Максимальная тепловая мощность как найти

Читайте в статье

  • Что такое мощность котла и как ее узнать
  • Способы подбора минимально необходимой мощности котла
    • Расчет мощности котла отопления по площади дома
    • Расчет по объему помещения
    • Рассчитываем с учетом всех основных особенностей дома
  • Запас производительности в зависимости от типа котла
  • Почему не стоит подбирать котел со слишком большим запасом мощности
    • Когда чрезмерная теплопроизвоительность все же уместна

От тепловой мощности котла зависит эффективность работы системы отопления. При недостаточной теплопроизводительности система отопления не сможет удерживать комфортную температуру. Если речь идет о газовом или жидкотопливном котле, важно не переусердствовать и с запасом мощности, из-за чего нарушится нормальная работа котла, увеличится расход топлива.

Что такое мощность котла и как ее узнать

Тепловая мощность котла – это максимальное количество тепловой энергии, передаваемой теплоносителю в процессе сгорания топлива (измеряется в киловаттах/час или просто кВт). Это означает, что котел мощностью 20 кВт при непрерывной работе на максимальной мощности за час выработает и передаст теплоносителю 20 кВт тепловой энергии.

Определить мощность котла можно несколькими способами:

  • поискать список технических характеристик на корпусе котлоагрегата;
  • найти значение в паспорте модели. Если документация не сохранилась, можно поискать электронную версию или изучить предложения интернет-магазинов, которые обязательно указывают в описании модели ее номинальную мощность;
    Технические характеристики на корпусе котла
    Место расположения технических характеристик на корпусе котла
  • если речь идет о газовом котле, можно узнать примерную теплопроизводительность по расходу газа, для чего необходимо проверить и зафиксировать сколько кубометров котел потребляет при беспрерывной работе на максимальной мощности. Удельная теплота сгорания газа – величина постоянная и равна 9,3 кВт. Также важно учитывать КПД котла (его также можно найти в списке технических характеристик), для старых советских моделей это значения в районе 70-85%, у новых моделей КПД в пределах 86-94%. Итого, максимальная мощность = 9,3 кВт (удельная теплота сгорания природного газа)*0,8 (если КПД 80%)*2,5 куб. м/час (полученный расход газа в час) = 18,6 кВт. Аналогичным способом можно посчитать примерные значения для твердотопливного, жидкотопливного или электрического котла.

Увеличить теплопроизводительность бытового котла без серьезных небезопасных изменений его конструкции невозможно, поэтому к выбору минимально необходимой мощности необходимо подходить ответственно. Если ее будет недостаточно, придется устанавливать дополнительный котлоагрегат или производить утепление стен, пола и потолка, замену окон и дверей в целях снижения теплопотерь.

Способы подбора минимально необходимой мощности котла

Чтобы поддерживать в каждом помещении комфортную температуру, теплопроизводительность системы отопления (соответственно и котла) должна обеспечивать теплопотери дома, которые также измеряются в кВт. То есть теплопроизводительнось котлоагрегата = суммарные тепловые потери дома через стены, пол, потолок, фундамент окна и двери + запас на случай более сильных морозов.

Тепловые потери частного дома

Наглядное изображение теплопотерь частоного дома.

Расчет мощности котла отопления по площади дома

Наиболее простой и распространенный способ. Исходя из практики, для среднестатистического частного дома в климатической зоне Подмосковья, с кладкой в 2 кирпича и высотой потолков 2,7 м на каждые 10 м2 необходим 1 кВт тепловой мощности (именно такое соотношение соответствует среднестатистическим теплопотерям). Также мы рекомендуем закладывать запас мощности в 15-25%.

Например, для вышеописанного дома площадью 100 кв. м. минимальная мощность котла = 100 м2 : 10 * 1,2 (20% запаса) = 12 кВт.

Также при расчете мощности котла отопления по площади дома можно делать поправки с учетом утепленности дома. Так, для среднеутепленного дома (наличие 100-150 мм слоя теплоизоляции или стены из бруса) на каждые 10 м2 может приходиться 0,5-0,7 кВт теплопотерь. Для хорошо утепленного дома с небольшой площадью остекления норма составляет 0,4-0,5 кВт на каждые 10 м2.

Поэтому, если ваш случай кардинально отличается от среднестатистичекого вышеописанного дома, стоит рассчитать мощность котла более точным методом с учетом всех особенностей, он описан одним пунктом ниже.

Расчет по объему помещения

Энергонезависимый газовый напольник

Еще один довольно простой способ, основанный на СНиП и обычно применяемый для квартир. За исходную величину берется не площадь, а кубатура отапливаемых помещений. Согласно методике, указанной в СНиП 23-02-2003 «Тепловая защита зданий», норма удельного расхода тепловой энергии:

  • для кирпичного многоквартирного дома – 0,034 кВт/м3;
  • для панельного многоквартирного дома – 0,041 кВт/м3.

Зная эти нормы, площадь квартиры и высоту потолков, можно использовать способ расчета мощности котла отопления по объему помещений.

Например, для квартиры панельного многоквартирного дома площадью 150 кв. м. и высотой потолков 2,7 м (без внешнего и внутреннего утепления стен), минимальная теплопроизводительность = 2,7*150*0,041 = 16,6 кВт.

Из принципа расчета, опять таки, ясно, что весь учет теплопотерь сводится к усредненным значениям и теплопроводности стен из различных материалов. Это значит, что использовать его рационально если внешние стены не утеплены, в квартире имеются не более 4 стандартных окна, радиаторы подключены наиболее эффективным способом, а соседние квартиры отапливаются.

