Медиана в математической статистике как найти

Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (среднее арифметическое) или максимальную частоту (мода), но и как некоторую отметку (значение в совокупности), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. Половина исходных данных меньше этой отметки, а половина – больше. Это и есть медиана

Итак, медиана в статистике – это уровень показателя, который делит набор данных на две равные половины. Значения в одной половине меньше, а в другой больше медианы. В качестве примера обратимся к набору нормально распределенных случайных чисел.

Симметричное распределение с медианой и средней арифметической

Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение. 

Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше. Но если в процессе присутствует важный и неконтролируемый фактор, то могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану.

Медиана и среднее при наличие аномальных отклонений

Медиана выборки – это альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам). 

Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объектов около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.). 

Формула медианы

Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.

Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:

Определение порядка центрального значения

где

Me – номер значения, соответствующего медиане,

N – количество значений в совокупности данных.

Тогда медиана обозначается, как

Определение медианы по центральному значению

Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:

Определение медианы при четном количестве данных

В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу. 

Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.

Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.

Обратимся к наглядной схеме.

Схема нахождения медианного значения

Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:

Формула медианы

где xMe — нижняя граница медианного интервала;

iMe — ширина медианного интервала;

∑f/2 — количество всех значений, деленное на 2 (два);

S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;

fMe — число наблюдений в медианном интервале.

Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%. 

Для примера рассчитаем медиану по следующим данным.

Данные для расчета медианы

Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.

Расчет медианы

По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.

Расчет медианы по формуле

То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.

Расчет медианы в Excel

Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.

Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:

а) 11;

б) 5;

в) 10;

г) 5, 10, 11.

Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.

Ниже видеоролик о том, как рассчитать медиану в Excel.

Поделиться в социальных сетях:


Загрузить PDF


Загрузить PDF

Среднее значение, медиана и мода — значения, которые часто используются в статистике и математике. Эти значения найти довольно легко, но их легко и перепутать. Мы расскажем, что они из себя представляют и как их найти.

  1. Изображение с названием Find Mean, Median, and Mode Step 1

    1

    Сложите все числа, которые вам даны. Допустим, вам даны числа 2, 3 и 4. Сложим их: 2 + 3 + 4 = 9.

  2. Изображение с названием Find Mean, Median, and Mode Step 2

    2

    Сосчитайте количество чисел. У нас есть три цифры.

  3. Изображение с названием Find Mean, Median, and Mode Step 3

    3

    Разделите сумму чисел на их количество. Берем 9, делим на 3. 9/3 = 3. Среднее значение в данном случае равно 3. Помните, что не всегда получается целое число.

    Реклама

  1. Изображение с названием Find Mean, Median, and Mode Step 4

    1

    Запишите все числа, которые вам даны, в порядке возрастания. Например, нам даны числа: 4, 2, 8, 1, 15. Запишите их от меньшего к большему, вот так: 1, 2, 4, 8, 15.

  2. Изображение с названием Find Mean, Median, and Mode Step 5

    2

    Найдите два средних числа. Мы расскажем, как это сделать, если у вас имеется четное количество чисел, и как это сделать, если количество чисел нечетное:

    • Если у вас нечетное количество чисел, вычеркните левое крайнее число, затем правое крайнее число и так далее. Один оставшийся номер и будет искомой медианой. Если вам дан ряд чисел 4, 7, 8, 11, 21, тогда 8 — медиана, так как 8 стоит посередине.
    • Если у вас четное количество чисел, вычеркните по одному числу с каждой стороны, пока у вас не останется два числа посередине. Сложите их и разделите на два. Это и есть значение медианы. Если вам дан ряд чисел 1, 2, 5, 3, 7, 10, то два средних числа — это 5 и 3. Сложим 5 и 3, получим 8, разделим на два, получим 4. Это и есть медиана.

    Реклама

  1. Изображение с названием Find Mean, Median, and Mode Step 6

    1

    Запишите все числа в ряд. Например, вам даны числа 2, 4, 5, 5, 4 и 5. Запишите их в порядке возрастания.

