Минус арккосинус как найти

Арксинус, арккосинус, арктангенс и арккотангенс – начальные сведения

Задача, обратная нахождению значения синуса, косинуса, тангенса и котангенса данного угла (числа), подразумевает нахождение угла (числа) по известным значениям тригонометрических функций. Она приводит к понятиям арксинуса, арккосинуса, арктангенса и арккотангенса числа.

В этой статье мы дадим определения арксинуса, арккосинуса, арктангенса и арккотангенса числа, введем принятые обозначения, а также приведем примеры арксинуса, арккосинуса, арктангенса и арккотангенса. В заключение упомянем про аркфункции и покажем, как арксинус, арккосинус, арктангенс и арккотангенс связаны с единичной окружностью.

Навигация по странице.

Определения, обозначения, примеры

Арксинус, арккосинус, арктангенс и арккотангенс можно определить как угол и как число. Это связано с тем, что мы определили синус, косинус, тангенс и котангенс как угла, так и числа (смотрите синус, косинус, тангенс и котангенс в тригонометрии). Остановимся на обоих подходах к определению арксинуса, арккосинуса, арктангенса и арккотангенса.

Арксинус, арккосинус, арктангенс и арккотангенс как угол

Пусть про угол альфа α известно лишь то, что его синус равен числу 1/2 , то есть, sinα=1/2 . Последнее равенство определяет угол α неоднозначно, так как ему удовлетворяет бесконечное множество углов α=(−1) k ·30°+180°·k ( α=(−1) k ·π/6+π·k ), где k∈Z . Однако, если потребовать, чтобы величина угла α в градусах принадлежала отрезку [−90, 90] (в радианах – отрезку [−π/2, π/2] ), то равенство sinα=1/2 будет определять угол альфа однозначно. При этом условии равенству удовлетворяет единственный угол в 30 градусов ( π/6 радианов).

Вообще, равенство sinα=a (не путайте a и альфа: a и α ) при любом числе a∈[−1, 1] и условии −90°≤α≤90° ( −π/2≤α≤π/2 ) определяет единственный угол α . Этот угол называют арксинусом числа a .

Арксинус числа a∈[−1, 1] – это угол −90°≤α≤90° ( −π/2≤α≤π/2 ), синус которого равен a .

Аналогично определяются арккосинус, арктангенс и арккотангенс.

Арккосинус числа a∈[−1, 1] – это угол 0°≤α≤180° ( 0≤α≤π ), косинус которого равен a .

Арктангенс числа a∈(−∞, +∞) – это угол −90° ( −π/2 ), тангенс которого равен a .

Арккотангенс числа a∈(−∞, +∞) – это угол 0° ( 0 ), котангенс которого равен a .

Для записи арксинуса, арккосинуса, арктангенса и арккотангенса приняты следующие обозначения: arcsin , arccos , arctg и arcctg . То есть, арксинус числа a можно записать как arcsin a , арккосинус, арктангенс и арккотангенс числа a запишутся соответственно как arccos a , arctg a и arcctg a .

Также можно встретить обозначения arctan и arccot , они являются другой формой обозначения арктангенса и арккотангенса, которая принята в англоязычной литературе. Мы же арктангенс и арккотангенс будем обозначать как arctg и arcctg .

В свете введенных обозначений, определения арксинуса, арккосинуса, арктангенса и арккотангенса числа можно записать более формально:

arcsin a , a∈[−1, 1] , есть такой угол α , что −90°≤α≤90° ( −π/2≤α≤π/2 ) и sinα=a ;

arccos a , a∈[−1, 1] , есть такой угол α , что 0°≤α≤180° ( 0≤α≤π ) и cosα=a ;

arctg a , a∈(−∞, +∞) , есть такой угол α , что −90° ( −π/2 ) и tgα=a ;

arcctg a , a∈(−∞, +∞) , есть такой угол α , что 0° ( 0 ) и ctgα=a .

Подчеркнем, что арксинус и арккосинус числа определен для чисел, принадлежащих отрезку [−1, 1] , для остальных чисел арксинус и арккосинус не определен. Например, не имеет смысла запись arcsin2 . Аналогично не определен арксинус пяти, арксинус минус корня из трех, арккосинус семи целых двух третьих и арккосинус минус пи, так как числа 2 , 5 , , −π выходят за пределы числового отрезка от −1 до 1 . В свою очередь записи arctg a и arcctg a имеют смысл для любого действительного числа a , например, имеют смысл записи arctg0 , arctg(−500,2) , arcctg(6·π+1) и т.п.

Теперь можно привести примеры арксинуса, арккосинуса, арктангенса и арккотангенса числа.