Рассчитываем с учетом всех основных особенностей дома

Подробная формула основывается на площади помещений, однако учитывает все возможные тепловые потери, способ подключения радиаторов, который влияет на КПД системы отопления, а также климатические условия, в которых находится частный дом.

Расчет производится для каждого помещения отдельно, что более правильно. Полученные для каждого помещения значения в дальнейшем можно использовать для подбора мощности радиаторов отопления. Просуммировав необходимую для каждого помещения теплопроизводительность, вы получите значение для всей системы отопления дома, значит – и для котла, который должен обеспечивать ее мощность.

Точная формула для расчета:

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплопроизводительности;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери, климат и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

  • Стеклопакетыобычные (в том числе и деревянные) двойные окна – 1,17;
  • окна с двойным стеклопакетом (2 воздушные камеры) – 1,0;
  • двойной стеклопакет с аргоновым заполнением или тройной стеклопакет (3 воздушные камеры) – 0,85.

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

Калькулятор для точного определения тепловой мощности

Расчет необходимой мощности отопительного оборудования производится отдельно для каждого помещения дома. Введите исходные данные или выберите предложенные варианты и нажмите «Рассчитать».

1. Установите значение площади помещения, м²

2. К-во внешних стен помещения

3. Внешние стены направлены на:

4. Степень теплоизоляции внешних стен

5. Уровень температуры в регионе в самую холодную неделю отопительного сезона

6. Высота потолка в расчетном помещении

7. Что находится над потолком?

8. Тип и к-во стеклопакетов

9. Отношение площади остекления к площади пола (К-во окон * высоту окна * ширину окна / площадь пола):

10. Выберите планируемый способ подключения радиаторов отопления

11. Планируемое расположение радиатора и наличие экрана

Запас производительности в зависимости от типа котла

Для стандартного одноконтурного котла, вне зависимости от вида используемого топлива, мы всегда рекомендуем закладывать запас мощности 15-25%, в зависимости от температуры в самую холодную декаду и утепленности дома. Однако в некоторых случаях требуется несколько больший запас:

  • 20-30% запаса, если котел двухконтурный. Большинство моделей работает по принципу приоритета ГВС, это значит, что в момент активации точки потребления горячей воды котел не греет отопительный контур, для работы на два контура требуется более высокая производительность;
  • 20-25% запаса, если в доме организована или планируется приточно-вытяжная вентиляция без рекуперации тепла.

Также часто используется схема с подключением бойлера косвенного нагрева (особенно в связке с твердотопливными котлами). В таком случае излишек мощности может превышать 40-50% (показатель рассчитывается по ситуации). Стоит понимать, что любом из случаев предусмотренный запас не «простаивает», а используется будь то в целях нагрева горячей воды, восполнения более высоких теплопотерь или нагрева буферной емкости.

Напольный газовый котел с бойлером косвенного нагрева

Высокий белый бак справа от котла – накопительный бойлер косвенного нагрева, постоянно поддерживающий большой объем горячей воды.

Почему не стоит подбирать котел со слишком большим запасом мощности

С недостатком теплопроизводительности все предельно понятно: система отопления попросту не обеспечит желаемый уровень температуры даже при беспрерывной работе. Однако, как мы уже упоминали, серьезной проблемой может стать и переизбыток мощности, последствиями которого являются:

  • более низкий КПД и повышенный расход топлива, особенно на одно- и двухступенчатых горелках, не способных плавно модулировать производительность;
  • частое тактование (вкл/выкл) котла, что нарушает нормальную работу и снижает ресурс горелки;
  • попросту более высокая стоимость котлоагрегата, учитывая, что производительность, за которую была произведена повышенная плата, использоваться не будет;
  • часто больший вес и большие габариты.

Когда чрезмерная теплопроизвоительность все же уместна

Единственной причиной выбрать версию котла гораздо большей мощности, чем нужно, как мы уже упоминали, является использование его в связке с буферной емкостью. Буферная емкость (также теплоаккумулятор) – это накопительный бак определенного объема наполненный теплоносителем, назначение которого – накапливать излишки тепловой мощности и в дальнейшем более рационально распределять их в целях отопления дома или обеспечения горячего водоснабжения (ГВС).

Например, теплоаккумулятор – отличное решение, если недостаточно производительности контура ГВС или при цикличности твердотопливного котла, когда топливо сгорая отдает максимум тепла, а после прогорания система быстро остывает. Также теплоаккумулятор часто используется в связке с электрокотлом, который нагревает емкость в период действия сниженного ночного тарифа на электроэнергию, а днем накопленное тепло распределяется по системе, еще долго поддерживая желаемую температуру без участия котла.

Расчет теплоотдачи радиаторов отопления необходим для правильного выбора модели в конкретное помещение с учетом особенностей эксплуатации сети. Полученное значение поможет безошибочно найти подходящую модель нужного размера. Однако необходимые вычисления могут показаться слишком сложными для неспециалиста. Предлагаем вашему вниманию детальную статью с формулами и таблицей, которые помогут сориентироваться в ассортименте оборудования.

Содержание статьи

  • От чего зависит тепловая мощность радиаторов
  • Номинальная теплоотдача
  • Как рассчитать реальную тепловую мощность
  • У каких радиаторов лучше теплоотдача
  • Удельная тепловая мощность регистра отопления
  • Влияние способа подключения
  • Как увеличить мощность отопления

От чего зависит тепловая мощность радиаторов

Теплоотдача – параметр, указывающий на объем тепла от одной секции за время, пока входящий теплоноситель остывает до температуры выходной воды. Уточнить его можно по технической документации на  оборудование. Например, для модели М-140 номинальная теплоотдача равна 155 Вт/ м². При этом температура теплоносителя на входе составляет около 90°С, а к выходу она снижается до 70°С.