  2. Изображение с названием Find Mean, Median, and Mode Step 7

    2

    Найдите число, которое чаще всего встречается. В данном случае это 5. Если два числа встречаются одинаково часто, то этот ряд двухвершинный или бимодальный, а если больше — то мультимодальный.

    Реклама

Советы

  • Вам будет легче найти моду и медиану, если вы запишете числа в порядке возрастания.

Реклама

Об этой статье

Эту страницу просматривали 356 549 раз.

Была ли эта статья полезной?

What is a Median?

The Median is the middle value of a set of data. To determine the median value in a sequence of numbers, the numbers must first be arranged in ascending order.

  • If there is an odd amount of numbers, the median value is the number that is in the middle, with the same amount of numbers below and above.
  • If there is an even amount of numbers in the list, the median is the average of the two middle values.

Example of median of odd numbers

Properties of Median: 

  • The Median is joined by the mean and the mode to create a grouping called measures of central tendency.
  • The Median is an important measure (compared to the mean) for distorted data because the median is not so easily distorted. For example, median of {1, 2, 2, 5, 100) is 2, and the mean is 22.
  • If the user adds a constant to every value, the mean and median increase by the same constant.
  • If the user multiplies every value by a constant, the mean and the median will also be multiplied by that constant.
  • The median is sometimes used as opposed to the mean when there are outliers in the sequence that might skew the average of the values.

DSA Self paced Course

How to calculate the Median of ungrouped data: 

Formula for median

How to calculate the Median of grouped data: 

How to find a median of an unsorted array?

Given an unsorted array arr[] of size N, the task is to find its median. 

Median of a sorted array of size n is defined as below: 
It is middle element when n is odd and average of middle two elements when n is even. Since the array is not sorted here, we sort the array first, then apply above formula.

Examples:

Input: arr[] = {1, 3, 4, 2, 6, 5, 8, 7}
Output: Median = 4.5
Explanation: Since number of elements are even, median is average of 4th and 5th largest elements. which means (4 + 5)/2 = 4.5

Input: arr[] = {4, 4, 4, 4, 4}
Output: Median = 4

Approach: To solve the problem follow the below steps:

  • First, simply sort the array
  • Then, check if the number of elements present in the array is even or odd
  • If odd, then simply return the mid value of the array
  • Else, the median is the average of the two middle values

Below is the implementation for the above approach::

C++

#include <bits/stdc++.h>

using namespace std;

double findMedian(int a[], int n)

{

    sort(a, a + n);

    if (n % 2 != 0)

        return (double)a[n / 2];

    return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;

}

int main()

{

    int a[] = { 1, 3, 4, 2, 7, 5, 8, 6 };

    int n = sizeof(a) / sizeof(a[0]);

    cout << "Median = " << findMedian(a, n) << endl;

    return 0;

}

Java

import java.util.*;

class GFG {

    public static double findMedian(int a[], int n)

    {

        Arrays.sort(a);

        if (n % 2 != 0)

            return (double)a[n / 2];

        return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;

    }

    public static void main(String args[])

    {

        int a[] = { 1, 3, 4, 2, 7, 5, 8, 6 };

        int n = a.length;

        System.out.println("Median = " + findMedian(a, n));

    }

}

Python3

def findMedian(a, n):

    sorted(a)

    if n % 2 != 0:

        return float(a[n // 2])

    return float((a[int((n-1)/2)] +

                  a[int(n / 2)])/2.0)

a = [1, 3, 4, 2, 7, 5, 8, 6]

n = len(a)

print("Median =", findMedian(a, n))

C#

using System;

class GFG {

    public static double findMedian(int[] a, int n)

    {

        Array.Sort(a);

        if (n % 2 != 0)

            return (double)a[n / 2];

        return (double)(a[(n - 1) / 2] + a[n / 2]) / 2.0;

    }

    public static void Main()