Начнем с примеров арксинуса. Определение арксинуса позволяет утверждать, что угол π/3 является арксинусом числа , то есть, (здесь и α=π/3 ). Действительно, число принадлежит отрезку [−1, 1] , угол π/3 лежит в пределах от −π/2 до π/2 и . Приведем еще несколько примеров арксинуса числа: arcsin(−1)=−90° , arcsin(0,5)=π/6 , .

А вот π/10 не является арксинусом 1/2 , так как sin(π/10)≠1/2 . Еще пример: несмотря на то, что синус 270 градусов равен −1 , угол 270 градусов не является арксинусом минус единицы, так как 270 градусов не является углом в пределах от −90 до 90 градусов. Более того, угол 270 градусов вообще не может быть арксинусом какого-либо числа, так как арксинус числа должен лежать в пределах от −90 до 90 градусов.

Для полноты картины приведем примеры арккосинуса, арктангенса и арккотангенса числа. Например, угол 0 радианов является арккосинусом единицы, то есть, arccos1=0 (так как выполняются все условия из определения арккосинуса: число 1 принадлежит отрезку от −1 до 1 , угол нуль радианов лежит в пределах от нуля до пи включительно и cos0=1 ). Аналогично, угол π/2 есть арккосинус нуля: arccos0=π/2 . По определению арктангенса числа arctg(−1)=−π/4 или arctg(−1)=−45° . Арктангенс корня из трех равен 60 градусам ( π/3 рад). А из определения арккотангенса можно заключить, что arcctg0=π/2 , так как угол π/2 лежит в рамках от 0 до пи и ctg(π/2)=0 .

Подобный подход к определению арксинуса, арккосинуса, арктангенса и арккотангенса описан в учебнике Кочеткова [1, с. 260-278] .

Арксинус, арккосинус, арктангенс и арккотангенс как число

Когда мы имеем дело с синусом, косинусом, тангенсом и котангенсом угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять как угол. Если же мы начинаем говорить про синус, косинус, тангенс и котангенс числа, а не угла, то естественно арксинус, арккосинус, арктангенс и арккотангенс определять уже как число.

Арксинусом числа a∈[−1, 1] называется такое число t∈[−π/2, π/2] , синус которого равен a .

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos ( 1 2 ) = π 3 .

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin ( — π 2 ) = — 1 , sin ( — π 3 ) = — 3 2 , sin ( — π 4 ) = — 2 2 , sin ( — π 6 ) = — 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от — 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

в р а д и а н а х

α — 1 — 3 2 — 2 2 — 1 2 0 1 2 2 2 3 2
a r c sin α к а к у г о л — π 2 — π 3 — π 4 — π 6 0 π 6 π 4 π 3
в г р а д у с а х — 90 ° — 60 ° — 45 ° — 30 ° 0 ° 30 ° 45 ° 60 °
a r c sin α к а к ч и с л о — π 2 — π 3 — π 4 — π 6 0 π 6 π 4 π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = — 1 2 , cos 3 π 4 = — 2 2 , cos 5 π 6 = — 3 2 , cos π = — 1

Следуя из таблицы, находим значения арккосинуса:

a r c cos ( — 1 ) = π , arccos ( — 3 2 ) = 5 π 6 , arcocos ( — 2 2 ) = 3 π 4 , arccos — 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0

в р а д и а н а х

α — 1 — 3 2 — 2 2 — 1 2 0 1 2 2 2 3 2 1
a r c cos α к а к у г о л π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0
в г р а д у с а х 180 ° 150 ° 135 ° 120 ° 90 ° 60 ° 45 ° 30 ° 0 °
a r c cos α к а к ч и с л о π 5 π 6 3 π 4 2 π 3 π 2 π 3 π 4 π 6 0

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α — 3 — 1 — 3 3 0 3 3 1 3
a r c t g a к а к у г о л в р а д и а н а х — π 3 — π 4 — π 6 0 π 6 π 4 π 3
в г р а д у с а х — 60 ° — 45 ° — 30 ° 0 ° 30 ° 45 ° 60 °
a r c t g a к а к ч и с л о — π 3 — π 4 — π 6 0 π 6 π 4 π 3

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

a r c sin , a r c cos , a r c t g и a r c c t g

Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin ( — α ) = — a r c sin α , a r c cos ( — α ) = π — a r c cos α , a r c t g ( — α ) = — a r c t g α , a r c c t g ( — α ) = π — a r c c t g α .

Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном a r c sin α = — π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:

a r c cos α = π 2 − a r c sin α = π 2 − ( − π 12 ) = 7 π 12 .

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.

При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

источники:

http://100urokov.ru/predmety/urok-4-prostejshaya-trigonometriya

http://zaochnik.com/spravochnik/matematika/trigonometrija/nahozhdenie-znachenij-arksinusa-arkkosinusa-arktan/

Сферы применения правил обратных тригонометрических функций

Определение

Тригонометрия — раздел математики, объясняющий зависимость между сторонами и углами треугольника, правила используют для расчета углов.