Мощность радиатора зависит отряда факторов:

  • коэффициента теплопередачи;
  • площади нагревательной поверхности;
  • формы секций;
  • потерь выработанной энергии во время циркуляции теплоносителя по магистрали сети;
  • температурного напора.

Батареи советского производства в домах старой постройки имели сравнительно небольшую теплоотдачу из-за неудачной формы секций. Современные производители учли и исправили этот просчет, изменив внешний вид элементов и развернув их широкой стороной внутрь помещения и к прилегающей стене.  Такое конструктивное решение позволило улучшить характеристики оборудования,  увеличить площадь нагрева и объем теплопередачи от одной секции, одновременно уменьшив вес отопительного прибора.

Номинальная теплоотдача радиаторов отопления

При расчете мощности радиаторов отопления важно помнить — заявленные в техпаспорте параметры рассчитаны на идеальные условия функционирования сети:

  • прибор подключен диагональным или боковым способом, поэтому вода движется в нем в направлении  сверху вниз;
  • температурный напор (разница между температурой воздуха в помещении и циркулирующей воды) составляет приблизительно 70°C;
  • через систему за час протекает около 360 кг воды, отдающей свою энергию в окружающее пространство через стенки.

Лабораторные испытания на заводе-производителе при создании перечисленных выше условий позволяют получить для батареи с секциями в 50 см номинальный уровень мощности в 170-200 Вт. Это полностью соответствует требованиям отраслевого ГОСТ 31311-2005 «Приборы отопительные. Общие технические условия», однако оказывается далеким от реальности сразу по нескольким причинам:

  1. Если для сравнения в обратном порядке вычислить t теплоносителя с учетом указанной мощности, получится, что на входе в батарею t должна составлять приблизительно 100°C. Ни один бытовой котел не сможет обеспечить такую водоподготовку, поэтому на входе вода будет прохладнее – максимум 80°C, если водонагревательное оборудование расположено в соседнем помещении и теплоноситель не остыл при прохождении по магистрали.
  2. Взяв за основу расчета указанные выше 80°C и разницу в 70°C между температурой теплоносителя и окружающего воздуха, мы получим 10°C, которые сложно назвать пригодными для жизни.

Получить температуру на входе в 90°С можно только при установке мощного оборудования, слишком дорогого и нерентабельного для частного дома. Поэтому необходимо выполнить новый расчет теплоотдачи с учетом фактических данных.

Как рассчитать реальную тепловую мощность радиатора 

Подробное описание того, как рассчитать теплоотдачу, утомит даже человека с техническим образованием. Для удобства в практическом подборе отопительных приборов разработана система понижающих коэффициентов. Достаточно умножить один из них на паспортные параметры, чтобы получить фактический показатель, приближенный к реальности. Используем для расчета приведенную далее таблицу коэффициентов. 

Таблица КПД радиаторов отопления

DT, ⁰С К DT, ⁰С К DT, ⁰С К DT, ⁰С К
40 0,48 49 0,63 58 0,78 67 0,94
41 0,5 50 0,65 59 0,8 68 0,96
42 0,51 51 0,66 60 0,82 69 0,98
43 0,53 52 0,66 61 0,84 70 1
44 0,55 53 0,7 62 0,85 71 1,02
45 0,56 54 0,71 63 0,87 72 1,04
46 0,58 55 0,73 64 0,89 73 1.06
47 0,6 56 0,75 65 0,91 74 1,07
48 0,61 57 0,77 66 0,93 75 1,09

Для расчета необходимо:

  • Уточнить номинальный уровень температуры воздуха и воды на входе в систему.
  • Вычислить тепловой напор DT по формуле:

DT = (T подачи + T теплоносителя обратного тока ) / 2 – T воздуха

  • Найти в предложенной выше таблице соответствующий коэффициент.
  • Умножить его на указанную в паспорте мощность одной секции.
  • С учетом площади помещения посчитать количество секций.

Так, если на входе t теплоносителя составляет 90 °С, t обратки 70 °С, а воздух в комнате 20 °С, коэффициент равен 0,82. Умножаем его на заявленные производителем 180 Вт от секции биметаллической модели и получаем 148 Вт, который хватит для отопления полутора квадратных метров помещения. Если площадь комнаты составляет 25 кв.м., новая батарея должна давать (25/1,5*148) = 2470 Вт энергии.

Важно: предложенная выше таблица и порядок расчетов актуальны только в случае, если заявленный производителем тепловой напор составляет 70°С. Если же в паспорте отопления указаны 50°С, коэффициенты из таблицы недействительны. В этом случае следует ориентироваться на указанные производителем технические параметры, но выбрать батарею с запасом секций в 1,5 раза – 15 вместо 10, 18 вместо 12 и т.д.

У каких радиаторов лучше теплоотдача

Еще один фактор, влияющий на объемы получаемой энергии — материал изготовления радиаторов. Обладая разным уровнем теплопроводности, разные металлические сплавы и конструкции дают различные результаты. 

