Это уравнение вида ax2+bx+c=0ax^2 + bx + c = 0,
где aa – коэффициент перед x2x^2,
bb – коэффициент перед xx,
cc – свободное число.
Существуют разные способы нахождения корней квадратного уравнения. Пожалуй, самый основной и распространенный способ – через вычисление дискриминанта. В этом случае он рассчитывается по формуле:
D=b2–4acD = b^2 – 4ac
Если второй коэффициент уравнения четный, можно решать уравнение через kk, тогда будет другая формула дискриминанта:
D1=k2–acD_1 = k^2 – ac
Если первый коэффициент уравнения равен 1, то можно воспользоваться теоремой Виета, которая имеет 2 условия:
x1+x2=−bx_1 + x_2 = -b
x1⋅x2=cx_1 cdot x_2 = c
Но если мы захотим решить уравнение основным способом, ошибки не будет. Нахождение корней уравнения через дискриминант – универсальный способ, а остальные введены для удобства вычислений.
Задача 1
Решим уравнение: 3×2+7x−6=0.3x^2 + 7x — 6 = 0.
Обозначим коэффициенты:
a=3a = 3,
b=7b = 7,
c=−6c = -6
Далее находим дискриминант по формуле:
D=b2–4acD = b^2 – 4ac
D=72–4∗3∗(−6)=49+72=121=112D = 7^2 – 4 * 3 * (-6) = 49 + 72 = 121 = {11}^2
D>0D > 0 – значит, уравнение имеет 2 корня.
Находим корни уравнения по следующим формулам:
x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
x2=(−b−√D)/2ax_2 = (-b — √D) / 2a
Подставляем численные значения:
x1=(−7+11)/2∗3=4/6=23x_1 = (-7 + 11) / 2*3 = 4 / 6 = frac{2}{3}
x2=(−7–11)/2∗3=−18/6=−3x_2 = (-7 – 11) / 2*3 = -18 / 6 = -3
Ответ: x1=23x_1 = frac{2}{3}, x2=−3x_2 = -3.
Задача 2
Решим уравнение: −x2+7x+8=0.-x^2 + 7x + 8 = 0.
Обозначим коэффициенты:
a=−1a = -1,
b=7b = 7,
c=8.c = 8.
Далее находим дискриминант по формуле:
D=b2–4acD = b^2 – 4ac
D=72–4⋅(−1)⋅8=49+32=81=92D = 7^2 – 4 cdot (-1) cdot 8 = 49 + 32 = 81 = 9^2
D>0D > 0 – значит, уравнение имеет 2 корня.
Находим корни уравнения по следующим формулам:
x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
x2=(−b−√D)/2ax_2 = (-b — √D) / 2a
Подставляем численные значения:
x1=(−7+9)/2∗(−1)=2/(−2)=−1x_1 = (-7 + 9) / 2 * (-1) = 2 / (-2) = -1
x2=(−7–9)/2∗(−1)=−16/(−2)=8x_2 = (-7 – 9) / 2 * (-1) = -16 / (-2) = 8
Ответ: x1=−1x_1 = -1, x2=8x_2 = 8.
Задача 3
Решим уравнение: 4×2+4x+1=0.4x^2 + 4x + 1 = 0.
Обозначим коэффициенты:
a=4a = 4,
b=4b = 4,
c=1.c = 1.
Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac
D=42–4⋅4⋅1=16–16=0D = 4^2 – 4 cdot 4 cdot 1 = 16 – 16 = 0
D=0D = 0 – значит, уравнение имеет 1 корень.
Находим корень уравнения по следующей формуле: x=−b/2ax = -b / 2a
Подставляем численные значения:
x=−4/2⋅4=−4/8=−1/2=−0,5x = -4 / 2 cdot 4 = -4 / 8 = -1 / 2 = -0,5
Ответ: x=−0,5.x = -0,5.
Задача 4
Решим уравнение: 2×2+x+1=0.2x^2 + x + 1 = 0.