Изучая постулаты тригонометрических функций, ученики и студенты часто задаются вопросом, где эти знания могут пригодиться. Сфер применения достаточно много. Астрономы используют понятия для расчёта положения небесных объектов, тригонометрия помогает выполнять чертежи и создавать архитектурные шедевры, выстраивать модель биологических ритмов. В морской и воздушной навигации, акустике и оптике, в анализе финансового рынка, статистике, медицине, химии, во многих областях используются тригонометрические вычисления. Поэтому так важно научиться применять и выводить формулы самостоятельно.

Обратные функции тригонометрии

Обратными называются функции, которые ещё называют арксинус, арккосинус, арктангенс, арккотангенс.

Название данный вид тригонометрической зависимости, получил от соответствующей прямой функции с приставкой арк — дуга. Взаимосвязь просматривается между длиной дуги единичной окружности и соответствующим определённым отрезком.

Правила обратной функции справедливы в пределах интервалов, например,

формула арксинуса возможна при:

[arcsin (sin mathrm{x})=mathrm{x} text { при }-frac{pi}{2} leq mathrm{x} leq frac{pi}{2}]

[arccos (cos mathrm{x})=mathrm{x} text { при } 0 leq mathrm{x} leq pi]

и так далее.

Формулы с обратными функциями тригонометрии

Уже были рассмотрены обратные тригонометрические функции. Они, как и другие функции имеют между собой связи и зависимости, которые можно выразить в виде формул и использовать для решения задач.

В данной работе мы рассмотрим основные формулы, в которых применяются функции тригонометрии. Разберём их виды, деление на группы, доказательства и способы решения задач с их помощью.

Группировка основных понятий

Сначала проведём группировку формул, для того чтобы сделать более понятной логику объяснений. И объединим все правила и доказательства в одну статью.

Синус от арксинуса для [alpha in(-1 ; 1) sin (arcsin alpha)=alpha, cos (arccos alpha)=alpha]

Тангенса от арктангенса для [alpha in(-infty, infty) operatorname{tg}(operatorname{arctg} alpha)=alpha, operatorname{ctg}(operatorname{arctg} alpha)=alpha].

Указанное в данных выражениях легко выводится из самих определений обратных функций тригонометрии. При необходимости найти arcsin tg, можно использовать приведённые формулы.

Тангенс, арктангенс, котангенс, арккотангенс, синус, арксинус, косинус, арккосинус и формулы

[text{Для }-frac{pi}{2} leq alpha leq frac{pi}{2} arcsin (sin alpha)=alpha],

[text{Для } leq alpha leq pi arccos (cos alpha)=alpha],

[text{Для }-frac{pi}{2}<alpha<frac{pi}{2} operatorname{arctg}(operatorname{tg} alpha)=alpha],

[text{Для } 0<alpha<pi operatorname{arcctg}(operatorname{ctg} alpha)=alpha].

В данном примере собраны тригонометрические выражения, достаточно очевидные, которые можно вывести из определений функций тригонометрии. Необходимо обратить внимание, на то, что высказывания будут верны, если «а» (угол, или числовое значение) будет входить в определённый предел. Если условие не выполняется, расчёт будет не верен и формулу использовать нельзя.

Соотношение между собой обратных тригонометрических функций противоположных чисел

Рассмотрим важное определение:

Обратные функции тригонометрии можно выразить через аркфункции противоположного положительного числа.

[text{Для }alpha in operatorname{open}-1,1] text { arccis }(-alpha)= -operatorname{arc} sin alpha, quad operatorname{arc} cos (-alpha)=pi -a r c cos alpha]

[text { Для } alpha in(-infty, infty) operatorname{arctg}(-alpha)= -operatorname{arctg} alpha, operatorname{arcctg}(-alpha)=pi-operatorname{arcctg} alpha]

Это значит, если расчёты имеют функции отрицательного числа, от них можно избавиться. Для этого необходимо преобразовать их в аркфункции положительных чисел. Такие вычисления проводить проще.

Формулы суммы: arcsin + arccos, arctg +arcctg

Правила суммы выглядят так:

Для [alpha in[-1,1] arcsin alpha+arccos alpha=frac{pi}{2}],

Для [alpha in[-infty, infty] operatorname{arctg} alpha+operatorname{arctg} alpha=frac{pi}{2}].

Отсюда видно, что arcsin определённого числа можно выразить через его arccos , и наоборот. Тоже правило касается и arctg и arcctg, которые выражаются аналогично.

Формулы связи между обратными и прямыми тригонометрическими функциями

Чтобы иметь возможность решить множество задач, требуется знание связей между прямыми тригонометрическими функциями, и их аркфункциями. Рассмотрим, как необходимо поступить, если нужно вычислить тангенс арксинуса. Ниже представлен список основных формул, которые помогут в решении таких задач.