  1. Лидерами являются биметаллические изделия, в производстве которых использовано одновременно два вида сплавов — стальной и алюминиевый, используемый для оребрения. Мощность одной секции составляет от 140 до 180 Вт, номинальный уровень давления — 35 атмосфер, срок эксплуатации — около 20 лет.
  2. Алюминиевые конструкции изготавливаются из силумина — сплава алюминия и кремния. Одна секция может дать от 130 до 221 Вт энергии. Однако хрупкость алюминия негативно влияет на срок службы и прочность изделия. Материал выдерживает рабочее давление в пределах 10 атм и рекомендован для использования теплоносителя с уровнем кислотности pH не более 7,5 во избежание преждевременного разрушения.
  3. Стальные модели считаются оптимальным решением по соотношению стоимости и практических достоинств. Такие сплавы быстро нагреваются и интенсивно излучают тепло в окружающую среду. Поскольку стальные изделия изготавливаются в виде цельных панелей, уровень теплоотдачи рассчитывается для всего радиатора в целом и составляет приблизительно 12 –14 кВт.
  4. Чугунные батареи дают не более 80–160 Вт от одного регистра. Высокая теплоемкость не позволяет автоматически регулировать объем теплового излучения. Однако это надежное оборудование, которое не боится резких перепадов давления в системе и нестандартного химического состава теплоносителя, а срок его службы составляет несколько десятков лет. 

Познакомьтесь с радиаторами теплоприбор

Рекомендованная розничная цена 1 секции

от 4400 руб.

Рекомендованная розничная цена 1 секции

810 руб.

Рекомендованная розничная цена 1 секции

930 руб.

Рекомендованная розничная цена 1 секции

от 4500 руб.

Рекомендованная розничная цена 1 секции

от 4785 руб.

Рекомендованная розничная цена 1 секции

от 4845 руб.

Рекомендованная розничная цена 1 секции

1065 руб.

Рекомендованная розничная цена 1 секции

1045 руб.

Рекомендованная розничная цена 1 секции

930 руб.

Рекомендованная розничная цена 1 секции

950 руб.

ТЕПЛОПРИБОР

Преимущества радиаторов ТЕПЛОПРИБОР

Надежные и долговечные

Надежные и долговечные

— функционируют при показателях давления 16–20 атм. и выдерживают скачки до 30 атм. Срок их службы – от 25 лет.

Имеют длительную гарантию

Имеют длительную гарантию

— на алюминиевые модели – 10 лет,
а на биметаллические – 15 лет.

Состоят из российских материалов на 90%

Состоят из российских материалов на 90%

– работаем с сырьем, получаемым напрямую от ведущих плавильных предприятий России, и отечественными составляющими.

Подходят для различных отопительных cистем

Подходят для различных отопительных cистем

– можно устанавливать в однотрубные, двухтрубные, автономные теплосистемы с верхним и нижним подключением.

Легкие и компактные

Легкие и компактные

– предприятие производит радиаторы
с массой одной секции от 1,06 до 1,94 кг. Их размер колеблется от 400х80х90 до 567х80х90 мм.

Мощные

Мощные

– теплоотдача 500-миллиметровых изделий составляет 185 Вт – 191 Вт,
а 350-миллиметровых – 134-138 Вт. По этому показателю они не уступают мировым брендам.

Удельная тепловая мощность регистра отопления

Выбирая радиатор, необходимо рассчитать удельную мощность секции (q). Так называют количество тепловой энергии, которую выделяет один элемент оборудования в единицу времени. Расчет поможет безошибочно подобрать модель с подходящим числом фрагментов, умножив удельную тепловую мощность на их количество. Так, для систем 500 мм с теплоносителем 70 °С в зависимости от типа сплава дадут следующее количество теплоты:

  • 160 Вт для чугуна, который по праву считается образцом долговечности и надежности;
  • 200 Вт для алюминия, который дает много тепла, но отличается чувствительностью к механической нагрузке;
  • 180 Вт для биметаллических моделей, сумевших объединить в себе теплоотдачу алюминия и прочность чугуна;
  • 85 Вт для стали, для которой главными преимуществами являются повышенная химическая и механическая стойкость, но не уровень теплоемкости.

Приведенные значения можно назвать приблизительными, рассчитанными для стандартных образцов. Более точные цифры – в техническом паспорте выбранной модели.

Влияние способа подключения на теплоотдачу

Существует зависимость тепловой мощности радиатора от особенностей его размещения. Среди основных факторов специалисты выделяют следующие:

  1. Монтаж батареи под окном, где теплопотери через стекло часто достигают значительного уровня. При этом нагретый воздух поднимается к потолку, создавая своеобразную тепловую завесу для холода и сквозняков. Результат – комфортная температура в доме и рациональное использование отопительных приборов.
  2. Благодаря двустороннему подключению удастся поднять мощность до максимального уровня. Ограничением здесь выступает количество секций: радиаторы с менее чем 20 элементами обычно предусматривают только одностороннее подключение.
  3. Верхняя подача теплоносителя с отводом через нижнюю часть системы не влияет на тепловую мощность, тогда как направление снизу вверх сокращает ее на 20% и более.
  4. При размещении прибора в нише теплоотдача снижается на 7–10%.
  5. Установка декоративного экрана, вследствие чего производительность батареи снижается на 10–15%. Если полностью зашить прибор под деревянную панель, потери энергии составят 20–25%.

Как увеличить мощность радиаторов отопления

Избежать значительных потерь тепла из-за интенсивного нагревания наружной стены и одновременно повысить уровень теплоотдачи поможет использование теплоотражающего экрана. Его устанавливают между радиатором и стеной, тем самым направляя в сторону комнаты дополнительный поток тепловой энергии.

Оптимальный вариант теплового экрана – материал с фольгированной поверхностью. Она эффективно отражает тепло, препятствуя его напрасному расходованию на нагревание стен и пола. Выбирая отражатель, отдайте предпочтение модели, которая больше параметров прибора на 2-3 см с каждой стороны. Такой экран будет «обтекать» конструкцию, сводя теплопотери к минимуму. 

