Математика как найти магический квадрат


Загрузить PDF


Загрузить PDF

Магические квадраты обрели популярность наряду с появлением математических игр, таких как судоку. Магический квадрат — это таблица, заполненная целыми числами таким образом, чтобы сумма чисел по горизонтали, вертикали и диагонали была одинакова (так называемая магическая константа). Эта статья расскажет вам, как построить квадрат нечетного порядка, квадрат порядка одинарной четности и квадрат порядка двойной четности.

  1. Изображение с названием Solve a Magic Square Step 1

    1

    Вычислите магическую константу.[1]
    Это можно сделать при помощи простой математической формулы [n * (n2 + 1)] / 2, где n – количество строк или столбцов в квадрате. Например, в квадрате 3×3 n=3, а его магическая константа:

    • Магическая константа = [3 * (32 + 1)] / 2
    • Магическая константа = [3 * (9 + 1)] / 2
    • Магическая константа = (3 * 10) / 2
    • Магическая константа = 30/2
    • Магическая константа квадрата 3х3 равна 15.
    • Сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.
  2. Изображение с названием Solve a Magic Square Step 2

    2

    Напишите 1 в центральной ячейке верхней строки. Строить любой нечетный квадрат нужно именно с этой ячейки. Например, в квадрате 3х3 напишите 1 во второй ячейке верхней строки, а в квадрате 15х15 напишите 1 в восьмой ячейке верхней строки.

  3. Изображение с названием Solve a Magic Square Step 3

    3

    Следующие числа (2,3,4 и так далее по возрастанию) записывайте в ячейки по правилу: одна строка — вверх, один столбец — вправо. Но, например, чтобы записать 2, нужно «выйти» за пределы квадрата, поэтому существуют три исключения из данного правила:

    • Если вы вылезли за верхний предел квадрата, напишите цифру в самой нижней ячейке соответствующего столбца.
    • Если вы вылезли за правый предел квадрата, напишите цифру в самой дальней (левой) ячейке соответствующей строки.
    • Если вы попали на ячейку, которая занята другой цифрой, напишите цифру непосредственно под предыдущей записанной цифрой.

    Реклама

  1. Изображение с названием Solve a Magic Square Step 4

    1

    Существуют различные методики для построения квадратов порядка одинарной четности и двойной четности.

    • Число строк или столбцов в квадрате порядка одинарной четности делится на 2, но не на 4.[2]
    • Наименьшим квадратом порядка одинарной четности является квадрат 6х6 (квадрат 2×2 построить нельзя).
  2. Изображение с названием Solve a Magic Square Step 5

    2

    Вычислите магическую константу. Это можно сделать при помощи простой математической формулы [n * (n2 + 1)] / 2, где n – количество строк или столбцов в квадрате. Например, в квадрате 6×6 n=6, а его магическая константа:

    • Магическая константа = [6 * (62 + 1)] / 2
    • Магическая константа = [6 * (36 + 1)] / 2
    • Магическая константа = (6 * 37) / 2
    • Магическая константа = 222/2
    • Магическая константа квадрата 6х6 равна 111.
    • Сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.
  3. Изображение с названием Solve a Magic Square Step 6

    3

    Разделите магический квадрат на четыре квадранта одинакового размера. Обозначьте квадранты через А (сверху слева), C (сверху справа), D (снизу слева) и B (снизу справа). Чтобы выяснить размер каждого квадранта, разделите n на 2.

    • Таким образом, в квадрате 6х6 размер каждого квадранта равен 3×3.
  4. Изображение с названием Solve a Magic Square Step 7

    4

    В квадранте А напишите четвертую часть всех чисел; в квадранте В напишите следующую четвертую часть всех чисел; в квадранте С напишите следующую четвертую часть всех чисел; в квадранте D напишите заключительную четвертую часть всех чисел.

    • В нашем примере квадрата 6х6 в квадранте А напишите числа 1-9; в квадранте В — числа 10-18; в квадранте С — числа 19-27; в квадранте D — числа 28-36.
  5. Изображение с названием Solve a Magic Square Step 8

    5

    Числа в каждом квадранте записывайте так, как вы строили нечетный квадрат. В нашем примере квадрант А начните заполнять числами с 1, а квадранты С, B, D — с 10, 19, 28, соответственно.

