Модуль электрической силы как найти

Еще в древности было известно, что наэлектризованные тела взаимодействуют. Силу взаимодействия двух небольших заряженных шариков с помощью крутильных весов впервые измерил Шарль Кулон. Он сформулировал закон, который позже назвали его именем.

Так же, было выяснено, что сила, с которой два заряда притягиваются, или отталкиваются, зависит не только от самих зарядов, но и от вещества, в котором эти заряды находятся.

Опыт Кулона

Кулон нашел способ измерить взаимное действие двух зарядов. Для этого он использовал крутильные весы.

Ему не пришлось применять дополнительную особо чувствительную аппаратуру. Потому, что взаимное действие зарядов имело достаточную для наблюдения интенсивность.

Примечание: Опыт Кулона похож на опыт Кавендиша, который экспериментально определил гравитационную постоянную G.

Устройство крутильных весов

Такие весы (рис. 1) содержат перекладину — тонкий стеклянный стержень, расположенный горизонтально. Он подвешен на тонкой вертикально натянутой упругой проволоке.

На одном конце стержня находится небольшой металлический шарик. К другому концу прикреплен груз, который используется, как противовес.

Еще один металлический шарик, прикрепленный ко второй палочке из стекла, можно располагать неподалеку от первого шарика. Для этого в верхней крышке корпуса весов проделано отверстие.

Устройство крутильных весов, использованных Кулоном

Рис. 1. Устройство крутильных весов, использованных Кулоном для обнаружения силы взаимодействия зарядов

Если наэлектризовать шарики, они начнут взаимодействовать. А прикрепленная к проволоке перекладина, на которой находится один из шариков, будет поворачиваться на некоторый угол.

На корпусе весов на уровне палочки располагается шкала с делениями. Угол поворота связан с силой взаимного действия шариков. Чем больше угол поворота, тем больше сила, с которой шарики действуют друг на друга.

Чтобы сдвинувшийся шарик вернуть в первоначальное положение, нужно закрутить проволоку на некоторый угол. Так, чтобы сила упругости скомпенсировала силу взаимодействия шариков.

Для закручивания проволоки в верхней части весов есть рычажок. Рядом с ним расположен диск, а на нем – еще одна угловая шкала с делениями.

По нижней шкале определяют точку, в которую необходимо вернуть шарик. Верхней шкалой пользуются, чтобы установить угол, на который нужно рычажком закрутить проволоку.

С помощью крутильных весов Шарль Кулон выяснил, как именно сила взаимного действия зависит от величины зарядов и расстояния между зарядами.

В те годы единиц для измерения заряда не было. Поэтому ему пришлось изменять заряд одного шарика с помощью метода половинного деления.

Когда он касался заряженным шариком второго такого же шарика, заряды между ними распределялись поровну. Таким способом, можно было уменьшать заряд одного из шариков, участвующих в опыте, в 2, 4, 8, 16 и т. д. раз.

Так опытным путем Кулон получил закон, формула которого очень похожа на закон всемирного тяготения.

В память о его заслугах, силу взаимодействия зарядов называют Кулоновской силой.

Закон Кулона для зарядов в вакууме

Рассмотрим два точечных заряда, которые находятся в вакууме (рис. 2).

Два положительных заряда q и Q отталкиваются в вакууме

Рис. 2. Два положительных заряда q и Q, расположенных в вакууме на расстоянии r, отталкиваются. Силы отталкивания направлены вдоль прямой, соединяющей заряды

На рисунке 2 сила (large F_{Q} ) – это сила, с которой положительный заряд Q отталкивает второй положительный заряд q. А сила  (large F_{q} ) принадлежит заряду q, с такой силой он  отталкивает заряд Q.

Примечание: Точечный заряд – это заряженное тело, размером и формой которого можно пренебречь.

Силы взаимодействия зарядов, по третьему закону Ньютона, равны по величине и направлены противоположно. Поэтому, для удобства можно ввести обозначение:

[large F_{q} = F_{Q} = F]

Для силы взаимодействия зарядов в вакууме Шарль Кулон сформулировал закон так:

Два точечных заряда в вакууме,
взаимодействуют с силой
прямо пропорциональной
произведению величин зарядов
и обратно пропорциональной
квадрату расстояния между ними.

Формула для этого закона на языке математики запишется так:

[large boxed { F = k cdot frac {|q| cdot |Q| }{r^{2}} } ]

(F left( H right) ) – сила, с которой два точечных заряда притягиваются, или отталкиваются;

(|q| left( text{Кл}right) ) – величина первого заряда;

(|Q| left( text{Кл}right) ) – величина второго заряда;

(r left( text{м}right) ) – расстояние между двумя точечными зарядами;

(k ) – постоянная величина, коэффициент в системе СИ;

Сила – это вектор. Две главные характеристики вектора – его длина и направление.

Формула позволяет найти одну из характеристик вектора F — модуль (длину) вектора.

Чтобы определить вторую характеристику вектора F – его направление, нужно воспользоваться правилом: Мысленно соединить два неподвижных точечных заряда прямой линией. Сила, с которой они взаимодействуют, будет направлена вдоль этой прямой линии.

Сила Кулона – это центральная сила, так как она направлена вдоль прямой, соединяющей центры тел.

Примечание: Еще один пример центральной силы — сила тяжести.

Что такое коэффициент k с точки зрения физики

Постоянная величина (k ), входящая в формулу силы взаимодействия зарядов, имеет такой физический смысл:

(k ) — это сила, с которой отталкиваются два положительных точечных заряда по 1 Кл каждый, когда расстояние между ними равно 1 метру.

Значение постоянной k равно девяти миллиардам!

[large boxed { k = 9cdot 10^{9} left( H cdot frac{text{м}^{2}}{text{Кл}^{2}}right) } ]

Это значит, что заряды взаимодействуют с большими силами.

Смысл коэффициента k в формуле взаимодействия зарядов

Рис. 3. Коэффициент k в формуле взаимодействия зарядов

Константу k можно вычислить опытным путем, расположив два известных заряда (не обязательно по 1 Кулону каждый) на удобном для измерений расстоянии (не обязательно 1 метр) и измерив силу из взаимного действия.

Нужно подставить известные величины зарядов, расстояние между ними и измеренную силу в такую формулу:

[large boxed { k = frac {F cdot r^{2}}{|q| cdot |Q|} } ]

Величина k связана с электрической постоянной (varepsilon) такой формулой:

[large boxed { k = frac{1}{4pi cdot varepsilon_{0}} } ]

Поэтому дробь из правой части этой формулы можно встретить в различных справочниках физики, где она заменяет коэффициент k.