Расстояние между отражающей поверхностью и стеной должно составлять около 3-5 см. Тем, кто планирует изготовить экран самостоятельно, рекомендуется вырезать его из листа изоспана, алюфома или пенофола, после чего хорошо закрепить на стене с помощью металлических крепежей или клеевого состава.

Не пропустите новые статьи!

Подпишитесь на нашу рассылку

Видео о радиаторах отопления

Вам будет интересно

Мощность теплообменника – это ключевой параметр, который используется при расчете теплообменного аппарата. Он рассчитывается по следующей формуле:

Тепловая мощность (Р, кВт).
Тепловая мощность – это отданное оборудованием количество тепла. Определить тепловую нагрузку можно при помощи формулы
P = m * cp *δt, где m – расход среды, cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C)), δt – разность температур на входе и выходе одного контура (t1 — t2).

Мощность ,обычно, измеряется в кВт или ккал./ч

Полный расчет мощности теплообменного аппарата достаточно сложен и трудоемок. Задача этой статьи показать способы укрупненного определения мощности теплообменника в различных сферах применения. Определив таким образом мощность теплообменника, заказчик сможет оценить «общую картину», а детали и тонкости лучше отдать на проработку нашим инженерам.
Итак, рассмотрим различные сферы, где применяются пластинчатые теплообменники и определим их мощность:

  1. Система отопления.
    В этом случае лучше ориентироваться на отапливаемую площадь. Например, у вас обычное жилое помещение (дом, квартира, отапливаемый офис и т.д.) и при этом высота потолка до 2,7 м. Вы можете использовать следующее соотношение – 10 м2 площади соответствует 1 кВт мощности.
  2. Система ГВС.
    В такой системе можно взять за основу максимальный расход 60С горячей воды через 1 точку водоразбора. Это расход, усредненно, составляет – 150 л./ч., что соответствует 10 кВт.
  3. Теплый пол.
    Тут все просто. Производители теплых полов рекомендуют использовать следующее соотношение: на 1 м2 теплого пола идет 0,15 кВт. Мощности теплообменника
  4. Нагрев бассейна.
    При расчете мощности теплообменника для нагрева бассейна используется соотношение: Для открытого (не в помещении) бассейна – 1 м3.ч. объема соответствует 1 кВт. Мощности. Для закрытого (в помещении) бассейна – 1 м3.ч. объема соответствует 0,75 кВт. мощности.

Если вы планируете приобретать пластинчатый теплообменник и вам необходимо определить его мощность — вы можете обратиться к нашим специалистам. У нас более чем 10 летний опыт производства теплообменных аппаратов.

РАДЫ ПОМОЧЬ ВАМ:

Если вы не нашли ответа на свой вопрос в нашей статье или 
вам необходим подбор теплообменника, обращайтесь к нам:

ТЕЛЕФОН: +7 (800) 301-02-65 (бесплатный номер)

8-902-403-22-00 (WhatsApp, Viber)

АДРЕС: Россия, г. Краснодар, ул. Дзержинского 94/1

EMAIL: info@teploobmennik-russia.ru

Мы всегда на связи!

Содержание

  • 1 Определение
  • 2 Факторы
    • 2.1 Для помещения
    • 2.2 Для прибора
  • 3 Расчет по площади
  • 4 Расчет для прибора
    • 4.1 Особый случай
  • 5 Заключение

В этой статье нам с читателем предстоит выяснить, что такое тепловая мощность и на что она влияет. Кроме того, мы ознакомимся с несколькими методами расчета потребности помещения в тепле и теплового потока для разных видов отопительных приборов.

Монтаж отопления начинается с расчета тепловой мощности приборов.

Монтаж отопления начинается с расчета тепловой мощности приборов.

Определение

  1. Какой параметр называется тепловой мощностью?

Это количество тепла, выделяемое или потребляемое каким-либо объектом за единицу времени.

При проектировании систем отопления расчет этого параметра необходим в двух случаях:

  • Когда необходимо оценить потребность помещения в тепле для компенсации потери тепловой энергии через пол, потолок, стены и вентиляцию;

При составлении проекта нужно знать, сколько тепла теряется через стены.

При составлении проекта нужно знать, сколько тепла теряется через стены.

  • Когда нужно выяснить, сколько тепла способен отдать отопительный прибор или контур с известными характеристиками.

Факторы

Для помещения

  1. Что влияет на потребность квартиры, комнаты или дома в тепле?

При расчетах учитываются:

  • Объем. От него зависит количество воздуха, нуждающегося в нагреве;

Чем объемнее помещение, тем больше тепла нужно для поддержания постоянной температуры в нем.

Чем объемнее помещение, тем больше тепла нужно для поддержания постоянной температуры в нем.

Примерно одинаковая высота потолков (около 2,5 метров) в большинстве домов поздней советской постройки породила упрощенную систему расчета — по площади помещения.

  • Качество утепления. Оно зависит от теплоизоляции стен, площади и количества дверей и окон, а также от структуры остекления окон. Скажем, одинарное остекление и тройной стеклопакет будут сильно различаться по количеству теплопотерь;
  • Климатическая зона. При неизменных качестве утепления и объеме помещения разность температур между улицей и комнатой будет линейно связана с количеством теряющегося через стены и перекрытия тепла. При неизменных +20 в доме потребность дома в тепле в Ялте при температуре 0С и в Якутске при -40 будет различаться ровно втрое.

Зима в Якутске.

Зима в Якутске.