    • Число, с которого вы начинаете заполнение каждого квадранта, всегда пишите в центральной ячейке верхней строки определенного квадранта.
    • Заполняйте каждый квадрант числами так, как будто это отдельный магический квадрат. Если при заполнении квадранта доступна пустая ячейка из другого квадранта, игнорируйте этот факт и пользуйтесь исключениями из правила заполнения нечетных квадратов.
  6. Изображение с названием Solve a Magic Square Step 9

    6

    Выделите определенные числа в квадрантах А и D.[3]
    На данном этапе сумма чисел в столбцах, строках и по диагонали не будет равна магической константе. Поэтому вы должны поменять местами числа в определенных ячейках верхнего левого и нижнего левого квадрантов.

    • Начиная с первой ячейки верхней строки квадранта А, выделите количество ячеек, равное медиане количества ячеек во всей строке. Таким образом, в квадрате 6×6 выделите только первую ячейку верхней строки квадранта А (в этой ячейке написано число 8); в квадрате 10х10 вам нужно выделить первые две ячейки верхней строки квадранта А (в этих ячейках написаны числа 17 и 24).
    • Образуйте промежуточный квадрат из выделенных ячеек. Так как в квадрате 6х6 вы выделили только одну ячейку, то промежуточный квадрат будет состоять из одной ячейки. Назовем этот промежуточный квадрат как A-1.
    • В квадрате 10х10 вы выделили две ячейки верхней строки, поэтому необходимо выделить две первые ячейки второй строки, чтобы образовать промежуточный квадрат 2х2, состоящий из четырех ячеек.
    • В следующей строке пропустите число в первой ячейке, а затем выделите столько чисел, сколько вы выделили в промежуточном квадрате A-1. Полученный промежуточный квадрат назовем A-2.
    • Получение промежуточного квадрата А-3 аналогично получению промежуточного квадрата A-1.
    • Промежуточные квадраты А-1, А-2, А-3 образуют выделенную область А.
    • Повторите описанный процесс в квадранте D: создайте промежуточные квадраты, которые образуют выделенную область D.
  7. Изображение с названием Solve a Magic Square Step 10

    7

    Поменяйте местами числа из выделенных областей А и D (числа из первой строки квадранта А с числами из первой строки квадранта D и так далее). Теперь сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.

    Реклама

  1. Изображение с названием Solve a Magic Square Step 11

    1

    Число строк или столбцов в квадрате порядка двойной четности делится на 4.[4]

    • Наименьшим квадратом порядка двойной четности является квадрат 4х4.
  2. Изображение с названием Solve a Magic Square Step 12

    2

    Вычислите магическую константу. Это можно сделать при помощи простой математической формулы [n * (n2 + 1)] / 2, где n – количество строк или столбцов в квадрате. Например, в квадрате 4×4 n=4, а его магическая константа:

    • Магическая константа = [4 * (42 + 1)] / 2
    • Магическая константа = [4 * (16 + 1)] / 2
    • Магическая константа = (4 * 17) / 2
    • Магическая константа = 68/2
    • Магическая константа квадрата 4х4 равна 34.
    • Сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.
  3. Изображение с названием Solve a Magic Square Step 13

    3

    Создайте промежуточные квадраты А-D. В каждом углу магического квадрата выделите промежуточный квадрат размером n/4, где n – количество строк или столбцов в магическом квадрате.[5]
    Обозначьте промежуточные квадраты как A, B, C, D (в направлении против часовой стрелки).

    • В квадрате 4×4 промежуточные квадраты будут состоять из угловых ячеек (по одной в каждом промежуточном квадрате).
    • В квадрате 8х8 промежуточные квадраты будут иметь размер 2×2.
    • В квадрате 12х12 промежуточные квадраты будут иметь размер 3×3 (и так далее).
  4. Изображение с названием Solve a Magic Square Step 14

    4

    Создайте центральный промежуточный квадрат. В центре магического квадрата выделите промежуточный квадрат размером n/2, где n – количество строк или столбцов в магическом квадрате. Центральный промежуточный квадрат не должен пересекаться с угловыми промежуточными квадратами, но должен касаться их углов.