Закон Кулона для зарядов в веществе

Если два точечных заряда находятся в веществе, то сила их взаимного действия будет меньше, чем в вакууме. Для зарядов в веществе закон Кулона выглядит так:

[large boxed { F = frac{1}{varepsilon} cdot k cdot frac {|q| cdot |Q| }{r^{2}} } ]

(F left( H right) ) – сила взаимодействия зарядов в веществе;

(|q| ; |Q| left( text{Кл}right) ) – величины зарядов;

(r left( text{м}right) ) – расстояние между зарядами;

( k = 9cdot 10^{9} ) – постоянная величина;

( varepsilon ) – диэлектрическая проницаемость вещества, для разных веществ различается, ее можно найти в справочнике физики;

Два заряда -q и +Q притягиваются в вакууме сильнее, чем в диэлектрике

Рис. 4. Два заряда -q и +Q, расположенные в вакууме на расстоянии r, притягиваются сильнее, нежели те же заряды, расположенные на таком же расстоянии в диэлектрике

Силы, с которыми заряды действуют друг на друга в веществе, отличаются от сил взаимодействия в вакууме в ( varepsilon ) раз:

[large boxed { F_{text{(в диэлектрике)}} = frac{1}{varepsilon} cdot F_{text{(в вакууме)}} } ]

Примечание: Читайте отдельную статью, рассказывающую, что такое диэлектрическая проницаемость и электрическая постоянная.

Закон Кулона 

Закон сохранения электрического заряда

Напряженность

Принцип суперпозиции

Электрическое поле

Потенциал электростатического поля

Разность потенциалов


Теория

Совсем чуть−чуть. 

Закон Кулона — сила, с которой два точечных заряда действуют друг на друга. Она обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов.

Заряды с одинаковым знаком отталкиваются, с разными — притягиваются. По III з. Ньютона сила действия одного заряда равна силе действия другого:

Наглядно рассказывается об этом в видео.
А напряженность — силовая характеристика электрического поля. По-простому: электрическое поле действует на заряд, и вот сила, с которой поле действует на заряд, и есть напряженность. 

Напряженность НЕ зависит от величины заряда, помещенного в поле!

Задачи

Задача 1 Два одинаковых маленьких положительно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F. Модули зарядов шариков отличаются в 5 раз. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F. Определите отношение F к F.

Скажем, что заряд одного шарика q, другого 5q. Тогда сила Кулона между ними:

А если теперь соединить два шарика, то общий заряд разделится пополам (на каждый шарик). Общий заряд 5q + q = 6q, тогда на каждом шарике окажется по 3q. Тогда сила Кулона:

Отношение получится таким:

Ответ: 1,8

Задача 2 Два одинаковых маленьких разноименно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F. Модули зарядов шариков отличаются в 4 раза. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F. Определите отношение F к F.

Та же самая задача? А вот и нет, одно слово другое: разноименно вместо положительных. Это значит, что один шарик будет заряжен положительно, другой отрицательно. По сравнению с первым случаем сила Кулона никак не изменится по модулю (только по нарпавлению).

А вот после соприкосновения изменится. Общий заряд: 5q − q = 4q или q − 5q = − 4q, тогда на каждый шар пойдет по 2q:

Отношение:

Ответ: 0,8

Задача 3 На нерастяжимой нити висит шарик массой 100 г, имеющий заряд 20 мкКл. Как необходимо зарядить второй шарик, который подносят снизу к первому шарику на расстояние 30 см, чтобы сила натяжения: а) увеличилась в 4 раза; б) рассмотреть случай невесомости?

В начальный момент времени на шарик действуют две силы:

а) Чтобы сила натяжения увеличилась в 4 раза, сила Кулона должна быть направлена вниз, значит, нужно поднести отрицательно заряженный шарик. Запишем также уравнение на ось Y:

б) Невесомость возникает, когда сила натяжения равна нулю. Для этого нужно, чтобы сила Кулона была направлена вверх, значит, подносим положительный заряд:

Ответ: −1,5 мкКл, 500 нКл.

Задача 3 Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает с поверхности пластинки электрон, который попадает в электрическое поле с напряженностью 125 В/м. Найти расстояние, которое он пролетит прежде, чем разгонится до скорости, равной 1% от скорости света. 

В задаче говорится про электрон, значит, его массу m = 9,1×10⁻³¹ кг и заряд q = 1,6 × 10⁻¹⁹ Кл можно посмотреть в справочных данных.

Найдем ускорение электрона в электрическом поле:

Остается найти пройденный путь в равноускоренном движении при нулевой начальной скорости: 

Ответ: 0,2 м

Задача 4 Полый заряженный шарик массой m = 0,4 г. движется в однородном горизонтальном электрическом поле из состояния покоя. Модуль напряженности электрического поля E = 500 кВ/м. Траектория шарика образует с вертикалью угол α = 45°. Чему равен заряд шарика? 

Для начала разберемся, какие силы действуют на заряд:

Заряд движется под углом 45 градусов, значит, отношением сил будет тангенс 45°:

Ответ: 8×10⁻⁹ Кл

Задача 5 При нормальных условиях электрический «пробой» сухого воздуха наступает при напряжённости электрического поля 30 кВ/см. В результате «пробоя» молекулы газа, входящие в состав воздуха, ионизируются и появляются свободные электроны. Какую кинетическую энергию приобретёт такой электрон, пройдя в электрическом поле расстояние 10⁻⁵ см? Ответ выразите в электронвольтах. (ЕГЭ)

Задача кажется весьма тяжелой, но это обманчиво. Воспользуемся знакомой формулой напряженности: 

Домножим на длину обе части, тогда слева получится работа, а работа — это изменение энергии:

Переводить сантиметры не обязательно, они сократятся. Чтобы перевести джоули в электронвольты, нужно разделить на 1,6 × 10⁻¹⁹

Ответ: 0,3 эВ

Задача 6 В вершинах равностороннего треугольника со стороной «а» находятся заряды +q, +q и -q. Найти напряженность поля Е в центре треугольника.

Покажем, как направлена напряженность: для двух положительных зарядов — от них (красные стрелочки), для отрицательного заряда — к нему (синяя стрелочка).

Угол между синим вектором и красным составляет 60°. Если продлить красный вектор до стороны, получится прямоугольный треугольник. Тогда, чтобы посчитать результирующую напряженность, спроецируем красные векторы на синий: 

Остается разобрать на каком расстоянии находятся заряды от центра треугольника. Высоту треугольника можно найти по т. Пифагора, равна она а√3/2. А расстояние тогда составит 2/3 от высоты:

Ответ: 6kq/a²

Задача 6 Два шарика с зарядами Q = –1 нКл и q = 5 нКл соответственно, находятся в однородном электрическом поле с напряженностью Е = 18 В/м, на расстоянии r = 1 м друг от друга. Масса первого шарика равна M = 5 г. Определите, какую массу должен иметь второй шарик, чтобы они двигались с прежним между ними расстоянием и с постоянным по модулю ускорением. (ЕГЭ — 2016)

Направим ось X вправо и покажем, какие силы действуют на каждый заряд.

На положительный заряд электрическая сила действует по линиям напряженности, для отрицательного заряда все наоборот. Силы кулона направлены к зарядам, они разноименные. Составим уравнение для каждого заряда:

Сумма всех сила равна ma, потому что в условии сказано, что шарики двигаются с постоянным ускорением, а чтобы расстояние не менялось, двигаться они должны в одном направлении.