    {

        int[] a = { 1, 3, 4, 2, 7, 5, 8, 6 };

        int n = a.Length;

        Console.Write("Median = " + findMedian(a, n)

                      + "n");

    }

}

PHP

<?php

function findMedian(&$a, $n)

{

    sort($a);

    if ($n % 2 != 0)

    return (double)$a[$n / 2];

    return (double)($a[($n - 1) / 2] +

                    $a[$n / 2]) / 2.0;

}

$a = array(1, 3, 4, 2,

           7, 5, 8, 6);

$n = sizeof($a);

echo "Median = " .

      findMedian($a, $n);

?>

Javascript

<script>

function findMedian(a, n)

{

    a.sort();

    if (n % 2 != 0)

        return a[parseInt(n / 2)];

    return (a[parseInt((n - 1) / 2)] + a[parseInt(n / 2)]) / 2.0;

}

    let a = [ 1, 3, 4, 2, 7, 5, 8, 6 ];

    let n = a.length;

    document.write("Median = " + findMedian(a, n));

</script>

Time Complexity: O(n Log n), as we need to sort the array first.
Auxiliary Space: O(1)

Basic Program related to Median:

  • Maximize the median of an array
  • Minimum Increment / decrement to make array elements equal
  • Minimum sum of differences with an element in an array
  • Median of two sorted arrays of different sizes | Set 1 (Linear)
  • Median of two sorted arrays with different sizes in O(log(min(n, m)))

More problems related to Median:

  • Median and Mode using Counting Sort
  • Minimum number of elements to add to make median equals x
  • Decode a median string to the original string
  • Median after K additional integers
  • Find median in row wise sorted matrix
  • Find median of BST in O(n) time and O(1) space
  • Median in a stream of integers (running integers

Recent Articles on Median!

Last Updated :
17 Aug, 2022

Like Article

Save Article

8.4. МОДА и МЕДИАНА (структурные средние)

 Мода и медиана наиболее часто используемые в экономической практике структурные средние.


Мода – это величина признака (варианта), который наиболее часто встречается  в данной совокупности, т.e. это варианта, имеющая наибольшую частоту.


В дискретном ряду мода определяется в соответствии с определением, т.е. это одна из вариант признака, которая в ряду распределения имеет наибольшую частоту.


Для интервального ряда моду находим по формуле (8.16), сначала по наибольшей частоте определив модальный интервал:

Статистика Формула Мода для интервального ряда

(8.16 – формула Моды)


где хо – начальная (нижняя) граница модального интервала;

h – величина интервала;

fМо – частота модального интервала;

fМо-1 – частота интервала, предшествующая модальному;

fМо+1– частота интервала следующая за модальным.



Медианой  называется такое значение признака, которое приходится на середину ранжированного ряда, т.е. в ранжированном ряду распределения одна половина ряда имеет значение признака больше медианы, другая – меньше медианы.

В дискретном ряду медиана находится  непосредственно по накопленной частоте, соответствующей номеру медианы.

В случае интервального вариационного ряда медиану определяют по формуле:

Статистика Формула Медиана для интервального ряда                                           (8.17 – формула Медианы)


где хо – нижняя граница медианного интервала;

NМе– порядковый номер медианы (Σf/2);

S Me-1 – накопленная частота до медианного интервала;

fМе –  частота медианного интервала.


Пример вычисления Моды.

Рассчитаем моду и медиану по данным табл. 8.4.

