадратных метрах (м2), в квадратных сантиметрах (см2), в квадратных миллиметрах (мм2) и так далее.
  2. Изображение с названием Find the Circumference and Area of a Circle Step 7

    2

    Величины формулы. В формулу для нахождения площади круга входят три величины: радиус, диаметр и число «пи». Радиус и диаметр связаны друг с другом: радиус равен половине диаметра, а диаметр равен удвоенному радиусу.

    • Радиус круга (r) – это отрезок, соединяющий центр круга с любой точкой, лежащей на окружности, которая ограничивает этот круг.
    • Диаметр круга (d) – это отрезок, проходящий через центр круга и соединяющий любые две точки, лежащие на окружности, которая ограничивает этот круг.[10]
    • Число «пи» (π) равно отношению длины окружности к ее диаметру; число «пи» представляет собой иррациональное число, которое примерно равно 3,14159265 и не имеет конечной цифры и повторяющихся сочетаний цифр.[11]
      В большинстве математических вычислений число «пи» округляется до 3,14.
  3. Изображение с названием Find the Circumference and Area of a Circle Step 8

    3

    Измерьте радиус или диаметр круга. Совместите начало линейки с любой точкой на окружности, ограничивающей круг, и сделайте так, чтобы линейка соприкасалась с центром круга. Измерьте расстояние от точки до центра круга, чтобы получить значение радиуса. Измерьте расстояние между двумя точками, лежащими на окружности, чтобы получить значение диаметра.

    • В большинстве математических задач радиус или диаметр будет дан.
  4. Изображение с названием Find the Circumference and Area of a Circle Step 9

    4

    Подставьте значения величин в формулу. Найдя радиус и/или диаметр круга, подставьте значение в соответствующую формулу. Если вы нашли радиус, воспользуйтесь формулой A = πr2, а если диаметр, формулой A = π(d/2)2.

    • Пример: найдите площадь круга с радиусом 3 м.
      • Напишите формулу: A = πr2
      • Подставьте данное значение: A = π32
      • Возведите радиус в квадрат: r2 = 32 = 9
      • Умножьте на число «пи»: A = 9π = 28,26 м2
    • Пример: найдите площадь круга с диаметром 4 м.
      • Напишите формулу: A = π(d/2)2
      • Подставьте данное значение: A = π(4/2)2
      • Разделите диаметр на 2: d/2 = 4/2 = 2
      • Результат возведите в квадрат: 22 = 4
      • Умножьте на число «пи»: A = 4π = 12,56 м2
  5. Изображение с названием Find the Circumference and Area of a Circle Step 10

    5

    Попрактикуйтесь на нескольких примерах. Теперь, когда вы знаете формулу, попробуйте решить несколько задач. Чем больше задач вы решите, тем быстрее научитесь справляться с ними.

    • Найдите площадь круга с диаметром 7 м.
      • A = π(d/2)2 = π(7/2)2 = π(3,5)2 = 12,25 * π= 38,47 м2.
    • Найти площадь круга с радиусом 3 м.
      • A = πr2 = π32 = 9 * π = 28,26 м2

    Реклама

  1. Изображение с названием Find the Circumference and Area of a Circle Step 11

    1

    Найдите радиус или диаметр окружности. В некоторых задачах радиус или диаметр дается в виде выражения с участием переменной, например, г = (х + 7) или d = (х + 3). В этом случае вы можете найти площадь круга или длину окружности, но окончательный ответ будет также содержать переменную. Запишите радиус или диаметр так, как дается в задаче.

    • Пример: вычислите длину окружности с радиусом (х + 1).
  2. Изображение с названием Find the Circumference and Area of a Circle Step 12

    2

    Напишите формулу с данным значением. Вычисляя площадь круга или длину окружности, вы подставляете данное значение в соответствующую формулу. Сначала запишите формулу для вычисления площадь круга или длину окружности, а затем подставьте в нее значение диаметра или радиуса, выраженное переменной.

    • Пример: вычислите длину окружности с радиусом (х + 1).
    • Напишите формулу: C = 2πr
    • Подставьте данное значение: C = 2π(х + 1)
  3. Изображение с названием Find the Circumference and Area of a Circle Step 13

    3

    Вычислите длину окружности так, как если бы переменная была представлена числом. На данный момент решите задачу, рассматривая переменную в качестве обычного числа. Возможно, вам придется использовать свойство дистрибутивности для упрощения окончательного ответа.