    • В квадрате 4×4 центральный промежуточный квадрат имеет размер 2×2.
    • В квадрате 8×8 центральный промежуточный квадрат имеет размер 4×4 (и так далее).
  5. Изображение с названием Solve a Magic Square Step 15

    5

    Начните строить магический квадрат (слева направо), но числа записывайте только в ячейки, расположенные в выделенных промежуточных квадратах. Например, квадрат 4×4 вы заполните так:

    • Напишите 1 в первой строке первом столбце; напишите 4 в первой строке четвертом столбце.
    • Напишите 6 и 7 в центре второй строки.
    • Напишите 10 и 11 в центре третьей строки.
    • Напишите 13 в четвертой строке первого столбца; напишите 16 в четвертой строке четвертого столбца.
  6. Изображение с названием Solve a Magic Square Step 16

    6

    Оставшиеся ячейки квадрата заполняются аналогичным образом (слева направо), но числа нужно записывать в порядке убывания и только в ячейки, расположенные вне выделенных промежуточных квадратов. Например, квадрат 4×4 вы заполните так:

    • Напишите 15 и 14 в центре первой строки.
    • Напишите 12 во второй строке первого столбца; напишите 9 во второй строке четвертого столбца.
    • Напишите 8 в третьей строке первого столбца; напишите 5 в третьей строке четвертого столбца.
    • Напишите 3 и 2 в центре четвертой строки.
    • Теперь сумма чисел в любой строке, столбце и по диагонали должна быть равна магической константе.

    Реклама

Советы

  • Воспользуйтесь описанными методами и найдите свой способ решения магических квадратов.

Реклама

Что вам понадобится

  • Карандаш
  • Бумага
  • Ластик

Похожие статьи

Об этой статье

Эту страницу просматривали 352 246 раз.

Была ли эта статья полезной?

История

Археологи нашли свидетельства того, что волшебные таблицы были известны еще древним грекам и китайцам. «Магическими» эти фигуры назвали арабы, которые наделяли их сверхъестественными защитными свойствами.

В середине XVI в. европейские математики занялись исследованиями загадочных таблиц, положив начало их новой жизни. Они искали общий метод построения магических квадратов и пытались описать все возможные их варианты.

На уроках математики в школе

Решение магических квадратов на уроках математики и внеклассных занятиях вызывает интерес, способствует развитию мышления. Дети учатся планировать и контролировать свою работу. В клетки магических квадратов можно записывать не только числа, но и выражения. Все зависит от изучаемой темы. Задания с магическими квадратами часто дают как дополнительные или олимпиадные уже в начальной школе.

Один из способов решения магического квадрата

Нетрудно решить магический квадрат третьего порядка (у которого по три столбца и строки). Можно воспользоваться тем фактом, что число (выражение), стоящее на пересечении его диагоналей, всегда равно ⅓ волшебной суммы. Отсюда следует алгоритм построения:

  1. Вписываем  в первую строку или столбец 3 любых числа.
  1. Вычисляем магическую сумму (0 + 2 + 4 = 6).
  2. Ищем ее третью часть (6/3 = 2).
  3. Полученное число записываем на пересечении диагоналей.
  1. Подбираем остальные числа и заполняем ими пустые клеточки квадрата.

Смотрите также:

  • Презентация «Магические квадраты»; 2 класс 
  • Презентация «Магические квадрат»; 2-3 класс
  • Сценарий мероприятия «Магические квадраты и фокусы»; 5 класс
  • Серия «Гимнастика для ума». Магические квадраты; 3-4 класс

Как рассчитать магический квадрат Пифагора самому?

Пифагор — математик, заложивший основы нумерологии. Ученый верил, что миром правят числа. Даже человеческая сущность зависит от них, ведь дата рождения не что иное, как число.

Магический квадрат Пифагора — фигура третьего порядка, клетки которой заполнены числами от 1 до 9. Он делится на 3 уровня: материальный, души и разума.