Таблица 8.4 – Распределение семей города N  по размеру среднедушевого дохода в январе 2018 г. руб.(цифры условные)

Группы семей по размеру дохода, руб. Число

семей

Накоп-

ленные частоты

в % к итогу

До 5000 600 600 6
5000-6000 700 1300

(600+700)

13
6000-7000 1700 (fМо-1) 3000 (S Me-1 )

(1300+1700)

30
7000-8000

 (хо)

2500

(fМо)

(fМе)

5500 (S Me) 55
8000-9000 2200 (fМо+1) 7700 77
9000-10000 1500 9200 92
Свыше 10000 800 10000 100
Итого 10000

Пример вычисления Моды. Найдем моду по формуле (8.16) см. обозначения в таблице, а h = 8000-7000=1000, т.е. получаем:

Статистика. Пример расчета Моды (структурные средние)

Пример вычисления Моды


Пример вычисления Медианы интервального вариационного ряда. Рассчитаем медиану по формуле (8.17):

1) сначала находим  порядковый  номер медианы: NМе = Σfi/2= 5000.

2) по накопленным частотам в соответствии с номером медианы определяем, что 5000 находится в интервале (7000 – 8000), далее  значение медианы  определим по формуле (8.17):

Статистика. Пример Медиана

Пример вычисления Медианы


Вывод: по моде – наиболее часто встречается среднедушевой доход в размере 7730 руб., по медиане – что половина семей города имеет среднедушевой доход ниже 7800 руб., остальные семьи – более 7800 руб.


Пример .СРЕДНИЙ, МЕДИАННЫЙ И МОДАЛЬНЫЙ УРОВЕНЬ ДЕНЕЖНЫХ ДОХОДОВ НАСЕЛЕНИЯ  ЦЕЛОМ ПО РОССИИ И ПО СУБЪЕКТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ЗА 2013 год см. по ссылке. Источник: оценка на основании данных выборочного обследования бюджетов домашних хозяйств и макроэкономического показателя денежных доходов населения


Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию.

Если Мое имеет место правосторонняя асимметрия.

При Х<Мео следует сделать вы­вод о левосторонней асимметрии ряда.


Средние величины (арифметическая, гармоническая, геометрическая, квадратическая) см. по ссылке

Оценка статьи:

Загрузка…

В поисках средних значений: разбираемся со средним арифметическим, медианой и модой

В поисках средних значений: разбираемся со средним арифметическим, медианой и модой

как считать среднее арифметическое чисел

Иногда при работе с данными нужно описать множество значений каким-то одним числом. Например, при исследовании эффективности сотрудников, уровня вовлеченности в аккаунте, KPI или времени ответа на сообщения клиентов. В таких случаях используют меры центральной тенденции. Их можно называть проще — средние значения.

Но в зависимости от вводных данных, находить среднее значение нужно по-разному. Основной набор задач закрывается с использованием среднего арифметического, медианы и моды. Но если выбрать неверный способ — выводы будут необъективны, а результаты исследования нельзя будет признать действительными. Чтобы не допустить ошибку, нужно понимать особенности разных способов нахождения средних значений.

Cтратег, аналитик и контент-продюсер. Работает с агентством «Палиндром».

Как считать среднее арифметическое

Использовать среднее арифметическое стоит тогда, когда множество значений распределяются нормально ― это значит, что значения расположены симметрично относительно центра. Как выглядит нормальное распределение на графике и в таблице, можно посмотреть на примере:

 использование чужих публикаций

Если данные распределяются как в примерах — вам повезло. Можно без лишних заморочек считать среднее арифметическое и быть уверенным, что выводы будут объективны. Однако, нормальное распределение на практике встречается крайне редко, поэтому среднее арифметическое в большинстве случаев лучше не использовать.

Как рассчитать

Сумму значений нужно поделить на их количество. Например, вы хотите узнать средний ER за 4 дня при нормальном распределении значений и без аномальных выбросов. Для этого считаем среднее арифметическое: складываем ER всех дней и делим полученное число на количество дней.

курирование контента

Если хотите автоматизировать вычисления и узнать среднее арифметическое для большого числа показателей — используйте Google Таблицы:

  1. Заполните таблицу данными.
  2. Щелкните по пустой ячейке, в которую хотите записать среднее арифметическое.
  3. Введите «=AVERAGE(» и выделите ряд чисел, для которых нужно вычислить среднее арифметическое. Нажмите «Enter» после ввода формулы.