Разделим одно уравнение на другое и выразим массу:

Ответ: 8,3 гр.

Задача 7 Четыре маленьких одинаковых шарика, связанных нерастяжимыми нитями одинаковой длины, заряженызарядами q, q, q и 2q. Сила натяжения нити, связывающей первый и второй шарики, равна T. Найти силу натяжения нити, связывающейвторой и третий шарики. (Росатом)

Покажем, каким силам противодействует сила натяжения Т. Воспользуемся принципом суперпозиции и законом Кулона:

Сила натяжения Т удерживает первый шарик, других сил для него нет, значит, больше ничего для первого случая не требуется. 

Как проще это запомнить: проводим линию перпендикулярно той нити, о которой говорим (красная черточка), после записываем только те силы между шариками, которые появляются по разные стороны от проведенной линии:

Теперь также составим уравнения для силы натяжения между вторым и третьим шариком:

Распишим каждое уравнение по закону кулона, скажем, что расстояние между соседними шариками равно «а»:

Второе уравнение с подстановкой выражения из первого:

Ответ: 71T/53

Задача 8 Точечный заряд, расположенный в точке C, создаёт в точках A и B поле с напряжённостью Ea и Eb соответственно (см. рисунок; угол ACB — прямой). Найти напряжённость электрическогополя, создаваемого этим зарядом в точке M, являющейся основанием перпендикуляра, опущенного из точки C на прямую AB. (Росатом)

Запишем, чему равна напряженность в каждой из этих точек, взяв длины отрезков за a; b; h:

Площадь прямоугольного треугольника можно найти как полупроизведение катетов или как полупроизведение высоты и основания:

Возведем в квадрат получившиеся уравнение, а дальше смертельный номер: возводим в −1 степень и домножаем обе части на kq:

Выразим a² и b² через напряженность:

Ответ: Ea+Eb

Задача 9 Частицы с массами M и m, и зарядами q и −q соответственно вращаются с угловой скоростью ω по окружностям вокруг оси, направленной по внешнемуоднородному электрическому полю с напряжённостью E (рис.). Найдите расстояние L между частицами и расстояние H между плоскостями их орбит. (Всеросс. 2008)

Накрест лежащие углы при параллельных прямых (движения частиц) и секущей силы Кулона равны α. Покажем какие силы действуют на каждую частицу:

Запишем уравнения по осям на верхнюю частицу:

На нижнюю частицу:

Построим два треугольника, которые показывают расстояние между частицами и высоту между ними. 

Разделим уравнения друг на друга, а также выразим тангенс угла из этих треугольников:

Сложим два уравнения, чтобы найти расстояние между плоскостями:

Пункт «а» решили, теперь с расстоянием разберемся: выразим из ур-ия (1) длину, а дальше из треугольника выразим синус угла альфа:

Вместо Н подставим то, что мы нашли:

Задача 10 В точке O к стержню привязана непроводящая нить длиной R c зарядом q на конце. Известный эталонный заряд Q и измеряемый заряд Q установлены на расстояниях L и L от точки O. Все заряды одногознака и могут считаться точечными. Найдите величину заряда Q, если в состоянии равновесия нить отклонена на угол β от отрезка, соединяющегозаряды Q и Q. (Всеросс. 2018)

Проведем оси, подпишем расстояние от Q₁ до q и от Q₂ до q. Запишем ур-ия сил на каждую ось:

Не хочется мучиться с силой натяжения нити, поэтому займемся ур-ем на ось Y:

Из прямоугольных треугольников можно получить такие соотношения, а также из теоремы косинусов выразить S₁ и S₂:

Подставим в ур-ие (1):

В качестве закрепления материала решите несколько похожих задач с ответами. 

Будь в курсе новых статеек, видео и легкого технического юмора.

Основной
закон взаимодействия электрических
зарядов был найден Шарлем Кулоном в
1785 г. экспериментально. Кулон установил,
что сила
взаимодействия
между двумя небольшими заряженными
металлическими шариками обратно
пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:

,

где
коэффициент
пропорциональности

.

Силы,
действующие на заряды
,
являются центральными,
то есть они направлены вдоль прямой,
соединяющей заряды.

  • Для
    одноименных зарядов произведение
    и силасоответствует взаимному отталкиванию
    зарядов,

  • для
    разноимнных зарядов
    ,
    и силасоответствует взаимному притяжению
    зарядов.

Закон
Кулона

можно записать в
векторной форме
:,

где
вектор
силы, действующей на заряд
со стороны заряда,

— радиус-вектор,
соединяющий заряд
с зарядом;

— модуль радиус-вектора.

Сила,
действующая на заряд
со стороныравна,.

Закон Кулона в
такой форме

  • справедлив
    только
    для взаимодействия точечных электрических
    зарядов
    ,
    то есть таких заряженных тел, линейными
    размерами которых можно пренебречь по
    сравнению с расстоянием между ними.

  • выражает
    силу взаимодействия

    между неподвижными электрическими
    зарядами, то есть это электростатический
    закон.

Формулировка
закона Кулона
:

Сила
электростатического взаимодействия
между двумя точечными электрическими
зарядами прямо пропорциональна
произведению величин зарядов и обратно
пропорциональна квадрату расстояния
между ними
.

Коэффициент
пропорциональности

в законе Кулоназависит

  1. от свойств среды

  2. выбора единиц
    измерения величин, входящих в формулу.

Поэтому
можно
представить отношением,

где
коэффициент,
зависящий только от выбора системы
единиц измерения
;

— безразмерная
величина, характеризующая электрические
свойства среды, называется относительной
диэлектрической проницаемостью среды
.
Она не зависит от выбора системы единиц
измерения и равна единице в вакууме.

Тогда
закон Кулона примет вид:,

для
вакуума
,

тогда
относительная
диэлектрическая проницаемость среды
показывает, во сколько раз в данной
среде сила взаимодействия между двумя
точечными электрическими зарядами
и,
находящимися друг от друга на расстоянии,
меньше, чем в вакууме.

В
системе СИ
коэффициент
,
и

закон
Кулона имеет вид
:.

Это
рационализированная
запись закона К
улона.

— электрическая
постоянная,
.

В
системе СГСЭ

,.

В
векторной форме закон Кулона

принимает вид

где
вектор
силы, действующей на заряд
со стороны заряда

,


радиус-вектор, соединяющий заряд
с зарядом

(рис. 1.2),

r
–модуль радиус-вектора

.

Всякое
заряженное тело состоит из множества
точечных электрических зарядов, поэтому
электростатическая
сила, с которой одно заряженное тело
действует на другое, равна векторной
сумме сил, приложенных ко всем точечным
зарядам второго тела со стороны каждого
точечного заряда первого тела.

1.3.Электрическое поле. Напряженность.

Пространство,
в котором находится электрический
заряд, обладает определенными физическими
свойствами
.