Цифры даты рождения вписываются в определенном порядке. Полученная комбинация рассказывает о заложенных природой способностях человека.

Материал может быть использован на занятии математического кружка, на внеклассном мероприятии. Цель — развить и расширить познавательный кругозор и логическое мышление.

Решаем магический квадрат Пифагора: пример

Дата рождения: 17.09.2005 г. Складываем эти цифры, не учитывая нули: 1 + 7 + 9 + 2 + 5 = 24. Аналогично поступаем с цифрами результата: 2 + 4 = 6.

Из первой суммы вычитаем удвоенную первую цифру дня рождения: 24 -2 = 22. Снова складываем: 2 + 2 = 4. Полученные числа: 17; 9; 25; 24; 6; 22; 4.

Цифры вписываем в магический квадрат так, чтобы все единицы оказались в первой клеточке, двойки — во второй и так далее. Нули не учитываем.

Результат:

Значение:

Клетка 1 – волевые качества, эгоизм.

1

Очень эгоистичные люди.

11

Эгоизм — яркая, но не преобладающая черта характера.

111

Спокойные, покладистые люди.

1111

Сильный, волевой человек.

11111

Люди с замашками диктатора.

111111

Жестокость.

Клетка 2 — биоэнергетика.

Воспитанность, природное благородство.

2

Люди с повышенной чувствительностью к атмосферным изменениям.

22

Человек с хорошим запасом биоэнергетики.

222

Экстрасенсы.

Клетка 3 — организованность, любовь к точности, конкретности, скрупулезность, скупость.

Чем больше троек, тем сильнее выражены вышеперечисленные качества.

Клетка 4 — здоровье.

4

Среднее, требуется закаливание.

44

Все в норме.

444 и более

Очень крепкое здоровье.

Клетка 5 — интуиция, экстрасенсорные способности

Чем больше пятерок, тем более выражена связь с космосом.

Клетка 6 — материализм.

Люди с неординарным воображением, которым необходим физический труд.

6

Могут посвятить время и творчеству, и точным наукам. Физические нагрузки обязательны.

66

Заземленные личности, тянущиеся к физическому труду.

666

Повышенная темпераментность.

6666

Очень много заземленности.

Клетка 7 — талант.

Чем больше семерок, тем талантливее человек.

Клетка 8 — судьба, отношение к обязанностям.

Чувства долга нет.

8

Добросовестные личности.

88

Люди, которые всегда спешат помочь другим.

888

Признак служения народу.

8888

Парапсихологические способности.

Клетка 9 — умственные способности

Полное отсутствие девяток означает очень низкий уровень умственной деятельности. Чем больше количество девяток, тем умнее человек.

Задачи на составление магических квадратов часто включаются в сборники нестандартных заданий. Они встречаются на олимпиадах. Увлеченным математикой школьникам будет полезно узнать об этом классе задач. 

Об авторе: Филиппова Оксана, учитель математики, физики и информатики.

Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.


Магическая константа M — сумма чисел в каждой строке, столбце и на диагоналях.

Для квадрата любой размерности n∙n минимальная магическая константа вычисляется по следующей формуле:

M = n(n2 + 1)/2

I. Магический квадрат 3×3

Для квадрата размера 3×3 минимально возможная магическая константа будет равна:

3(32 + 1)/2 = 3(9 + 1)/2 = 15

Подчеркнём, что 15 — это не единственно возможная магическая константа для квадрата 3×3, а константа, меньше которой других констант для этого квадрата быть не может.

Важное правило, которое вам пригодится при построении магического квадрата 3×3:

Число в центре квадрата 3×3 всегда в три раза меньше магической константы.

То есть, если у нас магическая константа M = 15, то в центре квадрата 3×3 будет стоять

15:3 = 5.

Для дальнейшего составления магического квадрата с магической константой M=15 расставьте по углам чётные числа 2,4,8,6.

Как видим, по сумма чисел на диагоналях квадрата равна 15, то есть магической константе.

Хотите, чтобы ваш ребёнок обучался самостоятельно?
Вам поможет наш ВИДЕОКУРС

Зная магическую константу и по два числа в ряду и столбце, мы можем вписать третье число в ряд и столбец. Определить это число очень просто — надо из магической константы вычесть два числа из ряда или столбца.