курирование контента

Когда можно не использовать

Если данные распределены ненормально, то наши расчеты не будут отражать реальную картину. На ненормальность распределения указывают:

  • Отсутствие симметрии в расположении значений.
  • Наличие ярко выраженных выбросов.

Как пример ненормального распределения (с выбросами) можно рассматривать среднее время ответа на комментарии по неделям:

курирование контента

Если посчитать среднее значение для такого набора данных с помощью среднего арифметического, то получится завышенное число. В итоге наши выводы будут более позитивными, чем реальное положение дел. Еще стоит учитывать, что выбросы могут не только завышать среднее значение, но и занижать его. В таком случае вы получите более скромный показатель, который не будет соответствовать реальности.

Например, в группе «Золотое Яблоко» во ВКонтакте иногда публикуют конкурсные посты. Они набирают более высокие показатели вовлеченности чем обычные публикации. Если посчитать средний ER с учетом конкурсов, мы получим 0,37%, а без учета конкурсов — только 0,29%. Аналогичная ситуация с числом комментариев. С конкурсами в среднем получаем 917 комментариев, а без конкурсов — всего лишь 503. Очевидно, что из-за розыгрышей средние показатели вовлеченности завышаются. В этом случае конкурсные посты следует исключить из анализа, чтобы объективно оценить эффективность контента в группе.

курирование контента

Еще часто бывает так, что данных очень много, заметны явные выбросы, но на их обработку и исключение аномальных значений не хватит ни времени, ни терпения. Тем более нет гарантий, что исключив выбросы, вы получите нормальное распределение. В таком случае лучше подсчитать средние значения, используя медиану.

Как найти медиану и когда ее применять

Если вы имеете дело с ненормальным распределением или замечаете значительные выбросы — используйте медиану. Так можно получить более адекватное среднее значение, чем при использовании среднего арифметического. Чтобы понять, как работать с медианой, рассмотрим аналогичный пример с ненормальным распределением времени ответов на комментарии.

курирование контента

Ниже в таблице уже введены данные из графика и рассчитано среднее время ответа с помощью среднего арифметического и медианы. Из расчетов видна наглядная разница между средним арифметическим и медианой ― она составляет 17 минут. Такое различие появляется из-за низкого темпа работы на выходных и в нестандартных ситуациях, когда к ответу на сообщения нужно относиться с особой ответственностью (события конца февраля). Подобные выбросы сильно завышают среднее арифметическое, а вот на медиану они практически не влияют. Поэтому если хотите посчитать среднее значение избегая влияния выбросов, — используйте медиану. Такие данные будут без искажений.

курирование контента

Как рассчитать

Разберем на примере. В аккаунте опубликовали семь постов и они набрали разное количество комментариев: 35, 105, 2, 15, 2, 31, 1. Чтобы вычислить медиану, нужно пройти два этапа:

  • Расположите числа в порядке возрастания. Итоговый ряд будет выглядеть так: 1, 2, 2, 15, 31, 35, 105.
  • Найдите середину сформированного ряда. В центре стоит число 15 — его и нужно считать медианой.

Немного сложнее найти медиану, если вы работаете с четным количеством чисел. Например, вы собрали количество лайков на последних шести постах: 32, 48, 36, 201, 52, 12. Чтобы найти медиану, выполните три действия:

  • Расставьте числа по возрастанию: 12, 32, 36, 48, 52, 201.
  • Возьмите два из них, наиболее близких к центру. В нашем случае — это 36 и 48.
  • Сложите два этих числа и разделите на два: (36 + 48) / 2 = 42. Результат и есть медиана.

Чтобы вычислять медиану быстрее и обрабатывать большие объемы данных — используйте Google Таблицы:

  • Внесите данные в таблицу.
  • Щелкните по свободной ячейке, в которую хотите записать медиану.
  • Введите формулу «=MEDIAN(» и выделите ряд чисел, для которых нужно рассчитать медиану. Нажмите «Enter», чтобы все посчиталось.