  1. На
    всякий

    другой заряд,
    внесенный в это пространство, действуют
    электростатические силы Кулона.

  2. Если в каждой
    точке пространства действует сила, то
    говорят, что в этом пространстве
    существует силовое поле.

  3. Поле наряду с
    веществом является формой материи.

  4. Если
    поле стационарно, то есть не меняется
    во времени, и создается неподвижными
    электрическими зарядами, то такое поле
    называется электростатическим.

Электростатика
изучает только электростатические поля
и взаимодействия неподвижных зарядов.

Для
характеристики электрического поля
вводят понятие напряженности
.
Напряженностью
в каждой точке электрического поля
называется вектор
,
численно равный отношению силы, с которой
это поле действует на пробный положительный
заряд, помещенный в данную точку, и
величины этого заряда, и направленный
в сторону действия силы.

Пробный
заряд
,
который вносится в поле, предполагается
точечным и часто называется пробным
зарядом.

Он
не участвует в создании поля,

которое с его помощью измеряется.


предполагается, что этот заряд не
искажает исследуемого поля,

то есть он достаточно мал и не вызывает
перераспределения зарядов, создающих
поле.

Если
на пробный точечный заряд
поле действует силой,
то напряженность.

Единицы напряженности:

СИ:

СГСЭ:

В
системе СИ выражение
для
поля точечного заряда
:

.

В векторной форме:

Здесь
– радиус-вектор, проведенный из зарядаq
, создающего поле, в данную точку.

Таким
образом,векторы
напряженности электрического поля
точечного заряда
q
во всех точках поля направлены радиально

(рис.1.3)

— от
заряда, если он положительный, «исток»

— и
к заряду, если он отрицательный

«сток»

Для
графической интерпретации

электрического поля вводят понятие
силовой линии или
линии
напряженности
.
Это

  • кривая,
    касательная в каждой точке к которой
    совпадает с вектором напряженности
    .

  • Линия напряженности
    начинается на положительном заряде и
    заканчивается на отрицательном.

  • Линии напряженности
    не пересекаются, так как в каждой точке
    поля вектор напряженности имеет лишь
    одно направление.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

§ 2. Закон Кулона. Поле точечного заряда. Силовые линии электрического поля

Опытным путём установлен закон Кулона:

сила взаимодействия двух  точечных неподвижных зарядов в вакууме пропорциональна произведению модулей зарядов, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, проходящей через эти заряды:

$$ F=k{displaystyle frac{left|{q}_{1}right|left|{q}_{2}right|}{{r}^{2}}} $$.                                                            (2.1)

Здесь `F` — модуль силы, `k` — коэффициент пропорциональности, зависящий от  выбора системы единиц, `q_1` и `q_2` — величины зарядов, `r` — расстояние между  зарядами. 

Обратите внимание, что нарушение в конкретных условиях опыта точечности зарядов, их неподвижности или нахождение зарядов не в вакууме может привести к невыполнению соотношения (2.1).

Основной единицей в любой системе единиц называется единица, для которой существует установленная по договорённости принципиальная возможность создания эталона этой единицы. Напомним, что основными единицами системы СИ являются единицы длины метр (м), массы килограмм (кг), времени секунда (с), силы электрического тока ампер (А), термодинамической температуры кельвин (К), количества вещества моль (моль), силы света кандела (кд). Остальные единицы в системе СИ производные, их размерность (выраженная через основные или другие единицы системы) даётся через определения и физические законы, устанавливающие связь между различными физическими величинами. Единицей заряда в системе СИ является кулон (Кл) –  заряд, проходящий за `1` с через поперечное сечение проводника при силе тока `1` А.

Найдём размерность (обозначается квадратными скобками) коэффициента `k` в формуле (2.1) закона Кулона. Для размерностей физических величин в (2.1) выполняется соотношение, аналогичное соотношению (2.1) между самими величинами: $$ left[Fright]=left[kright]{displaystyle frac{left[{q}_{1}right]left[{q}_{2}right]}{left[{r}^{2}right]}}$$.

Поскольку $$ left[Fright]=H=mathrm{кг}·mathrm{м}/{mathrm{с}}^{2}, left[{q}_{1}right]=left[{q}_{2}right]=mathrm{Кл}=mathrm{А}·mathrm{с}, left[{r}^{2}right]={mathrm{м}}^{2}$$, то 

$$ left[kright]={displaystyle frac{left[Fright]left[{r}^{2}right]}{left[{q}_{1}right]left[{q}_{2}right]}}={displaystyle frac{mathrm{Н}·{mathrm{м}}^{2}}{{mathrm{Кл}}^{2}}}={displaystyle frac{mathrm{кг}·{mathrm{м}}^{3}}{{mathrm{А}}^{2}·{mathrm{с}}^{4}}}$$.

Запоминать выражение для размерности `k` необязательно, но уметь выводить, используя (2.1), надо. 

Приведём значение коэффициента `k` в (2.1) для системы СИ:

$$ k=9·{10}^{9}{displaystyle frac{mathrm{кг}·{mathrm{м}}^{3}}{{mathrm{А}}^{2}·{mathrm{с}}^{4}}}=9·{10}^{9} mathrm{ед}. mathrm{СИ}$$.

Заметим, что вместо выражения для размерности после численного значения можно писать «ед. СИ» (единицы СИ). Иногда в системе СИ коэффициент `k` в (2.1) записывают в форме $$ k={displaystyle frac{1}{4pi {epsilon }_{0}}}$$.

Здесь $$ {epsilon }_{0}=mathrm{8,85}·{10}^{-12}$$ ед. СИ называется электрической постоянной.

Найдём напряжённость электрического поля, созданного точечным зарядом `Q` на расстоянии `r` от заряда. Для этого поместим мысленно на расстоянии `r` от `Q` пробный заряд `q`. По закону Кулона на `q` действует сила $$ F=left|overrightarrow{F}right|=kleft|Qright|left|qright|/{r}^{2}$$. Напряжённость поля (созданного зарядом `Q`) в месте расположения `q` равна `vecE=vecF//q`. Отсюда `E=|vecE|=|vecF|//|q|`. С учётом выражения для `F` напряженность поля точечного заряда `Q` на расстоянии `r` от него 

$$ E=k{displaystyle frac{left|Qright|}{{r}^{2}}}$$.                                                     (2.2)

На рисунках 2.1 и 2.2 показаны случаи для `Q > 0` и `Q < 0`. Знак пробного заряда `q` выбран положительным из соображений удобства, т. к. при таком выборе направление силы, действующей на `q`, совпадает с направлением напряжённости. 

Формулу (2.2) можно обобщить, избавившись от знака модуля:

$$ {E}_{x}=k{displaystyle frac{Q}{{r}^{2}}}$$                                                                 (2.3)

Здесь $$ {E}_{x}$$ – проекция напряжённости на ось `x`, направленную от заряда `Q` и проходящую через исследуемую точку. Справедливость (2.3) при любом знаке `Q` проверяется непосредственно (см. рис. 2.1, 2.2).