Для прибора

  1. Чем определяется тепловая мощность радиаторов отопления?

Здесь действует три фактора:

  • Дельта температур — перепад между теплоносителем и окружающей средой. Чем он больше, тем выше мощность;
  • Площадь поверхности. И здесь тоже наблюдается линейная зависимость между параметрами: чем больше площадь при неизменной температуре, тем больше тепла она отдает окружающей среде за счет прямого контакта с воздухом и инфракрасного излучения;

Именно поэтому алюминиевые, чугунные и биметаллические тепловые радиаторы отопления , а также все виды конвекторов снабжаются оребрением. Оно увеличивает мощность прибора при неизменном количестве протекающего через него теплоносителя.

Оребрение увеличивает поверхность теплообмена с воздухом.

Оребрение увеличивает поверхность теплообмена с воздухом.

  • Теплопроводность материала прибора. Оно играет особенно важную роль при большой площади оребрения: чем выше теплопроводность, тем более высокую температуру будут иметь края ребер, тем сильнее они нагреют контактирующий с ними воздух.

Расчет по площади

  1. Как максимально просто выполнить расчет мощности радиаторов отопления по площади квартиры или дома?

Вот самая простая схема вычислений: на 1 квадратный метр берется 100 ватт мощности. Так, для комнаты размером 4х5 м площадь будет равной 20 м2, а потребность в тепле — 20*100=2000 ватт, или два киловатта.

Самая простая схема вычисления - по площади.

Самая простая схема вычисления — по площади.

Помните поговорку «истина — в простом»? В этом случае она лжет.

Простая схема расчета пренебрегает слишком большим количеством факторов:

  • Высотой потолков. Очевидно, что комнате с потолками высотой 3,5 метра потребуется больше тепла, чем помещению высотой 2,4 м;
  • Теплоизоляцией стен. Эта методика расчета родилась в советскую эпоху, когда все многоквартирные дома имели примерно одинаковое качество теплоизоляции. С введением СНиП 23.02.2003, регламентирующего тепловую защиту зданий, требования к строительству радикально изменились. Поэтому для новых и старых зданий потребность в тепловой энергии может различаться весьма заметно;
  • Размером и площадью окон. Они пропускают куда больше тепла по сравнению со стенами;

Чем больше окно, тем больше утечка тепла через остекление.

Чем больше окно, тем больше утечка тепла через остекление.

  • Расположением комнаты в доме. Угловой комнате и помещению, расположенному в центре здания и окруженному теплыми соседскими квартирами, для поддержания одинаковой температуры потребуется весьма разное количество теплоты;
  • Климатической зоной. Как мы уже выяснили, для Сочи и Оймякона потребность в тепле будет различаться в разы.
  1. Можно ли вычислить мощность батареи отопления от площади более точно?

Само собой.

Вот сравнительно несложная схема расчета для домов, соответствующих требованиям пресловутого СНиП за номером 23.02.2003:

  • Базовое количество тепла рассчитывается не по площади, а по объему. На кубометр в расчеты закладывают 40 ватт;
  • Для примыкающих к торцам дома комнат вводится коэффициент 1,2, для угловых — 1,3, а для частных одноквартирных домов (у них все стены общие с улицей) — 1,5;

Угловое расположение комнаты означает увеличенные теплопотери через наружные стены.

Угловое расположение комнаты означает увеличенные теплопотери через наружные стены.

  • На одно окно к полученному результату добавляют 100 ватт, на дверь — 200;
  • Для разных климатических зон используются следующие коэффициенты:
Средняя температура самого холодного месяца Коэффициент
0 0,7
-5 0,9
-10 1
-15 1,2
-20 1,4
-25 1,5
-30 1,7
-40 2,0

Давайте в качестве примера подсчитаем потребность в тепле той же комнаты размером 4х5 метров, уточнив ряд условий:

  • Высота потолка 3 метра;

Такая высота типична для домов сталинской постройки.

Такая высота типична для домов сталинской постройки.

  • В комнате два окна;
  • Она угловая,
  • Комната расположена в городе Комсомольске-на-Амуре.

Город расположен в 400 км от областного центра - Хабаровска.

Город расположен в 400 км от областного центра — Хабаровска.

Приступим.

  • Объем помещения будет равным 4*5*3=60 м3;
  • Простой расчет по объему даст 40*60=2400 Вт;
  • Две общих с улицей стены заставят нас применить коэффициент 1,3. 2400*1,3 = 3120 Вт;
  • Два окна добавят еще 200 ватт. Итого 3320;
  • Подобрать соответствующий региональный коэффициент поможет приведенная выше таблица. Поскольку средняя температура самого холодного в году месяца — января — в городе равна 25,7, умножаем расчетную тепловую мощность на 1,5. 3320*1,5=4980 ватт.

Для Комсомольска характерны умеренно холодные и снежные зимы.

Для Комсомольска характерны умеренно холодные и снежные зимы.

Разница с упрощенной схемой расчета составила без малого 150%. Как видите, второстепенными деталями пренебрегать не стоит.

  1. Как рассчитать мощность отопительных приборов для дома, утепление которого не соответствует СНиП 23.02.2003?

Вот формула расчета для произвольных параметров здания:

Q=V*Dt*k/860.

В ней:

Q — мощность (она будет получена в киловаттах);

V — объем комнаты. Он вычисляется в кубометрах;

Dt — перепад температур между комнатой и улицей;

k — коэффициент утепления здания. Он равен:

Описание дома Коэффициент
Пенопластовая шуба, тройные или энергосберегающие стеклопакеты 0,6 — 0,9
Стены в два кирпича, окна с однокамерными стеклопакетами 1-1,9
Стены в один кирпич, одиночное остекление 2-2,9
Отсутствие теплоизоляции (стены из профлиста или листовой стали, одинарное остекление) 3-4

Неутепленный склад из профлиста.