[-1 leq alpha leq 1],
[sin (arcsin alpha)=alpha]
[-1 leq alpha leq 1],
[sin (arccos alpha) =sqrt{1-alpha^{2}}]
[-infty leq alpha leq+infty],
[sin (operatorname{arctg} alpha)=frac{alpha}{sqrt{1+alpha^{2}}}]
[-infty leq alpha leq+infty],
[sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-1 leq alpha leq 1],
[cos (arcsin alpha)=sqrt{1-alpha^{2}}]
[-1 leq alpha leq 1],
[cos (arccos alpha)=alpha]
[-infty leq alpha leq+infty],
[cos (operatorname{arctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-infty leq alpha leq+infty],
[cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]
[-1<alpha<1],
[operatorname{tg}(arcsin alpha)=frac{alpha}{sqrt{1-alpha^{2}}}]
[alpha in(-1,0) cup(0,1)],
[operatorname{tg}(arccos alpha)=frac{sqrt{1-a^{2}}}{alpha}]
[-infty leq alpha leq+infty],
[operatorname{tg}(operatorname{arctg} alpha)=alpha]
[alpha neq 0],
[operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{alpha}]
[alpha in(-1,0) cup(0,1)],
[operatorname{ctg}(arcsin alpha)=frac{sqrt{1-alpha^{2}}}{alpha}]
[-1<alpha<1],
[operatorname{ctg}(arccos alpha)=frac{alpha}{sqrt{1-a^{2}}}]
[alpha neq 0],
[operatorname{ctg}(operatorname{arctg} alpha)=frac{1}{alpha}]
[-infty leq alpha leq+infty],
[operatorname{ctg}(operatorname{arcctg} alpha)=alpha]
Таблица 1.

Примеры 1 — 2

Нужно найти косинус арктангенса из 5.

Решение. Для этого необходимо воспользоваться формулой следующего вида: [cos (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]

Подставим необходимое значение: [cos (operatorname{arctg} sqrt{5})=frac{1}{sqrt{1+sqrt{5^{2}}}}=frac{2}{sqrt{6}}]


Определить синус арккосинуса [frac{1}{2}]
Решение. Реализовать решение нам поможет формула: [sin (arccos alpha)=sqrt{1-alpha^{2}}]

Ставим значение и получаем: [sin left(arccos frac{1}{2}right)=sqrt{1-left(frac{1}{2}right)^{2}}=frac{sqrt{3}}{2}]

Заметим, что непосредственное вычисление приведёт к тому же ответу: [sin left(arccos frac{1}{2}right)=sin frac{pi}{3}=frac{sqrt{3}}{2}]

Для правильного вычисления значений прямых и обратных тригонометрических функций, стоит вспомнить начальные материалы.

Доказательство формул синуса от арккосинуса, арккотангенса и арктангенса

Чтобы вывести формулы и разобрать их более наглядно, необходимо применить основные тригонометрические тождества и правила обратных тригонометрических функций, которые были выведены ранее.

Доказательство формул 1

Используя тождества получим:

[sin ^{2} alpha+cos ^{2} alpha=1]

[1+operatorname{ctg}^{2} alpha=frac{1}{sin ^{2} alpha}]

Вспомним тот факт, что tg α *ctg α= 1, следовательно

[sin alpha=sqrt{1-cos ^{2} alpha}, 0 leq alpha leq pi]

[sin alpha=frac{operatorname{tg} alpha}{sqrt{1+operatorname{tg}^{2} alpha}},-frac{pi}{2}<alpha<frac{pi}{2}]

[sin alpha=frac{1}{sqrt{1+c t g^{2} alpha}}, 0<alpha<pi]

Результатом станет вывод синуса через подходящие аркфункции в заданном условии.

В математическое выражение вместо α, ставим arccos α, получаем в итоге формулу синуса арккосинуса.

Во втором случае вместо α подставляем arctg α, соответственно получаем формулу синуса арктангенса.

В третьем варианте проводим аналогичную операцию и подставляем arcctg α для выражения формулы синуса арккотангенса.

Нет времени решать самому?

Наши эксперты помогут!

Доказательство формул для тангенса, обратных функций(arcsin, arccos, arcctg)

В данном разделе рассмотрим доказательство закона тангенса обратных функций тригонометрии.