курирование контента

Когда можно не использовать

Если данные распределены нормально и вы не видите заметных выбросов — медиану можно не использовать. В этом случае значение среднего арифметического будет очень близким к медиане. Можете выбрать любой способ нахождения среднего, с которым вам работать проще. Результат от этого сильно не изменится.

Что такое мода и где ее использовать

Мода ― это самое популярное/часто встречающееся значение. Например, стоит задача узнать, сколько комментариев чаще всего набирают посты в аккаунте. В этом случае можно не высчитывать среднее арифметическое или медиану ― лучше и проще использовать моду.

Еще пример. Нужно узнать, в какое время аудитория чаще всего взаимодействует с публикациями. Для этого можно посчитать данные вручную или использовать готовую таблицу из LiveDune (вкладка «Вовлеченность» ― таблица «Лучшее время для поста»). По ее данным ― больше всего реакций пользователи оставляют в среду в 16 часов. Это время и есть мода. Таким образом, если вам нужно найти самое популярное значение, а не классическое среднее — проще использовать моду.

курирование контента

Как рассчитать

Чтобы найти наиболее часто встречающееся значение в наборе данных, нужно посмотреть, какое число встречается в ряду чаще всех. Например, для ряда 5, 4, 2, 4, 7 ― модой будет число 4.

Иногда в ряде значений встречается несколько мод. Например, ряду 7, 7, 21, 2, 5, 5 свойственны две моды — 7 и 5. В этом случае совокупность чисел называется мультимодальной. Также поиск моды можно упростить с помощью Google Таблиц:

  • Внесите значения в таблицу.
  • Щелкните по ячейке, в которую хотите записать моду.
  • Введите формулу «=MODE(» и выделите ряд чисел, для которых нужно вычислить моду. Нажмите «Enter».

курирование контента

Однако важно иметь в виду, что табличная функция выдает только самую меньшую моду. Поэтому будьте внимательны — можно упустить из виду несколько мод.

Когда использовать не стоит

Моду нет смысла использовать, если вас не просят найти самое популярное значение. Там, где надо найти классическое среднее значение, про моду лучше забыть.

Памятка по использованию

Среднее арифметическое

Как находим: сумма чисел / количество чисел.
Используем: если данные распределены нормально и нет ярких выбросов.
Не используем: если видим явные выбросы или ненормальное распределение.

Медиана

Как находим: располагаем числа в порядке возрастания и находим середину сформированного ряда.
Используем: если работаем с ненормальным распределением или видим выбросы.
Не используем: если выбросов нет и распределение нормальное.

Мода

Как находим: определяем значение, которое чаще всего встречается в ряду чисел.
Используем: если нужно найти не среднее, а самое популярное значение.
Не используем: если нужно найти классическое среднее значение.

Только важные новости в ежемесячной рассылке

Нажимая на кнопку, вы даете согласие на обработку персональных данных.

Подписывайся сейчас и получи гайд аудита Instagram аккаунта

Маркетинговые продукты LiveDune — 7 дней бесплатно

Наши продукты помогают оптимизировать работу в соцсетях и улучшать аккаунты с помощью глубокой аналитики

Анализ своих и чужих аккаунтов по 50+ метрикам в 6 соцсетях.

Оптимизация обработки сообщений: операторы, статистика, теги и др.

Автоматические отчеты по 6 соцсетям. Выгрузка в PDF, Excel, Google Slides.

Контроль за прогрессом выполнения KPI для аккаунтов Инстаграм.

Аудит Инстаграм аккаунтов с понятными выводами и советами.

Поможем отобрать «чистых» блогеров для эффективного сотрудничества.

Понравилась статья? Поделить с друзьями:
  • Как найти хорошую работу в ярославле
  • Составьте перечень требований к ценным бумагам как объектам гражданских прав
  • Как найти убежище в лесу
  • Ошибка е46 штрих м как исправить
  • Как найти кюар код страницы вк