Силовой линией (линией напряжённости) электрического поля называется непрерывная линия, касательная в каждой точке которой совпадает с направлением вектора напряжённости электрического поля в этой точке.Наглядно электрические поля изображают с помощью силовых линий.

На рис. 2.3 приведена картина силовых линий электрического поля положительного точечного заряда.

Рис. 2.3

Стрелкой на каждой силовой линии указывается её направление, т. е. направление вектора напряжённости в каждой точке силовой линии. Полезно посмотреть и нарисовать самим картины силовых линий полей из школьного учебника. 

Все свойства силовых линий как электрического поля, так и электростатического поля, следуют из определения силовых линий и из законов электродинамики. Приведём некоторые свойства.

1. Силовые линии электрического поля не пересекаются. В противном случае в точках пересечения была бы неопределённость в направлении напряжённости поля.
2. Густота силовых линий электрического поля в пространстве пропорциональна напряжённости электрического поля.
3. Силовые линии электростатического поля не замкнуты. Они начинаются на положительных зарядах (или в бесконечности) и заканчиваются на отрицательных зарядах (или в бесконечности). При этом некоторая группа силовых линий (лучевая трубка) связывает равные по модулю заряды и число силовых линий, выходящих (входящих) из заряженного тела, не зависит от формы тела, а зависит только от величины заряда (пропорционально заряду).

Обратите внимание, что первые два свойства справедливы и для электростатического поля, как частного случая электрического. Третье же свойство справедливо только для электростатического поля, а для произвольного электрического поля выполняется не всегда.

Рис. 2.4

В двух вершинах равностороннего треугольника со стороной `a=1` м расположены точечные заряды $$ {q}_{1}=Q=1.4·{10}^{-7}mathrm{Кл}$$, $$ {q}_{2}=-2Q$$. Найти напряжённость (модуль) электрического поля в третьей вершине треугольника.

Пусть напряженность полей, созданных зарядами `Q` и `-2Q` в третьей вершине треугольника $$ overrightarrow{{E}_{1}}, overrightarrow{{E}_{2}}$$ (рис. 2.4). По принципу суперпозиции полей напряжённость результирующего поля $$ overrightarrow{E}=overrightarrow{{E}_{1}}+overrightarrow{{E}_{2}}.$$ Используя теорему косинусов для треугольника, составленного из векторов $$ overrightarrow{E}, overrightarrow{{E}_{1}}, overrightarrow{{E}_{2}}$$, получаем $$ {E}^{2}={{E}^{2}}_{1}+{{E}^{2}}_{2}-2{E}_{1}{E}_{2}mathrm{cos}60°. $$ Поскольку `E_1=kQ//a^2`, `E_2=2kQ//a^2`, `cos60^@=1//2`, то `E=sqrt3k Q/q^2~~2,2*10^3` Н/Кл.

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 17. Взаимодействие точечных зарядов. Закон Кулона
Напечатано:: Гость
Дата: Воскресенье, 28 Май 2023, 19:28

Оглавление

  • Взаимодействие точечных зарядов. Закон Кулона
  • Закон Кулона
  • Взаимодействие системы точечных зарядов
  • Диэлектрическая проницаемость вещества
  • Примеры решения задач
  • Упражнение 13

Электрически заряженные тела (частицы) взаимодействуют друг с другом. Но как определить силу, которой одно заряженное тело притягивает или отталкивает другое?

Вы уже встречались с физическими моделями при изучении механики (материальная точка) и молекулярной физики (идеальный газ). В электростатике при изучении взаимодействия электрически заряженных тел эффективной оказывается модель «точечный заряд».

Точечный заряд — заряд такого заряженного тела, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и до других тел (т. е. размерами заряженного тела в условиях данной задачи можно пренебречь).

Вспомните, закон всемирного тяготения также сформулирован для точечных тел (материальных точек).

Рис.
Рис. 98

Закон Кулона. Кулон детально исследовал взаимодействие неподвижных точечных зарядов. Он на опыте изучил зависимость сил электрического взаимодействия тел от модулей зарядов этих тел и расстояния между ними.

В своих опытах Кулон использовал специальный прибор — крутильные весы (рис. 98). Крутильные весы представляют собой два стеклянных цилиндра, внутри которых на тонкой серебряной нити подвешено лёгкое непроводящее коромысло. На одном конце коромысла закреплён проводящий шар 1, а на другом — бумажный противовес 3. Шар 1 можно заряжать с помощью такого же проводящего шара 2. Он находится на изолирующем стержне, закреплённом на крышке нижнего цилиндра. При соприкосновении шара 1 с заряженным шаром 2 заряд распределяется между ними поровну, и шары отталкиваются.

Материал повышенного уровня

Используя крутильные весы, Кулон получил зависимость модуля сил взаимодействия двух заряженных шаров от величин зарядов и от расстояния между ними. По углу закручивания нити, отсчитываемому по шкале прибора, можно определить силу взаимодействия заряженных шаров. Кулон установил, что модуль сил взаимодействия двух заряженных шаров open vertical bar F with rightwards arrow on top subscript 21 close vertical bar equals open vertical bar F with rightwards arrow on top subscript 12 close vertical bar equals F обратно пропорционален квадрату расстояния между ними: F tilde 1 over r squared.

Для измерения зависимости модуля сил взаимодействия шаров от их зарядов учёный нашёл простой способ. Разряжая шар 2 прикосновением руки, а затем касаясь им уже заряженного шара 1, Кулон смог получить на нём заряды, модуль которых в 2, 4, 8 и т. д. раз меньше первоначального. Он выяснил, что при неизменном расстоянии модуль сил взаимодействия двух неподвижных небольших заряженных тел прямо пропорционален произведению модулей электрических зарядов каждого из них: F tilde open vertical bar q subscript 1 close vertical bar times open vertical bar q subscript 2 close vertical bar.

Обобщив экспериментальные данные, Кулон сформулировал закон, получивший его имя.

Закон Кулона: модули сил взаимодействия двух неподвижных точечных заряженных тел в вакууме прямо пропорциональны произведению модулей зарядов этих тел, обратно пропорциональны квадрату расстояния между ними, а сами силы направлены вдоль прямой, соединяющей эти тела:

F equals k fraction numerator open vertical bar q subscript 1 close vertical bar times open vertical bar q subscript 2 close vertical bar over denominator r squared end fraction comma 

(17.1)

где k — коэффициент пропорциональности, зависящий от выбора единиц физических величин; |q1| и |q2| — модули точечных зарядов; r — расстояние между ними.

В СИ коэффициент пропорциональности

k equals fraction numerator F r squared over denominator open vertical bar q subscript 1 close vertical bar times open vertical bar q subscript 2 close vertical bar end fraction equals fraction numerator 1 over denominator 4 πε subscript 0 end fraction equals 8 comma 99 times 10 to the power of 9 space fraction numerator straight Н times straight м squared over denominator Кл squared end fraction comma

где straight epsilon subscript 0 equals space 8 comma 85 times 10 to the power of negative 12 end exponent space fraction numerator Кл squared over denominator straight Н times straight м squared end fractionэлектрическая постоянная.