Доказательство формул 2

  1. Исходя из: [frac{sin alpha}{sqrt{1-sin alpha^{2}}},-frac{pi}{2}<alpha<frac{pi}{2}]Получим [operatorname{tg}(arcsin alpha)=frac{sin (arcsin alpha)}{sqrt{1-sin ^{2}(arcsin alpha)}}=frac{alpha}{sqrt{1-alpha^{2}}}]При условии [-1<alpha<1]
  2. Из выражения [operatorname{tg} alpha=frac{sqrt{1-cos ^{2} alpha}}{cos alpha}, alpha inleft[0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright]]
    Получаем [operatorname{tg}(arccos alpha)=frac{sqrt{1-cos ^{2}(arccos alpha)}}{cos (arccos alpha)}=frac{sqrt{1-alpha^{2}}}{alpha}] при условии [alpha in(-1,0) cup(0,1)].
  3. Исходя из [operatorname{tg} alpha=frac{1}{operatorname{ctg} alpha}, alpha inleft(0, frac{pi}{2}right) cupleft(frac{pi}{2}, piright)] получаем [operatorname{tg}(operatorname{arcctg} alpha)=frac{1}{operatorname{ctg}(operatorname{arcctg} alpha)}=frac{1}{alpha}] при условии, что [alpha neq 0].

Далее нам понадобятся понятия котангенсов арксинуса, арккосинуса, арктангенса. Напомним такое тригонометрическое равенство:

[operatorname{ctg} alpha=frac{1}{operatorname{tg} alpha}]

Применяя данное выражение можно вывести необходимые формулы, вставляя выражения тангенса обратных функций тригонометрии. Практически необходимо поменять местами числитель и знаменатель.

Выражение арксинуса с помощью арккосинуса, арктангенса и арккотангенса

Прямые и обратные функции в тригонометрии связаны между собой. Полученные в результате выведения формулы помогут найти связь и между обратными функциями тригонометрии, выразив одни аркфункции через другие. Рассмотрим примеры.

В первом случае меняем арксинус на арккосинус, а арктангенс на арккотангенс, получим следующие формулы арксинуса и арккосинуса:

[begin{aligned} &arcsin a=left{begin{array}{l} arccos sqrt{1-a^{2}}, 0 leq a leq 1 \ -arccos sqrt{1-a^{2}},-1 leq a<0 end{array}right. \ &arcsin a=operatorname{arctg} frac{a}{sqrt{1-a^{2}}},-1<a<1 \ &arcsin a=left{begin{array}{l} operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \ operatorname{arcctg} frac{sqrt{1-a^{2}}}{a}-pi,-1 leq a<0 end{array}right. end{aligned}]

Для арккосинуса также есть свои формулы:

[begin{aligned} &arccos a=left{begin{array}{l} arcsin sqrt{1-a^{2}}, 0 leq a leq 1 \ pi-arcsin sqrt{1-a^{2}},-1 leq a<0 end{array}right. \ &arccos a=left{begin{array}{l} operatorname{arctg} frac{sqrt{1-a^{2}}}{a}, 0<a leq 1 \ pi+operatorname{arctg} frac{sqrt{1-a^{2}}}{a},-1 leq a<0 end{array}right. \ &arccos a=operatorname{arcctg} frac{a}{sqrt{1-a^{2}}},-1<a<1 end{aligned}]

Выражения для арктангенса:

[begin{aligned} &operatorname{arctg} a=arcsin frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\ &operatorname{arctg} a=left{begin{array}{l} arccos frac{1}{sqrt{1+a^{2}}}, a geq 0 \ -arccos frac{1}{sqrt{1+a^{2}}}, a<0 end{array}right.\ &operatorname{arctg} a=operatorname{arcctg} frac{1}{a}, a neq 0 end{aligned}]

Последний блок формул покажет преобразование арккотангенса через другие обратные функции тригонометрии:

[begin{aligned} &operatorname{arcctg} a=left{begin{array}{l} arcsin frac{1}{sqrt{1+a^{2}}}, a geq 0 \ pi-arcsin frac{1}{sqrt{1+a^{2}}}, a<0 end{array}right.\ &operatorname{arctg} a=arccos frac{a}{sqrt{1+a^{2}}},-infty<a<+infty\ &operatorname{arcctg} a=operatorname{arctg} frac{1}{a}, a neq 0 end{aligned}]

Рассмотренные формулы арксинуса, арккосинуса, арктангенса помогут в решении различных задач. Разберём доказательство с использованием основных определений обратных функций и ранее рассмотренных правил.

Возьмём arcsin [alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1] для выведения доказательства.

Мы имеем выражение [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] — число, которое имеет значение от минус половины [pi] до плюс половины [pi]. Используя выражение синуса арктангенса, получаем следующее:

[sin left(operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}right)=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+left(frac{alpha}{sqrt{1-alpha^{2}}}right)^{2}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{sqrt{1+frac{alpha^{2}}{1-alpha^{2}}}}=frac{frac{alpha}{sqrt{1-alpha^{2}}}}{frac{1}{sqrt{1-alpha^{2}}}}=alpha]

Получается, что [operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}] с условием [-1<alpha<1] — арксинус числа [alpha].

Вывод: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}},-1<alpha<1].