Неутепленный склад из профлиста.

Как определить дельту температур с улицей? Инструкция довольно очевидна.

Внутреннюю температуру помещения принято брать равной санитарным нормам (18-22С в зависимости от климатической зоны и расположения комнаты относительно наружных стен дома).

Уличная берется равной температуре самой холодной пятидневки в году.

Давайте еще раз выполним расчет для нашей комнаты в Комсомольске, уточнив пару дополнительных параметров:

  • Стены дома — кладка в два кирпича;
  • Стеклопакеты — двухкамерные, без энергосберегающих стекол;

Окна с двухкамерными стеклопакетами типичны для Дальнего Востока.

Окна с двухкамерными стеклопакетами типичны для Дальнего Востока.

  • Средний минимум температуры, характерный для города — -30,8С. Санитарной нормой для комнаты с учетом ее углового расположения в доме будут +22С.

Согласно нашей формуле, Q=60*(+22 — -30,8)*1,8/860=6,63 КВт.

На практике лучше проектировать отопление с 20-процентным запасом по мощности на случай ошибки в расчетах или непредвиденных обстоятельств (заиливания отопительных приборов, отклонений от температурного графика и так далее). Уменьшить избыточную теплоотдачу поможет дросселирование подводок радиаторов.

Дроссель на подводке ограничивает расход тепла через радиатор.

Дроссель на подводке ограничивает расход тепла через радиатор.

Расчет для прибора

  1. Как выполнить расчет тепловой мощности радиаторов отопления при известном количестве секций?

Все просто: количество секций умножается на тепловой поток от одной секции. Этот параметр обычно можно найти на сайте производителя.

Если вас привлекла необычно низкая цена радиаторов неизвестного производителя — тоже не беда. В этом случае можно ориентироваться на следующие усредненные значения:

Тип радиатора Тепловой поток на секцию стандартного (500 мм по центрам ниппелей) размера
Чугунный 140-160
Биметаллический 180-190
Алюминиевый 190 — 200

На фото - алюминиевый радиатор, рекордсмен по теплоотдаче на одну секцию.

На фото — алюминиевый радиатор, рекордсмен по теплоотдаче на одну секцию.

Если вы выбрали конвектор или панельный радиатор, единственным источником информации для вас могут стать данные производителя.

Данные для панельных радиаторов Керми с сайта производителя.

Данные для панельных радиаторов Керми с сайта производителя.

Выполняя расчет тепловой мощности радиатора своими руками, учтите одну тонкость: производители обычно приводят данные для перепада температур между водой в батарее и воздухом в отапливаемом помещении в 70С. Она достигается, например, при комнатной температуре +20 и температуре радиатора +90.

Уменьшение дельты ведет к пропорциональному уменьшению тепловой мощности; так, при температурах теплоносителя и воздуха 60 и 25С соответственно мощность прибора уменьшится ровно вдвое.

Температурный график отопления. Большую часть отопительного сезона поступающая в батареи смесь (темно-синяя линия на графике) холоднее 90С.

Температурный график отопления. Большую часть отопительного сезона поступающая в батареи смесь (темно-синяя линия на графике) холоднее 90С.

Давайте обратимся к нашему примеру и выясним, сколько чугунных секций может обеспечить тепловую мощность в 6,6 КВт в идеальных условиях — при нагретом до 90С теплоносителе и комнатной температуре в +20. 6600/160=41 (с округлением) секция. Очевидно, что батареи такого размера придется разнести как минимум по двум стоякам.

При большом количестве секций используйте диагональное двухстороннее подключение к подводке. Тогда батарея будет равномерно прогрета по всей длине.

При большом количестве секций используйте диагональное двухстороннее подключение к подводке. Тогда батарея будет равномерно прогрета по всей длине.

Особый случай

  1. Системы отопления частных домов и гаражей нередко оборудуют самодельными приборами из соединенных перемычками труб — регистрами. Как подсчитать тепловую мощность стального регистра известных размеров?

Трубчатый стальной радиатор, или регистр.

Трубчатый стальной радиатор, или регистр.

Для одной секции (одной горизонтальной трубы) она вычисляется по формуле Q=Pi*D*L*K*Dt.

В ней:

  • Q -мощность. Результат будет получен в ваттах;
  • Pi — число «пи», его округленно берут равным 3,14;
  • D — наружный диаметр трубы в метрах;
  • L — длина секции (опять-таки в метрах);
  • K — коэффициент, соответствующий теплопроводности металла (у стали он равен 11,63);
  • Dt — разность температур между воздухом и водой в регистре.

При расчете мощности многосекционного регистра первая снизу секция рассчитывается по этой формуле, а для последующих, поскольку они будут находиться в восходящем теплом потоке (что влияет на Dt), результат умножается на 0,9.

Четырехсекционный регистр. Верхние секции попадают в восходящий теплый поток от нижней.

Четырехсекционный регистр. Верхние секции попадают в восходящий теплый поток от нижней.

Приведу пример расчета. Одна секция диаметром 108 мм и длиной 3 метра при комнатной температуре +25 и температуре теплоносителя +70 будет отдавать 3,14*0,108*3*11,63*(70-25)=532 ватта. Четырехсекционный регистр из таких же секций отдаст 523+(532*0,9*3)=1968 ватт.