От теории к практике

Два маленьких положительно заряженных шарика закреплены на расстоянии r друг от друга. Как изменится модуль сил электростатического взаимодействия шариков, если: 1) уменьшить заряд каждого шарика в четыре раза; 2) увеличить расстояние между шариками в четыре раза; 3) увеличить заряд каждого шарика и расстояние между ними в два раза?

Как изменились бы силы электростатического взаимодействия шариков, если бы: 1) шарики были заряжены отрицательно; 2) один из шариков зарядить отрицательно, а другой положительно?

Материал повышенного уровня

Интересно знать

Экспериментальные факты свидетельствуют о том, что воздействие неподвижного в данной инерциальной системе отсчёта точечного заряда на движущийся точечный заряд может быть описано законом Кулона с приемлемой точностью. Так, описание рассеяния α-частиц на ядрах атомов золота в опытах Резерфорда с помощью модели точечного заряда, на который действует кулоновская сила со стороны неподвижного ядра, согласуется с экспериментальными данными в пределах точности последних.

Два и более движущихся в данной инерциальной системе заряда не могут характеризоваться только кулоновским взаимодействием, так как каждый из них создаёт в окружающем пространстве магнитное поле, которое действует магнитной силой на остальные заряды, движущиеся в нём.

Рис.
Рис. 100

Взаимодействие системы точечных зарядов. Экспериментально установили, что силы взаимодействия двух точечных зарядов не изменяются при появлении третьего точечного заряда или любого числа точечных зарядов. В этом случае силы воздействия F with rightwards arrow on top subscript 21, F with rightwards arrow on top subscript 31, …, F with rightwards arrow on top subscript n 1 end subscript каждого из зарядов q2, q3, …, qn на заряд q1 определяют по закону Кулона. Результирующая сила является векторной суммой сил, которыми каждый из этих зарядов в отдельности воздействует на заряд q1 (принцип суперпозиции).

Используя принцип суперпозиции и закон Кулона, можно описать электростатическое взаимодействие любой системы точечных зарядов. На рисунке 100 представлены три взаимодействующих между собой точечных электрических заряда: q1 > 0, q2 < 0, q3 < 0. Результирующей сил, действующих на заряд q1 со стороны зарядов q2 и q3, является сила F with rightwards arrow on top subscript 1, которая равна векторной сумме сил F with rightwards arrow on top subscript 21 и F with rightwards arrow on top subscript 31: F with rightwards arrow on top subscript 1 equals F with rightwards arrow on top subscript 21 plus F with rightwards arrow on top subscript 31. Силы F with rightwards arrow on top subscript 21 и F with rightwards arrow on top subscript 31 воздействия зарядов q2 и q3 на заряд q1 определяют по закону Кулона.

От теории к практике

Рис.
Рис. 101

Точечные заряды q1, q2 и q3 закреплены в вершинах треугольника. Направление результирующей электростатической силы, действующей на отрицательный заряд q3 со стороны зарядов q1 и q2, представлено на рисунке 101. Каковы знаки зарядов q1 и q2? Во сколько раз отличаются модули зарядов q1 и q2?

Материал повышенного уровня

Интересно знать

Понятие электрического заряда в некоторой степени сходно с понятием гравитационной массы. Электрический заряд определяет интенсивность электромагнитных взаимодействий, а масса — гравитационных. Закон Кулона, описывающий электростатическое взаимодействие, формально похож на закон всемирного тяготения Ньютона, определяющий силы гравитационного взаимодействия:

begin mathsize 14px style open vertical bar F with rightwards arrow on top subscript 12 close vertical bar equals open vertical bar F with rightwards arrow on top subscript 21 close vertical bar equals F equals G fraction numerator m subscript 1 m subscript 2 over denominator r squared end fraction. end style

В обоих случаях модуль сил взаимодействия:
– обратно пропорционален квадрату расстояния между материальными точками;
– прямо пропорционален величинам, характеризующим те свойства тел (материальных точек), которые определяют взаимодействия, — массам в одном случае и электрическим зарядам — в другом.

Для измерения сил электрического отталкивания (Ш. Кулон, 1785 г.) и гравитационной постоянной (Г. Кавендиш, 1788 г.) учёные использовали похожие по устройству экспериментальные установки.

Однако между силами гравитационного и электростатического взаимодействий существует и важное различие. Ньютоновские силы тяготения — это всегда силы притяжения. кулоновские же силы взаимодействия зарядов могут быть как силами притяжения (между разноимёнными зарядами), так и силами отталкивания (между одноимёнными зарядами).

Материал повышенного уровня

От теории к практике

Известно, что масса электрона mе = 9,1· 10–31 кг. Во сколько раз модуль сил электрического отталкивания между двумя электронами больше модуля сил их гравитационного притяжения?

Диэлектрическая проницаемость вещества. Из опытов следует, что взаимодействие электрически заряженных тел в воздухе практически не отличается от их взаимодействия в вакууме. Если заряженные тела находятся в воде, керосине, масле или какой-нибудь другой непроводящей среде, то модуль сил их взаимодействия оказывается меньше, чем в вакууме. Чтобы учесть влияние среды, ввели её специальную характеристику, называемую диэлектрической проницаемостью.

Диэлектрическая проницаемость вещества — физическая величина, показывающая, во сколько раз модуль сил электростатического взаимодействия зарядов в данной однородной среде меньше модуля сил взаимодействия этих же зарядов в вакууме:

straight epsilon equals F subscript 0 over F comma 

(17.2)

где F0 и F — модули сил электростатического взаимодействия зарядов в вакууме и в однородной среде соответственно.

С учётом соотношения (17.2) закон Кулона можно записать следующим образом:

F equals k fraction numerator open vertical bar q subscript 1 close vertical bar times open vertical bar q subscript 2 close vertical bar over denominator straight epsilon r squared end fraction.

Диэлектрическая проницаемость вакуума равна 1. За 1 принимают и диэлектрическую проницаемость воздуха, поскольку её значение (при нормальном атмосферном давлении) 1,0006. Диэлектрические проницаемости других однородных сред всегда больше единицы. Например, у воды диэлектрическая проницаемость 81, у глицерина — 56, а у керосина — 2.

От теории к практике

Как и во сколько раз отличаются модули сил электростатического взаимодействия двух точечных зарядов, находящихся на одинаковом расстоянии друг от друга в воде, керосине и глицерине?

Интересно знать

Диэлектрическая проницаемость дистиллированной воды при температуре 25 °C равна 78,54, а при температуре 0 °C — 88. Обычно без указания температуры диэлектрическую проницаемость воды полагают равной 81.

img

img

1. К какому виду взаимодействий относят взаимодействие неподвижных электрических зарядов (заряженных тел)?

2. Заряды каких заряженных тел можно считать точечными?

3. Опишите эксперименты Кулона по исследованию взаимодействия электрических зарядов.