Другие подобные формулы доказываются по аналогичной схеме.

Рассмотрим пример применения полученных истин.

Пример 3

Необходимо вычислить синус арккотангенса — [sqrt{3}]
Решение. Для того чтобы провести решение задачи, необходимо использовать формулу связи арккотангенса и арксинуса: [arcsin alpha=operatorname{arctg} frac{alpha}{sqrt{1-alpha^{2}}}]

Подставим в неё [alpha=-sqrt{3}] и получим [-frac{1}{2}].

Используя непосредственное вычисление ответ был бы такой же: [sin (operatorname{arcctg}(-sqrt{3}))=sin frac{5 pi}{6}=frac{1}{2}]

Можно использовать и следующую формулу:

[sin (operatorname{arcctg} alpha)=frac{1}{sqrt{1+a^{2}}}]

[sin (operatorname{arcctg}(-sqrt{3}))=frac{1}{sqrt{1+(-sqrt{3})^{2}}}=frac{1}{2}]

Другие формулы, в которых используются обратные функции тригонометрии

Разобраны основные функции, которые чаще всего используются для решения задач. Но представлены не все формулы с обратными тригонометрическими функциями, есть некоторые специфичные, употребляемые редко, но они тоже полезны. Учить их нет смысла, лучше вывести при необходимости.

Пример 4

Разберём для примера одну такую формулу. Выглядит она так:

[sin ^{2} frac{alpha}{2}=sqrt{frac{1-cos alpha}{2}}]

Если представленный угол имеет значение больше нуля, но меньше Пи, то получаем:

[sin frac{arccos alpha}{2}=sqrt{frac{1-cos (arccos alpha)}{2}}]

[Leftrightarrow sin frac{arccos alpha}{2}=frac{sqrt{1-alpha}}{2}]

Здесь мы выводим следующую готовую формулировку, арксинус которой выведен через арккосинус:

[frac{arccos alpha}{2}=arcsin sqrt{frac{1-alpha}{2}}]

В тексте рассмотрены лишь некоторые, самые популярные виды связей между прямыми и обратными функциями тригонометрии. Главное не выучить наизусть данные постулаты, а научиться их применять и выводить, исходя из уже известных определений.

Удобно использовать инженерный вид калькулятора, на котором есть, необходимые для вычислений тригонометрические формулы и функции.

  • Определение

  • График арккосинуса

  • Свойства арккосинуса

  • Таблица арккосинусов

Определение

Арккосинус (arccos) – это обратная тригонометрическая функция.

Арккосинус x определяется как функция, обратная к косинусу x, при -1≤x≤1.

Если косинус угла у равен х (cos y = x), значит арккосинус x равняется y:

arccos x = cos-1 x = y

Примечание: cos-1x означает обратный косинус, а не косинус в степени -1.

Например:

arccos 1 = cos-1 1 = 0° (0 рад)

График арккосинуса

Функция арккосинуса пишется как y = arccos (x). График в общем виде выглядит следующим образом:

График арккосинуса

Свойства арккосинуса

Ниже в табличном виде представлены основные свойства арккосинуса с формулами.

Таблица арккосинусов

x arccos x (рад) arccos x (°)
-1 π 180°
-√3/2 5π/6 150°
-√2/2 3π/4 135°
-1/2 2π/3 120°
0 π/2 90°
1/2 π/3 60°
2/2 π/4 45°
3/2 π/6 30°
1 0

microexcel.ru

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом числа а называется число varphi  in left[-frac{pi }{2} ;frac{pi }{2}right], такое, что sinvarphi  = a. Или, можно сказать, что это такой угол varphi, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right], синус которого равен числу а.

Арккосинусом числа а называется число varphi  in  [0 ; pi ], такое, что cosvarphi  = a.

Арктангенсом числа а называется число varphi  in  left(-frac{pi }{2};frac{pi }{2}right), такое, что tg varphi  = a.

Арккотангенсом числа а называется число varphi  in  left(0 ; pi right), такое, что ctg = a.

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Помните, мы уже встречались с обратными функциями.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

{(sqrt{a})}^2=a; sqrt{a}ge 0; age 0.

Логарифм числа b по основанию a — такое число с, что boldsymbol{a^c=b.}

При этом b textgreater 0,, , a textgreater 0,, , ane 1.

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения x^2=5 — это sqrt{5} и -sqrt{5}. Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: 2^x=7. Решение этого уравнения — иррациональное число {log}_27. Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение sinx = frac{1}{4}.

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна frac{1}{4}. И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right], синус которого равен frac{1}{4} — это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, — это arcsin frac{1}{4}+2 pi n,, nin Z.

А вторая серия решений нашего уравнения — это pi -arcsin frac{1}{4}+2 pi n,, nin Z.

Подробнее о решении тригонометрических уравнений — здесь.