Обозначим коэффициенты:
a=2a = 2,
b=1b = 1,
c=1.c = 1.
Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac
D=12–4∗2∗1=1–8=−7D = 1^2 – 4 * 2 * 1 = 1 – 8 = -7
D<0D < 0 – значит, уравнение корней не имеет.
Ответ: корней нет.
Решение квадратного уравнения через k
Если у квадратного уравнения коэффициент bb четный, то можно решать уравнение через kk, при этом k=12bk = frac{1}{2} b.
Задача 5
Решим уравнение: −x2+2x+8=0.-x^2 + 2x + 8 = 0.
Обозначим коэффициенты:
a=−1a = -1,
b=2b = 2,
c=8c = 8
bb – четное.
k=12b=1k = frac {1}{2} b = 1.
Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac
D1=12–(−1)∗8=1+8=9=32D_1 = 1^2 – (-1) * 8 = 1 + 8 = 9 = 3^2
D1>0D_1 > 0 – значит, уравнение имеет 2 корня.
Находим корни уравнения по следующим формулам:
x1=(−k+D1)/ax_1 = (-k + {sqrt D}_1) / a
x2=(−k−D1)/ax_2 = (-k — {sqrt D}_1) / a
Подставляем численные значения:
x1=(−1+3)/(−1)=2/(−1)=−2x_1 = (-1 + 3) / (-1) = 2 / (-1) = -2
x2=(−1–3)/(−1)=−4/(−1)=4x_2 = (-1 – 3) / (-1) = -4 / (-1) = 4
Ответ: x_1 = -2, x_2 = 4.
Задача 6
Решим уравнение: 9×2–6x+1=0.9x^2 – 6x + 1 = 0.
Обозначим коэффициенты:
a=9a = 9,
b=−6b = -6,
c=1c = 1
bb – четное.
K=12b=−3.K = frac{1}{2} b = -3.
Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac
D1=(−3)2–9∗1=9–9=0D_1 = {(-3)}^2 – 9 * 1 = 9 – 9 = 0
D1=0D_1 = 0 – значит, уравнение имеет 1 корень.
Находим корень уравнения по следующей формуле: x=−k/ax = -k / a
Подставляем численные значения:
x=3/9=13x = 3 / 9 = frac{1}{3}
Ответ: x=13.x = frac{1}{3}.
Нахождение корней уравнения по теореме Виета
Если в квадратном уравнении a=1a = 1, то можно найти корни уравнения по теореме Виета.
Задача 7
Найдем корни уравнения: x2+3x+2=0.x^2 + 3x + 2 = 0.
Обозначим коэффициенты:
a=1a = 1,
b=3b = 3,
c=2c = 2.
Запишем 2 условия теоремы Виета:
x1+x2=−bx_1 + x_2 = -b
x1∗x2=cx_1 * x_2 = c
Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа -2 и -1.
Значит, корни уравнения равны:
x1=−2x_1 = -2
x2=−1x_2 = -1
Ответ: x1=−2x_1 = -2, x2=−1x_2 = -1.
Задача 8
Найдем корни уравнения: x2–5x+6=0.x^2 – 5x +6 = 0.
Обозначим коэффициенты:
a=1a = 1,
b=−5b = -5,
c=6c = 6
Запишем 2 условия теоремы Виета:
x1+x2=−bx_1 + x_2 = -b
x1∗x2=cx_1 * x_2 = c
Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа 2 и 3.
Значит, корни уравнения равны:
x1=2x_1 = 2
x2=3x_2 = 3
Ответ: x1=2x_1 = 2, x2=3.x_2 = 3.
Тест по теме «Примеры решения квадратных уравнений»
Решение квадратных уравнений
6 июля 2011
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.
Дискриминант
Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D < 0, корней нет;
- Если D = 0, есть ровно один корень;
- Если D > 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x2 − 8x + 12 = 0;
- 5x2 + 3x + 7 = 0;
- x2 − 6x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16
Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.
Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.
Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.
Задача. Решить квадратные уравнения:
- x2 − 2x − 3 = 0;
- 15 − 2x − x2 = 0;
- x2 + 12x + 36 = 0.
Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.
D > 0 ⇒ уравнение имеет два корня. Найдем их:
Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.
D > 0 ⇒ уравнение снова имеет два корня. Найдем их
[begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]
Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.
D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
[x=frac{-12+sqrt{0}}{2cdot 1}=-6]
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
- x2 + 9x = 0;
- x2 − 16 = 0.
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
- Если же (−c/a) < 0, корней нет.
Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x2 − 7x = 0;
- 5x2 + 30 = 0;
- 4x2 − 9 = 0.
x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.
5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.
Смотрите также:
- Теорема Виета
- Следствия из теоремы Виета
- Тест на тему «Значащая часть числа»
- Метод коэффициентов, часть 1
- Однородные тригонометрические уравнения: общая схема решения
- Задача B4: строительные бригады
Что такое квадратные уравнения?
А теперь подробно с примерами обсудим квадратные уравнения.
Любые уравнения, сводящиеся к виду (ax^2+bx+c=0), называются квадратными. Где буквы ( b,; с) — любые числа, (aneq0). Почему (aneq0) мы обсудим ниже.
Обратите внимание на порядок слагаемых в квадратном уравнении:
(a) — всегда стоит первая и обязательно умножается на (x^2), она называется старшим коэффициентом (или первым);
(b) — принадлежит второму слагаемому и всегда умножается просто на переменную (x), это у нас второй коэффициент;
(c) — называют свободным членом, она не умножается ни на какую переменную.
В дальнейшем старайтесь приводить квадратное уравнение к виду (ax^2+bx+c=0), чтобы слагаемые стояли именно в таком порядке. Это очень важно при решении уравнений, и поможет избежать множества ошибок.
Потренируемся определять значения коэффициентов ( a, ; b,; с), чтобы запомнить порядок:
Пример 1
$$2x^2+3x+4=0;$$
$$a=2 quad b=3 quad c=4.$$
Пример 2
$$5x^2-3x-0,7=0;$$
$$a=5 quad b=-3 quad c=-0,7.$$
Пример 3
$$-x^2+2x+10=0;$$
Минус перед (x^2) можно представить в виде (-x^2=-1*x^2). Единицу обычно не пишут, поэтому минус перед первым слагаемым означает, что (a=-1):
$$a=-1 quad b=2 quad c=10.$$
Пример 4
$$3+x^2-5x=0;$$
Слагаемые стоят в неправильном порядке. Так коэффициенты находить неудобно, поэтому переставим все слагаемые в нужном порядке. От перемены мест слагаемых сумма не меняется:
$$x^2-5x+3=0;$$
$$a=1 quad b=-5 quad c=3.$$
Пример 5
$$2x^2-3x=0;$$
В уравнении нет свободного члена (c), поэтому он будет равен (0):
$$a=2 quad b=-3 quad c=0.$$
Пример 6
$$-4x^2+1=0;$$
А здесь уже нет второго коэффициента (b):
$$a=-4 quad b=0 quad c=1.$$
Уравнения, приведенные в примерах №5 и 6, называются неполными квадратными уравнениями, так как в них коэффициенты (b) или (c) равны нулю.
А вот если в уравнении коэффициенты ( a, ; b,; с) не равны 0, то такое уравнение называется полным.
От того, полное ли квадратное уравнение или неполное, зависит, как мы будем его решать. Начнем с неполных уравнений, они немного легче, но почему-то как раз в них все часто ошибаются.
Неполные квадратные уравнения
Неполное квадратное уравнение — это уравнение, в котором один из коэффициентов (b) или (c) равен нулю, (aneq0).
Как решать квадратное уравнение (ax^2+bx=0)?