4. Сформулируйте закон Кулона. Каковы условия применимости закона Кулона?

5. Чему равен в СИ коэффициент k? Выразите наименование коэффициента пропорциональности k в законе Кулона в основных единицах СИ.

6. В чём суть принципа суперпозиции для электрического взаимодействия точечных зарядов?

7. Что называют диэлектрической проницаемостью среды?

Материал повышенного уровня

Примеры решения задач

Пример 1. Два точечных заряда находятся в керосине на расстоянии r1 = 42 см. Определите, на каком расстоянии должны находиться эти заряды в глицерине, чтобы модуль сил их электростатического взаимодействия остался прежним. Диэлектрические проницаемости керосина ε1 = 2,0, глицерина ε2 = 56,2.

Дано:
r1 = 42 см
Fк1 = Fк2
ε1 = 2,0
ε2 = 56,2

r2 — ?

Решение: Поскольку Fк1 = Fк2, то, воспользовавшись законом Кулона, можно записать: k fraction numerator open vertical bar q subscript 1 close vertical bar times open vertical bar q subscript 2 close vertical bar over denominator straight epsilon subscript 1 r subscript 1 squared end fraction equals fraction numerator open vertical bar q subscript 1 close vertical bar times open vertical bar q subscript 2 close vertical bar over denominator straight epsilon subscript 2 r subscript 2 squared end fraction.

Следовательно, r subscript 2 equals r subscript 1 square root of straight epsilon subscript 1 over straight epsilon subscript 2 end root.

r subscript 2 equals 42 space см space square root of fraction numerator 2 comma 0 over denominator 56 comma 2 end fraction end root equals 7 comma 9 space см.

Ответ: r2 = 7,9 см.

Пример 2. Точечные заряды q1 = 3,4 нКл и q2 = –5,6 нКл находятся в вакууме на расстоянии r = 36 см. Определите модуль и направление результирующей силы, действующей на заряд q3 = 3,2 нКл, помещённый в точку пространства, находящуюся на середине отрезка, соединяющего эти заряды.

Дано:
q1 = 3,4 нКл = 3,4 · 10–9 Кл
q2 = –5,6 нКл = –5,6 · 10–9 Кл
r = 36 см = 0,36 м
q3 = 3,2 нКл = 3,2 · 10–9 Кл

F with rightwards arrow on top subscript straight р — ?

Решение: Изобразим на рисунке силы F with rightwards arrow on top subscript 13 и F with rightwards arrow on top subscript 23, действующие на точечный заряд q3 со стороны точечных зарядов q1 и q2 соответственно. Построив векторную сумму сил F with rightwards arrow on top subscript 13 и F with rightwards arrow on top subscript 23, определим, что результирующая F with rightwards arrow on top subscript straight р этих сил направлена к заряду q2 (рис. 102).

Поскольку силы F with rightwards arrow on top subscript 13 и F with rightwards arrow on top subscript 23 направлены одинаково, то модуль результирующей силы F subscript straight р equals F subscript 13 plus F subscript 23 equals fraction numerator 4 k q subscript 3 over denominator r squared end fraction left parenthesis q subscript 1 plus open vertical bar q subscript 2 close vertical bar right parenthesis.

Таким образом,

F subscript straight р equals fraction numerator 4 times 9 comma 0 times 10 to the power of 9 space begin display style fraction numerator straight Н times straight м squared over denominator Кл squared end fraction end style times 3 comma 2 times 10 to the power of negative 9 end exponent space Кл over denominator left parenthesis 0 comma 36 space straight м right parenthesis squared end fraction times left parenthesis 3 comma 4 times 10 to the power of negative 9 end exponent space Кл plus 5 comma 6 times 10 to the power of negative 9 end exponent space Кл right parenthesis equals 8 comma 0 times 10 to the power of negative 6 end exponent space straight Н equals 8 comma 0 space мкН.

Ответ: Fp = 8,0 мкН; сила направлена к заряду q2.

Материал повышенного уровня

Пример 3. Две бусинки, электрические заряды которых q1 = 40 нКл и q2 = 90 нКл, закреплены на непроводящем стержне на расстоянии r = 40 см друг от друга. Определите: а) где надо поместить третью бусинку, имеющую заряд q3, чтобы она оказалась в равновесии; б) каким должен быть заряд q3 третьей бусинки, чтобы результирующая сила электростатического взаимодействия каждой из трёх бусинок с остальными двумя равнялась нулю.

Дано:
q1 = 40 нКл = 4,0·10–8 Кл
q2 = 90 нКл = 9,0·10-8 Кл
r = 40 см = 0,40 м

х — ?
q3 — ?

Решение: а) Третья бусинка, имеющая заряд q3, будет находиться в равновесии, если её поместить в некоторую точку А между зарядами q1 и q2 на прямой, соединяющей эти заряды (рис. 102.1). Пусть заряд q3 < 0. Тогда со стороны зарядов q1 и q2 на заряд q3 будут действовать противоположно направленные кулоновские силы притяжения F with rightwards arrow on top subscript 13 и F with rightwards arrow on top subscript 23. Согласно второму закону Ньютона, эта бусинка будет покоиться, если модули сил F13 и F23 равны. Тогда, приняв расстояние от заряда q1 до точки А равным х, запишем: k fraction numerator q subscript 1 open vertical bar q subscript 3 close vertical bar over denominator x squared end fraction equals k fraction numerator q subscript 2 open vertical bar q subscript 3 close vertical bar over denominator open parentheses r minus x close parentheses squared end fraction. Так как k и q3 не равны нулю, то это выражение можно сократить: q subscript 1 over x squared equals q subscript 2 over open parentheses r minus x close parentheses squared. Извлечём из обеих частей равенства квадратный корень open parentheses x greater than 0 comma space r minus x greater than 0 close parentheses colon space fraction numerator square root of q subscript 1 end root over denominator x end fraction equals fraction numerator square root of q subscript 2 end root over denominator r minus x end fraction. Отсюда:

x equals fraction numerator square root of q subscript 1 end root times r over denominator square root of q subscript 1 end root plus square root of q subscript 2 end root end fraction.

x equals fraction numerator square root of 4 comma 0 times 10 to the power of negative 8 end exponent space Кл end root times 0 comma 40 space straight м over denominator square root of 4 comma 0 times 10 to the power of negative 8 end exponent space Кл end root plus square root of 9 comma 0 times 10 to the power of negative 8 end exponent space Кл end root end fraction equals 0 comma 16 space straight м.

Такое же значение х мы получим, если примем заряд q3 бусинки положительным (проверьте это самостоятельно).