Применив этот метод, мы получим полностью заполненный магический квадрат:

Ещё одно важное правило построения магических квадратов:

Если у нас есть один магический квадрат, и мы все числа этого квадрата увеличим на одно и то же число или умножим на одно и то же число, то у нас опять получится квадрат. Это правило достаточно очевидно.

Пример 1. К числам в нашем магическом квадрате с M=15 прибавим 3 и 5

Как видим, у первого квадрата сумма чисел по вертикали, горизонтали и диагонали одинакова и составляет 24 (это и есть его магическая константа), а у второго квадрата магическая константа равна 30.

У этих двух квадратов число в центре по прежнему в три раза меньше, чем магическая константа (8 у первого квадрата и 10 у второго).

Пример 2. Числа нашего магического квадрата с M=15 умножим на 2 и на 3

Как видим, в первом случае, после умножения чисел на два, мы получили квадрат с магической константой 30 — та же самая константа, что и после того, как в первом примере мы увеличили все числа на 5. Но при этом, несмотря на то, что у этих двух магических квадратах одинаковые магические константы, числа при этом в клетках разные — а вот число в центральном квадрате одно и то же — это 10.

Так и должно быть, ведь, как было сказано выше, в магическом квадрате 3×3 число в центральной клетке должно быть в три раза меньше магической константы. Т.к. магическая константа у обеих магических квадратов одинаковая, то и центральное число одно и то же.

Задача 1.

Постройте магический квадрат с магической константой 39.

Зная магическую константу, мы легко найдём число, которое должно быть в центральной клетке — нужно магическую константу разделить на 3. 39:3 = 13.

Далее можно или подбирать числа (помня о том, что сумма чисел по диагонали, по горизонтали и по вертикали должна быть равна магической константе) или, для ускорения процесса, воспользоваться знанием чисел магического квадрата с минимальной магической константой M = 15.

ВИДЕОКУРС 2plus2.online по решению олимпиадных задач по математике для 4 класса и задач из вступительных экзаменов в 5-й класс физматшколы.

Напомним этот квадрат:

В центре этого квадрата — число 5. В центре того квадрата, который мы должны построить — число 13.

Разница между этими числами составляет 8. И, как следует из правила, которое мы написали выше, если все числа одного магического квадрата увеличить на одно и то же число, то получится другой магический квадрат.

Достаточно запомнить, что в центре минимального магического квадрата — 5, а по углам — чётные числа 2, 4, 6, 8. Таким образом, нам надо увеличить эти числа на 8. Далее будет легко заполнить оставшиеся клетки (числа в них вычисляются как магическая константа минус числа в ряду или столбце).

В итоге получится вот такой квадрат:

Задача 2.

Достройте магический квадрат

В этом квадрате мы знаем число в центральной клетке (9), а, значит, мы знаем магическую константу, которая в 3 раза больше и равна 27. Ну а зная магическую константу и три первоначальных числа, вписать оставшиеся числа в клетки не составит труда.

Решение:

ВИДЕОКУРС 2plus2.online по решению олимпиадных задач по математике для 4 класса и задач из вступительных экзаменов в 5-й класс физматшколы.

II. Магический квадрат 4×4

Мы не будем подробно останавливаться на магических квадратах 4×4 — они почти не встречаются на математических олимпиадах и вступительных экзаменах в физматшколы, но общее представление о них дадим.

Минимально возможная магическая константа вычисляется всё по той же формуле:

M = n(n2 + 1)/2

M = 4(42 + 1)/2 = 34.

У квадрата 4×4 обе стороны чётные, а это значит, что центральной клетки, в отличие от квадрата 3×3, у него нет, и нет соответствующей закономерности, с ним связанной.

Однако, у этого квадрата есть другие закономерности:

Помимо того, что у магического квадрата 4×4 равна сумма числе по диагонали, вертикали и горизонтали, у него сумма чисел в угловых квадратах 2×2 равна магической константе M, сумма чисел в центральном квадрате 2×2 также равна M, и сумма чисел в углах квадрата тоже равна M.