    • Пример: вычислите длину окружности с радиусом (х + 1).
    • C = 2πr = 2π (х + 1) = 2πx + 2π1 = 2πx + 2π = 6,28x + 6,28
    • Если вы знаете значение переменной «х», подставьте его в найденное выражение, чтобы получить численный ответ.
  4. Изображение с названием Find the Circumference and Area of a Circle Step 14

    4

    Попрактикуйтесь на нескольких примерах. Теперь, когда вы знаете формулу, попробуйте решить несколько задач. Чем больше задач вы решите, тем быстрее научитесь справляться с ними.

    • Найдите площадь круга с радиусом 2х.
      • A = πr2 = π(2x)2 = π4x2 = 12,56x2
    • Найдите площадь круга с диаметром (х + 2).
      • A = π(d/2)2 = π((x +2)/2)2 = ((x +2)2/4)π

    Реклама

Об этой статье

Эту страницу просматривали 212 798 раз.

Была ли эта статья полезной?

Окружность это замкнутая кривая линия, все точки которой, равноудалены от другой, определенной точки (центр окружности) на заданном расстоянии (радиус).
Радиус окружности — отрезок, соединяющий её центр и любую другую точку расположенную на линии окружности.
Диаметр окружности — отрезок, соединяющий две любые точки расположенные на линии окружности и проходящий через её центр. Диаметр, в два раза больше радиуса


длина окружности

r — радиус окружности

D — диаметр окружности

π ≈ 3.14

Формула длины окружности через радиус или диаметр, (L):

Формула длины окружности


Калькулятор для расчета длины окружности через радиус



Калькулятор для расчета длины окружности через диаметр


окружность

S — площадь круга

O — центр круга

π ≈ 3.14

Формула длины окружности через площадь, (L):

Формула длины окружности через площадь


Калькулятор для расчета длины окружности через площадь


Формулы для окружности и круга:

Подробности

Опубликовано: 07 сентября 2011

Обновлено: 13 августа 2021

Способы расчета периметра круга и длины окружности

Содержание:

  • Периметр круга — что это, определение
  • Как рассчитать периметр круга или длину окружности

    • Через радиус
    • Через диаметр
  • Примеры решения задач

Периметр круга — что это, определение

Определение

Круг — это геометрическое множество точек на плоскости, расстояние от которых до данной точки, называемой центром круга, не превосходит заданного неотрицательного числа.

Оределение

Окружность — замкнутая кривая на плоскости, все точки которой равноудалены от центра окружности.

Эти определения плотно связаны друг с другом. Круг — это часть плоскости, ограниченная окружностью. Окружность — это граница круга.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Радиус — расстояние от центра окружности до любой ее точки. Это отрезок, который соединяет центр круга с его границей.

Определение

Диаметр — это отрезок, соединяющий две точки окружности и проходящий через ее центр. Он равен двум радиусам.

Круг

 

Определение

Периметр — это длина окружности, ограничивающей круг.

Понятия «периметр круга» и «длина окружности» считаются синонимичными.

Как рассчитать периметр круга или длину окружности

Чтобы вычислить периметр круга, необходимо ввести постоянную величину — число Пи. Оно равно отношению длины окружности к ее диаметру. Это отношение идентично для всех окружностей и равно (pi=3,14159…)

Чтобы произвести расчет периметра круга, достаточно помнить это число до двух знаков после запятой:

(pi=3,14)

Помимо этого, для вычисления необходимо знать длину радиуса или диаметра.

Через радиус

Длину окружности L можно найти по формуле через радиус:

(L=2pi R)

где (pi ) — число Пи, R — радиус.

Через диаметр

Длину окружности L можно найти по формуле через диаметр. Поскольку диаметр D равен двум радиусам:

(L=pi D)

Примеры решения задач

Задача

Каков периметр круга, если его радиус равен 0,5 см?

Решение

По формуле, (L= 2pi R). Отсюда:

(L=2pi R=2cdot0,5pi=piapprox3,14)

Ответ: 3,14 см.

Задача

Какова длина окружности, если ее диаметр равен 2 см?

Решение

По формуле, (L=pi D). Отсюда:

(L=pi D=picdot2approx3,14cdot2=6,28)

Ответ: 6,28 см.

Насколько полезной была для вас статья?

Рейтинг: 3.00 (Голосов: 2)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Понравилась статья? Поделить с друзьями:
  • Как найти площадь прямоугольника фотографии
  • Как найти дом в богородицке
  • Как правильно составить завещание на машину
  • Как найти аппликату центра тяжести
  • Как найти корневую папку сервера