б) Результирующая сила электростатического взаимодействия каждой из трёх бусинок с остальными двумя равна нулю, если, например, третья бусинка притягивает вторую силой, модуль open vertical bar F with rightwards arrow on top subscript 32 close vertical bar которой равен модулю силы open vertical bar F with rightwards arrow on top subscript 12 close vertical bar, какой её отталкивает первая бусинка (рис. 102.2). При этом заряд третьей бусинки должен быть отрицательным, т. е. q3 < 0. Тогда k fraction numerator q subscript 1 q subscript 2 over denominator r squared end fraction equals k fraction numerator q subscript 2 open vertical bar q subscript 3 close vertical bar over denominator open parentheses r minus x close parentheses squared end fraction. Отсюда open vertical bar q subscript 3 close vertical bar equals open parentheses r minus x close parentheses squared over r squared q subscript 1.

open vertical bar q subscript 3 close vertical bar equals open parentheses 0 comma 24 space straight м close parentheses squared over open parentheses 0 comma 44 space straight м close parentheses squared times 4 comma 0 times 10 to the power of negative 8 end exponent space Кл equals 1 comma 4 times 10 to the power of negative 8 end exponent space Кл space equals 14 space нКл.

Ответ: х = 16 см, расстояние до бусинки с зарядом q3 не зависит от значения и знака её заряда; если заряд бусинки q3 = ‒14 нКл, то результирующая сила электростатического взаимодействия каждой из трёх бусинок с остальными двумя равна нулю.

Рис.
Рис. 102.3

Пример 4. Два одинаковых маленьких проводящих шарика массой m = 20 мг каждый подвешены в воздухе на лёгких нерастяжимых нитях длиной l = 0,20 м, закреплённых в одной точке подвеса. Один из шариков отвели в сторону, сообщили ему заряд q < 0 и отпустили. После столкновения шарики разошлись так, что угол между нитями составил 2α = 60° (рис. 102.3). Определите заряд, который был сообщён первому шарику, а также количество избыточных электронов на каждом из шариков после их столкновения.

Дано:
m = 20 мг = 2,0·10–5 кг
l = 0,20 м
2α = 60°

q – ?
N – ?

Решение: Воспользуемся законом сохранения электрического заряда. При столкновении двух одинаковых проводящих шариков сообщённый одному из них заряд разделился поровну и на каждом шарике оказался избыточный отрицательный заряд q subscript 1 equals q subscript 2 equals q over 2. На каждый шарик действуют сила тяжести F with rightwards arrow on top subscript straight т equals m with rightwards arrow on top g сила электростатического взаимодействия F with rightwards arrow on top subscript Кл и сила упругости нити F with rightwards arrow on top subscript упр (рис. 102.4). После столкновения шарики разошлись, и установилось равновесие. Векторная сумма сил, действующих на каждый шарик, стала равной нулю: m g with rightwards arrow on top plus F with rightwards arrow on top subscript Кл plus F with rightwards arrow on top subscript упр equals 0 with rightwards arrow on top. Модуль силы электростатического взаимодействия F subscript Кл equals k fraction numerator open vertical bar q subscript 1 close vertical bar times open vertical bar q subscript 2 close vertical bar over denominator r squared end fraction equals fraction numerator k q squared over denominator 4 r squared end fraction. Поскольку шарики разошлись симметрично относительно вертикали, проходящей через точку подвеса нитей, то fraction numerator r over denominator 2 l end fraction equals sin space straight alpha (рис. 102.4). Следовательно, F subscript Кл equals fraction numerator k q squared over denominator 16 l squared sin squared straight alpha end fraction. Так как fraction numerator F subscript Кл over denominator m g end fraction equals tg space straight alpha, то fraction numerator k q squared over denominator 16 l squared sin squared straight alpha end fraction equals m g tg space straight alpha, откуда open vertical bar q close vertical bar equals 4 l sin space alpha square root of fraction numerator m g tg space straight alpha over denominator k end fraction end root. Примем k equals 9 comma 0 times 10 to the power of 9 space fraction numerator straight Н times straight м squared over denominator Кл squared end fraction.

Рис.

Рис. 102.4

open vertical bar q close vertical bar equals 4 times 0 comma 20 space straight м times 0 comma 50 square root of fraction numerator 2 comma 0 times 10 to the power of negative 5 end exponent space кг space times 9 comma 8 begin display style straight м over straight с squared end style times 0 comma 58 over denominator 9 comma 0 times 10 to the power of 9 space begin display style fraction numerator straight Н times straight м squared over denominator Кл squared end fraction end style end fraction end root equals 4 comma 5 times 10 to the power of negative 8 end exponent space Кл equals 45 space нКл.

Количество избыточных электронов на каждом шарике N equals fraction numerator open vertical bar q close vertical bar over denominator 2 e end fraction.

N equals fraction numerator 4 comma 5 times 10 to the power of negative 8 end exponent space Кл over denominator 2 times 1 comma 6 times 10 to the power of negative 19 end exponent space Кл end fraction equals 1 comma 4 times 10 to the power of 11.

Ответ: q = ‒45 нКл, N = 1,4 · 1011.

Упражнение 13

1. Определите модуль сил взаимодействия двух одинаковых неподвижных точечных зарядов q1 = q2 = 9,0 нКл, находящихся на расстоянии r = 0,30 м в вакууме. Во сколько раз уменьшится или увеличится модуль сил взаимодействия этих зарядов при помещении их в керосин, диэлектрическая проницаемость которого ε = 2,0?

2. Определите, во сколько раз следует увеличить расстояние между двумя неподвижными точечными зарядами, чтобы модуль сил взаимодействия остался прежним при увеличении численного значения одного из зарядов в α = 4 раза.

3. Два одинаковых маленьких проводящих шарика, заряды которых отличаются в два раза, находятся на расстоянии r = 50 см. Определите расстояние, на которое необходимо развести шарики после соприкосновения, чтобы модуль сил их взаимодействия остался прежним.

Рис.
Рис. 103

4. Точечные заряды q1 и q2 закреплены в вакууме (рис. 103). Определите модуль и направление результирующей силы, действующей на заряд q3, помещённый в точку, находящуюся на середине отрезка, соединяющего эти заряды.

5. Заряды двух одинаковых маленьких шариков массой m = 40 г каждый одинаковые. Расстояние между шариками существенно превышает их размеры. Определите модуль зарядов шариков, если кулоновская сила их отталкивания уравновешивает силу гравитационного притяжения этих шариков.

6. Небольшой шарик, заряд которого q1 = 20 нКл и масса m = 60 мг, подвешен в воздухе на шёлковой нити. После того как на вертикали, проходящей через центр шарика, на расстоянии r = 15 см ниже его поместили другой маленький шарик, заряженный отрицательно, модуль силы упругости нити увеличился в два раза. Определите заряд второго шарика.

Материал повышенного уровня

7. Три первоначально закреплённых одинаковых точечных заряда q1 = q2 = q3 = q0 = 1,0 мкКл расположены в вершинах равностороннего треугольника. Определите, какой точечный заряд нужно поместить в центр треугольника, чтобы вся система находилась в равновесии после освобождения первоначально закреплённых зарядов.

Понравилась статья? Поделить с друзьями:
  • Как правильно составить рекламу продажи
  • Как найти массу моль в физике
  • Как найти доказательства оазиса
  • Как составить учредительный договор фирмы
  • Как найти начальное удлинение пружины