Осталось выяснить — зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right]?

Дело в том, что углов, синус которых равен, например, frac{1}{4}, бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right].

Взгляните на тригонометрический круг. Вы увидите, что на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right] каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка [-1;1] отвечает одно-единственное значение угла на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right]. Это значит, что на отрезке [-1;1] можно задать функцию y={arcsin x,  } принимающую значения от -frac{pi }{2} до frac{pi }{2}.

Повторим определение еще раз:

Арксинусом числа a называется число varphi in left[-frac{pi }{2}, ;frac{pi }{2}right], такое, что sin{mathbf varphi } = a.

Обозначение: varphi = arcsina. Область определения арксинуса — отрезок [-1;1]. Область значений — отрезок left[-frac{pi }{2}, ;frac{pi }{2}right].

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right].

Мы готовы построить график функции y = arcsin x.

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Поскольку x = sin y, следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок [-1;1].

Мы сказали, что у принадлежит отрезку left[-frac{pi }{2}, ;frac{pi }{2}right]. Это значит, что областью значений функции y = arcsin x является отрезок left[-frac{pi }{2}, ;frac{pi }{2}right].

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями x= -1; , x = 1, , y= -frac{pi}{2} и y= frac{pi}{2} .

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен нулю. Что это за число? — Понятно, что это ноль.

Аналогично, арксинус единицы — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен единице. Очевидно, это frac{pi}{2} .

Продолжаем: arcsin frac{1}{2} — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен frac{1}{2}. Да, это frac{pi}{6}.

x -1 -frac{1}{2} 0 frac{1}{2} 1
y = arcsinx -frac{pi}{2} -frac{pi}{6} 0 frac{pi}{6} frac{pi}{2}

Строим график функции y = arcsinx.

Свойства функции y = arcsinx

1. Область определения D(y): x in left[-1;1right]

2. Область значений E (y): y in left[-frac{pi }{2}, ;frac{pi }{2}right]

3. arcsin(- x) = arcsinx, то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция y = arcsinx монотонно возрастает. Ее наименьшее значение, равное — frac{ pi }{2}, достигается при x=-1, а наибольшее значение, равное frac{pi}{2}, при x = 1.

5. Что общего у графиков функций y=sin x и y=arcsin x? Не кажется ли вам, что они «сделаны по одному шаблону» — так же, как правая ветвь функции y=x^2 и график функции y=sqrt{x} , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от -frac{pi}{2} до frac{pi}{2} , а затем развернули его вертикально — и мы получим график арксинуса.

То, что для функции y=sin x на этом промежутке — значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус — взаимно-обратные функции. Другие примеры пар взаимно обратных функций — это y = x^2 при xgeq 0 и y= sqrt{x}, а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой y=x.

Аналогично, определим функцию y={arccos x}. Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок [0;pi ].

Арккосинусом числа a называется число {mathbf varphi } in [0;pi ], такое, что cos varphi = a.

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке [0;pi ].

Обозначение: varphi = arccosa. Область определения арккосинуса — отрезок [-1;1]. Область значений — отрезок [0;pi ].

Очевидно, отрезок [0;pi ] выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка [0;pi ].

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение: arccos(-a) = pi - arccosa.

Построим график функции y = arccosx.

Нам нужен такой участок функции y = cosx, на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок left[0; pi right]. На этом отрезке функция y = cosx монотонно убывает, то есть соответствие между множествами left[0; pi right] и left[-1; 1right] взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку [-1; 1], будет такое число y, принадлежащее промежутку [0;pi ], что x=cos y.

Значит, arccos 1 = 0, поскольку cos0 = 1;

arccos (-1) = pi, так как cos pi = -1;

arccos 0 = frac{pi}{2} , так как cos frac{pi}{2} = 0,

arccos frac{1}{2} = frac{pi }{3}, так как cos frac{pi }{3} = 0,

x -1 -frac{1}{2} 0 frac{1}{2} 1
arccosx pi frac{2pi}{3} frac{pi}{2} frac{pi}{3} 0

Вот график арккосинуса:

Свойства функции y = arccosx:

1. Область определения D(y): x in left[-1;1right]

2. Область значений E (y): y in left[0; pi right]

3. arccos(- x) = pi - arccosx

Эта функция общего вида — она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное pi, функция у = arccosx принимает при x=-1, а наименьшее значение, равное нулю, принимает при x=1.

5. Функции y = cos x и y = arccosx являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число varphi in left(-frac{pi }{2}, ;frac{pi }{2}right), такое, что tg{mathbf varphi } = a.

Обозначение: varphi = arctga. Область определения арктангенса — промежуток (-infty; +infty). Область значений — интервал left(-frac{pi }{2}, ;frac{pi }{2}right).