Заключение

Как видите, тепловая мощность рассчитывается достаточно просто, но результат расчетов сильно зависит от второстепенных факторов. Как обычно, в видео в этой статье вы найдете дополнительную полезную информацию. Жду ваших дополнений. Успехов, камрады!

К выбору тепловой пушки нужно подходить ответственно. Слабый обогреватель не справится с отоплением на большой площади, а слишком мощный будет расходовать лишнюю энергию. Заранее вычислите, какая тепловая мощность воздухонагревателя в кВт нужна для вашего помещения.

Как определить мощность тепловой пушки

Формула для расчета минимальной тепловой мощности выглядит так:

V * T * k / 860 ккал/ч = Q

Чтобы определить минимальную тепловую мощность нагревателя, нужно знать следующие значения:

  • Q — необходимая тепловая мощность (кВт).
  • V — объем помещения (м³). Рассчитывается как произведение длины, ширины и высоты.
  • T — разница между температурой воздуха на улице и желательной температурой в помещении (C°).
  • k — коэффициент рассеяния тепла, зависящий от типа конструкции и теплоизоляции помещения.

Коэффициент рассеяния тепла, k

Тип помещения

3,0–4,0

  • Конструкция из дерева или профлиста.
  • Отсутствие теплоизоляции.

2,0–2,9

  • Упрощенная конструкция.
  • Кирпичные стены одиночной кладки.
  • Стандартное число окон, одинарные рамы.
  • Слабая теплоизоляция кровли.

1,0–1,9

  • Стандартная конструкция.
  • Кирпичные стены двойной кладки.
  • Мало окон или одинарные рамы.
  • Кровля со стандартной теплоизоляцией.

0,6–0,9

  • Утепленная конструкция.
  • Кирпичные стены с двухслойной изоляцией.
  • Мало окон, окна с двойными рамами.
  • Толстая основа пола.
  • Кровля с качественной теплоизоляцией.

Пример расчета мощности воздухонагревателя

Расскажем, как найти тепловую мощность пушки для комнаты площадью 15 метров, с высотой потолков 2,5 метров. Перемножаем значения, получаем объем комнаты 35,5 м³. Предположим, комната находится в новостройке. Возьмем средний коэффициент рассеяния тепла для утепленной квартиры — 1,5. Допустим, при температуре окружающей среды -15 °C мы хотим достичь температуры в комнате 20 °C. Итого разница температур — 35 °C.

С этими показателями расчет тепловой мощности будет выглядеть так:

Технические специалисты «ТМК» рекомендуют выбирать воздухонагреватели с небольшим запасом. Таким образом, для нашего помещения подойдут тепловые пушки мощностью 3 кВт.

Читайте рейтинг электрических тепловых пушек за 2017–2018 года.

Электрический воздухонагреватель Master B 9 EPB

Нагревательный элемент

ТЭН

Рекомендуемая площадь обогрева, м²

90

Количество режимов нагрева

3

Электрический воздухонагреватель Master B 22 EPA/EPB

Воздухонагреватель электрический Master B 22 EPA/EPB может использоваться как для обогрева офисных и складских помещений, так и для просушки поверхностей после отделочных работ. Широчайший спектр применения делает это оборудование востребованным среди специалистов множества сфер. Электрический воздухонагреватель Master безопасен и неприхотлив в эксплуатации. Он не производит шумов и вредных выхлопов, что позволяет включать его даже в местах, где постоянно находятся люди. Питание от электрической сети даст вам возможность не беспокоиться о заполнении топливного бака и спокойно оставлять технику работать. Современные системы защиты отключат ее самостоятельно при появлении первых признаков неполадок.

Нагревательный элемент

ТЭН

Рекомендуемая площадь обогрева, м²

200

Тепловая мощность, кВт

22

Количество режимов нагрева

4

Электрический воздухонагреватель RedVerg RD-EHS2

Воздухонагреватель электрический RedVerg RD-EHS2 безопасен для людей. Компактные размеры и небольшой вес позволяют без труда транспортировать его и располагать в помещениях любой площади. Термостат даст вам возможность контролировать рабочие параметры оборудования и настраивать его так, чтобы добиться максимальной эффективности при обогреве. Техника RedVerg станет превосходным выбором для вашего дома и предприятия.

Электрический воздухонагреватель RedVerg RD-EHS2

Нагревательный элемент

ТЭН

Рекомендуемая площадь обогрева, м²

20

Количество режимов нагрева

2

Электрический воздухонагреватель RedVerg RD-EHR9/380TR

Воздухонагреватель электрический RedVerg RD-EHR9/380TR — переносной электрический воздухонагреватель с тепловой мощностью 9 кВт. Отличается компактными габаритами. Поддерживает три режима работы. Не распространяет посторонних запахов при эксплуатации. Термостат фиксирует температуру воздуха на входе и в дальнейшем контролирует температуру в помещении. Термовыключатель с самовозвратом отключает устройство при перегреве в целях обеспечения безопасности. Нагревательный элемент изготовлен из нержавеющей стали. Выключатель выбора режимов нагрева. Удобная рукоятка для транспортировки. Корпус из листовой стали покрыт огнеупорной краской. Предназначен для работы от сети 380 В. Вес товара 12 кг.

Электрический воздухонагреватель RedVerg RD-EHR9/380TR

Нагревательный элемент

ТЭН

Рекомендуемая площадь обогрева, м²

150

Количество режимов нагрева

3

Понравилась статья? Поделить с друзьями:
  • Как вы нашли работу кадровика
  • Как найти точку через середину отрезка
  • Как найти месячный оклад
  • Как найти сопротивление маленькое
  • Как найти средний возраст лет