Сумма чисел в левом верхнем квадрате 2×2: 16+3+5+10 = 34. В трёх других угловых квадратах 2×2 сумма также равна магической константе, о чём и сказано выше.

Сумма чисел в центральном квадрате 2×2 также равна магической константе 34: 10+11+6+7 = 34.

Сумма чисел в углах магического квадрата тоже равна магической константе: 16+13+4+1 = 34

Виды магических квадратов

История и современное применение

Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.

Магический квадрат история

В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.

В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.

С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.

Квадрат нечётного порядка

Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.

Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:

Как решать магические квадраты

Как работает магический квадрат

  1. Подсчитывается сумма, которая должна получиться в каждой строке. Для этого используется формула: 3 * (32 +1) / 2 = 3 * 10 / 2. Ответом будет число 15.
  2. Числа в ячейках расставляются так, чтобы сумма их была равна 15 в каждой строчке. Это требует смекалки и воображения.
  3. В средней клетке верхней строки вписывается 1.
  4. Каждое следующее число ставится справа по диагонали вверх. Поставить цифру 2 нельзя, так как выше нет строк. Если мысленно добавить сверху ещё один квадрат, цифра 2 окажется в его нижнем правом углу. Значит, цифра 2 вписывается в нижнюю правую клетку.
  5. По тому же принципу вписывается цифра 3. Она попадает в среднюю ячейку слева.
  6. Если нужная клетка уже занята, очередной символ вписывается ниже предыдущего. Таким образом, 4 ставится под 3.
  7. Записывается цифра 5 по диагонали вправо и вверх, а 6 в верхний угол справа.
  8. Поскольку место цифры 7 уже занято, она вписывается ниже 6.
  9. Восьмёрка занимает место в левом нижнем углу.
  10. Оставшуюся клетку занимает девятка.

Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.

Одинарная чётность

Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.

Вычисление магической константы

Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.

Магический квадрат по математике

Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.

Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.

Дальнейшие действия

Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.

Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:

Математический магический квадрат

  1. Минимальное число, которым начинается заполнение ячеек, всегда ставится в верхнем ряду посередине. У каждой части эта ячейка находится отдельно.
  2. Каждая часть заполняется как новый математический объект. Даже если есть пустое место в другом квадрате, его в этих случаях игнорируют.

В блоках А и D на этой стадии решения сумма в строках и столбиках будет отличаться от постоянной. Чтобы это исправить, некоторые числа меняют местами между собой.

Алгоритм действий:

Цифры в квадрате

  1. Начинать нужно с крайней левой клетки в верхней строке. Если фигура имеет размеры 6х6, выделяется только первая верхняя строка части А. В ней должно быть вписано число 8. Если величина таблицы составляет 10х10, выделяют 2 первые клетки в верхнем ряду. В них стоят 17 и 24.
  2. Из выделенных клеток формируется промежуточный квадрат. В таблице с количеством строк и столбцов 6х6 он будет состоять из 1 клетки. Его условно обозначают А1.
  3. Если размер 10х10, в верхней строке выделяется 2 первые ячейки. Вместе с ними выделяется ещё 2 клетки, во второй строке получается поле из 4 прилежащих друг к другу ячеек.
  4. В следующей строке первая ячейка пропускается, затем выделяется столько клеток, сколько было в промежуточной таблице А1. Полученную фигуру можно обозначить А2.
  5. Таким же способом строят промежуточный квадрат А3.
  6. Эти 3 промежуточных фигуры формируют выделенную область А.
  7. Далее переходят в квадрант D и формируют обособленную область D.

Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.

Двойной порядок

Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.

Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.

Магический квадрат 15

В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:

  1. Если длина стороны составляет 4 ячейки, промежуточные зоны будут иметь по 1 клетке.
  2. В таблице 8х8 эти области включают 4 элемента (2х2).
  3. В квадрате 12х12 выделяются промежуточные фигуры размером 3х3.

Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.

Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:

  1. В первой сверху строке и первом слева столбце пишется 1. В верхней клетке четвертого столбика — 4.
  2. В центр второй горизонтальной строчки ставятся цифры 6 и 7.
  3. В четвёртой строке слева пишется 13, а справа — 16.