Почему в определении арктангенса исключены концы промежутка — точки pm frac {pi}{2}? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу (-frac{pi}{2} ; frac{pi}{2} ), такое, что tg y =x.

Как строить график — уже понятно. Поскольку арктангенс — функция обратная тангенсу, мы поступаем следующим образом:

— Выбираем такой участок графика функции y = tg x, где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция y = tg x принимает значения от -infty до +infty.

Тогда у обратной функции, то есть у функции y=arctg,x, область, определения будет вся числовая прямая, от -infty до +infty, а областью значений — интервал (-frac{pi}{2} ; frac{pi}{2} ).

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

tg 0 = 0, значит, arctg 0 = 0

tg frac{pi}{4} = 1, значит, arctg 1 = frac{pi}{4}

tg (-frac{pi}{4}) = -1, значит, arctg (-1) = - frac{pi}{4}.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала (-frac{pi}{2} ; frac{pi}{2} ) значение тангенса стремится к бесконечности? — Очевидно, это frac{pi}{2} .

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте y=frac{pi}{2} .

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте y= - frac{pi}{2} .

На рисунке — график функции y =arctg x

Свойства функции y=arctg,x

1. Область определения D(y): x in R

2. Область значений E (y): y in (-frac{pi}{2} ; frac{pi}{2} )

3. Функция y=arctg,x нечетная.

4. Функция y=arctg,x является строго возрастающей.

5. Прямые y= - frac{pi}{2} и y= frac{pi}{2} — горизонтальные асимптоты данной функции.

6. Функции y = tg x и y = arctg x являются взаимно обратными — конечно, когда функция y = tg x рассматривается на промежутке (-frac{pi}{2} ; frac{pi}{2} )

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число {mathbf varphi } in (0{mathbf ;}{mathbf pi }), такое, что ctg{mathbf varphi } = a.

График функции y = arcctg x:

Свойства функции y=arcctg,x

1. Область определения D(y): x in R

2. Область значений E (y): y in (0; pi )

3. Функция y=arcctg ,x — общего вида, то есть ни четная, ни нечетная.

4. Функция y=arcctg,x является строго убывающей.

5. Прямые y= 0 и y= pi — горизонтальные асимптоты данной функции.

6. Функции y = ctg x и y = arcctg x являются взаимно обратными, если рассматривать y = ctg x на промежутке (0; pi ).

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Обратные тригонометрические функции и их графики» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

0
AC +/- ÷
7 8 9 ×
4 5 6
1 2 3 +
0 00 , =

Арккосинус онлайн калькулятор

Данный калькулятор вычислит арксинус, арккосинус, арктангенс, арккотангенс, арксеканс и арккосеканс и определит значение угла как в градусной, так и в радианной мере.

Что такое арккосинус угла

Арккосинусом (arccos x) числа x, является угол α заданный в радианной мере, такой, что cos α = x.
Вычислить арккосинус, означает найти угол α, косинус которого равен числу x.

Область значений (определяющее неравенства угла α в радианной и градусной мерах):
0 ≤ α ≤ π
0° ≤ α ≤ 180°

Область определения (определяющее неравенство числа x):
−1 ≤ x ≤ 1

Вам могут также быть полезны следующие сервисы
Калькуляторы (тригонометрия)
Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла
Калькулятор секанса угла
Калькулятор косеканса угла
Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла
Калькулятор арксеканса угла
Калькулятор арккосеканса угла
Калькулятор нахождения наименьшего угла
Калькулятор определения вида угла
Калькулятор смежных углов
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ
Калькуляторы (Теория чисел)
Калькулятор выражений
Калькулятор упрощения выражений
Калькулятор со скобками
Калькулятор уравнений
Калькулятор суммы
Калькулятор пределов функций
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Калькулятор НОД и НОК для любого количества чисел
Калькулятор делителей числа
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор экспоненциальной записи чисел
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькулятор больших чисел
Калькулятор округления числа
Калькулятор свойств корней и степеней
Калькулятор комплексных чисел
Калькулятор среднего арифметического
Калькулятор арифметической прогрессии
Калькулятор геометрической прогрессии
Калькулятор модуля числа
Калькулятор абсолютной погрешности приближения
Калькулятор абсолютной погрешности
Калькулятор относительной погрешности
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькулятор приведения дробей к общему знаменателю
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер по математике
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Конвертеры величин
Конвертер единиц длины
Конвертер единиц скорости
Конвертер единиц ускорения
Цифры в текст
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Понравилась статья? Поделить с друзьями:
  • Как найти скорость под углом 90 градусов
  • Как найти смайлики для телеграмма
  • Как исправить ошибку заголовок архива поврежден код ошибки 14
  • При голосовом сообщении в ватсап пиликает звук как исправить ошибку
  • Как найти гадалку санкт петербург