По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.

Среди поклонников логических игр большой популярностью пользуется магический квадрат. Он представляет собой таблицу, заполненную особым образом цифрами. Причём сумма чисел одинакова по всем направлениям. Эту величину принято называть константой. Существует множество вариантов таких головоломок разной степени сложности.

Магический квадрат - виды, правила и примеры решения

Содержание

  • История и современное применение
  • Квадрат нечётного порядка
  • Одинарная чётность
    • Вычисление магической константы
    • Дальнейшие действия
  • Двойной порядок

История и современное применение

Первые подобные таблицы использовались ещё в Древней Греции и Китае. Это подтверждено археологическими находками. Арабы называли квадраты магическими, так как верили, что они обладают волшебными свойствами и могут защитить от многих напастей.

Магический квадрат - виды, правила и примеры решения

В середине XVI в. вопросом о том, как работает магический квадрат, заинтересовались математики в Европе. Они начали активно исследовать загадочные сочетания цифр. Учёные стремились вывести общие принципы построения квадратов и найти всё множество возможных вариантов.

В современной общеобразовательной школе разные виды магических квадратов используются на уроках математики. Они способствуют развитию логического мышления и вызывают у детей живой интерес.

С их помощью школьники учатся планировать свою работу и контролировать её. В клетки можно вписывать не только отдельные цифры, но и математические выражения. Задачи на эту тему часто предлагаются на математических олимпиадах. Решать такие числовые задачи можно и онлайн.

Квадрат нечётного порядка

Среди несложных магических квадратов по математике выделяют разновидности чётного и нечётного порядка. Первая группа подразделяется на таблицы одинарной и двойной чётности.

Начальным шагом во всех случаях будет определение магической константы. Делается это с помощью специальной формулы [n * (n2 + 1)] / 2. Разобраться с принципом решения задачи этого класса можно на самом простом примере. Для этого выстраивается таблица из 9 ячеек. В неё нужно расставить цифры от 1 до 9. Дальнейший алгоритм:

Магический квадрат - виды, правила и примеры решения

Магический квадрат - виды, правила и примеры решения

  • Подсчитывается сумма, которая должна получиться в каждой строке. Для этого используется формула: 3 * (32 +1) / 2 = 3 * 10 / 2. Ответом будет число 15.
  • Числа в ячейках расставляются так, чтобы сумма их была равна 15 в каждой строчке. Это требует смекалки и воображения.
  • В средней клетке верхней строки вписывается 1.
  • Каждое следующее число ставится справа по диагонали вверх. Поставить цифру 2 нельзя, так как выше нет строк. Если мысленно добавить сверху ещё один квадрат, цифра 2 окажется в его нижнем правом углу. Значит, цифра 2 вписывается в нижнюю правую клетку.
  • По тому же принципу вписывается цифра 3. Она попадает в среднюю ячейку слева.
  • Если нужная клетка уже занята, очередной символ вписывается ниже предыдущего. Таким образом, 4 ставится под 3.
  • Записывается цифра 5 по диагонали вправо и вверх, а 6 в верхний угол справа.
  • Поскольку место цифры 7 уже занято, она вписывается ниже 6.
  • Восьмёрка занимает место в левом нижнем углу.
  • Оставшуюся клетку занимает девятка.
  • Общий алгоритм выполнения задания: каждый следующий знак пишется вверх и правее. Если там нет клетки — дорисовывается ещё один воображаемый квадрат. Если ячейка занята — число записывается ниже предыдущего. Таким способом можно составить любой квадрат нечётного порядка, включая самые сложные, с больши́м числом ячеек.

    Одинарная чётность

    Магические квадраты могут иметь порядок одинарной или двойной чётности. Для каждого случая предусмотрена отдельная методика вычисления. У таблиц одинарной чётности количество клеток в одной строке или столбце делится пополам, но не делится на четыре. Наименьшим квадратом, отвечающим этому требованию, будет прямоугольник 6х6. Фигуру 2х2 построить и заполнить невозможно.

    Вычисление магической константы

    Первый этап расчётов проводится по формуле [n * (n2 + 1)] / 2, где символом n обозначено число клеток в одном ряду. Если взять за пример квадрат 6х6, расчёт будет выглядеть следующим образом: [6 х (36 + 1)]: 2 = (6 х 37): 2 = 222:2.

    Магический квадрат - виды, правила и примеры решения

    Волшебная постоянная прямоугольника со стороной 6 клеток равна 111. Общая сумма чисел от 1 до 36 в каждой строке и в разных направлениях должна быть равна 111.

    Рисунок делится на 4 одинаковые части. В каждой будет по 9 клеток (3х3). Каждую часть обозначают латинскими буквами: А — верхняя левая, С — верхняя правая, D — нижняя левая и В — нижняя правая часть. Если квадрат имеет другой размер, n делится на 2, чтобы узнать точную величину каждой из 4 частей.

    Дальнейшие действия

    Следующий шаг — вписывание в каждую часть ¼ всех чисел. В квадрант А вносятся числа от 1 до 9, в квадрант В — от 10 до 18, в части С — от 19 до 27, в D — от 28 до 36.

    Последовательность вписывания такая же, как при заполнении простейшего нечётного квадрата:

    Магический квадрат - виды, правила и примеры решения

  • Минимальное число, которым начинается заполнение ячеек, всегда ставится в верхнем ряду посередине. У каждой части эта ячейка находится отдельно.
  • Каждая часть заполняется как новый математический объект. Даже если есть пустое место в другом квадрате, его в этих случаях игнорируют.
  • В блоках А и D на этой стадии решения сумма в строках и столбиках будет отличаться от постоянной. Чтобы это исправить, некоторые числа меняют местами между собой.

    Алгоритм действий:

    Магический квадрат - виды, правила и примеры решения

  • Начинать нужно с крайней левой клетки в верхней строке. Если фигура имеет размеры 6х6, выделяется только первая верхняя строка части А. В ней должно быть вписано число 8. Если величина таблицы составляет 10х10, выделяют 2 первые клетки в верхнем ряду. В них стоят 17 и 24.
  • Из выделенных клеток формируется промежуточный квадрат. В таблице с количеством строк и столбцов 6х6 он будет состоять из 1 клетки. Его условно обозначают А1.
  • Если размер 10х10, в верхней строке выделяется 2 первые ячейки. Вместе с ними выделяется ещё 2 клетки, во второй строке получается поле из 4 прилежащих друг к другу ячеек.
  • В следующей строке первая ячейка пропускается, затем выделяется столько клеток, сколько было в промежуточной таблице А1. Полученную фигуру можно обозначить А2.
  • Таким же способом строят промежуточный квадрат А3.
  • Эти 3 промежуточных фигуры формируют выделенную область А.
  • Далее переходят в квадрант D и формируют обособленную область D.
  • Цифры, которые были вписаны в выделенных треугольниках А и D, нужно поменять между собой местами. После этого сумма в каждой строке должна быть одинаковой. Она равняется вычисленной магической константе.

    Двойной порядок

    Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.

    Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.

    Магический квадрат - виды, правила и примеры решения

    В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:

  • Если длина стороны составляет 4 ячейки, промежуточные зоны будут иметь по 1 клетке.
  • В таблице 8х8 эти области включают 4 элемента (2х2).
  • В квадрате 12х12 выделяются промежуточные фигуры размером 3х3.
  • Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.

    Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:

  • В первой сверху строке и первом слева столбце пишется 1. В верхней клетке четвертого столбика — 4.
  • В центр второй горизонтальной строчки ставятся цифры 6 и 7.
  • В четвёртой строке слева пишется 13, а справа — 16.
  • По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.

    Предыдущая

    МатематикаАлгоритм Евклида — формулы, правила и примеры решения задач

    Следующая

    МатематикаМинор матрицы — способы, порядок и примеры вычисления

    Понравилась статья? Поделить с друзьями:
  • Если огурцы в банке пересолены как исправить
  • Как составить карьерный план образец
  • Медсестре как найти мужа
  • Как скоро я найду мужа
  • Как составить смету в смета ру руководство для чайников