Рассмотрим уравнение, в котором (c=0), оно будет иметь вид:
$$ax^2+bx=0;$$
Чтобы его решить, нужно вынести общий множитель (x) за скобки:
$$x(ax+b)=0;$$
И вспомнить правило, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Здесь два множителя: (x) и ((ax+b)). Приравниваем их к нулю и решаем каждое по-отдельности:
$$x=0;$$
Тут решать-то нечего, сразу дан корень.
Второе:
$$ax+b=0;$$
Обычное линейное уравнение:
$$ax=-b;$$
$$x=frac{-b}{a};$$
Получили, что уравнение имеет сразу два корня:(x=0) и (x=frac{-b}{a}).
Разберем на примере:
Пример 7
$$2x^2+8x=0;$$
Выносим общий множитель (x):
$$x(2x+8)=0;$$
$$quad x_1=0 quad и quad 2x+8=0;$$
$$2x+8=0;$$
$$2x=-8;$$
$$x_2=-4.$$
Ответ: (x_1=0 quad и quad x_2=-4.)
Как решать квадратное уравнение (ax^2+с=0)?
Вот с такими уравнениями надо быть очень внимательными. Важно помнить, что любое число (выражение), возведенное в квадрат, всегда больше или равно нуля, оно не может быть отрицательным.
Общая схема решения уравнений вида (ax^2+с=0):
- Выражаем (x^2) из уравнения:
$$ax^2+c=0;$$
$$ax^2=-c;$$
$$x^2=frac{-c}{a};$$ -
Если (-frac{c}{a} geq 0):
$$x_1=sqrt{-frac{c}{a}};$$
$$x_2=-sqrt{-frac{c}{a}};$$ -
Если (-frac{c}{a} lt 0):
РЕШЕНИЙ НЕТ.
Пример 8
$$2x^2-8=0;$$
$$2x^2=8;$$
$$x^2=frac{8}{2};$$
$$x^2=4;$$
$$x=pmsqrt{4};$$
$$x_1=2;$$
$$x_2=-2;$$
Ответ: (x_1=2 quad и quad x_2=-2.)
Пример 9
$$4x^2+36=0;$$
$$2x^2=-36;$$
$$x^2=frac{-36}{2}=-18;$$
Так как (-18 < 0), а (x^2) не может быть отрицательным, то это уравнение не имеет корней.
Ответ: Нет корней.
Пример 10
$$frac{1}{2}x^2-frac{1}{18}=0;$$
$$frac{1}{2}x^2=frac{1}{18};$$
Чтобы избавиться от (frac{1}{2}), умножим уравнение слева и справа на (2):
$$x^2=frac{2}{18};$$
$$x^2=frac{1}{9};$$
$$x=pmsqrt{frac{1}{9}};$$
$$x_1=frac{1}{3};$$
$$x_2=-frac{1}{3};$$
Ответ: (x_1=frac{1}{3} quad и quad x_2=-frac{1}{3}.)
Решение квадратных уравнений через дискриминант
Квадратные уравнения (ax^2+bx+c=0), у которых все коэффициенты ( a, ; b,; с) не равны 0, называются полными квадратными уравнениями.
Чтобы их решать, нужно уметь находить дискриминант квадратного уравнения. Ничего страшного в этом нет, несмотря на странное называние. Дискриминантом уравнения (ax^2+bx+c=0) называют выражение:
$$D=b^2-4ac;$$
- Если дискриминант получился больше нуля ((D ge 0)), то квадратное уравнение имеет два корня, которые можно найти по формулам:
$$x_1=frac{-b+sqrt{D}}{2a};$$
$$x_2=frac{-b-sqrt{D}}{2a};$$ - Если дискриминант равен нулю ((D=0)), то квадратное уравнение имеет один корень:
$$x=frac{-b}{2a};$$ - Если дискриминант меньше нуля ((D<0)), то квадратное уравнение не имеет корней.
Примеры квадратных уравнений
Пример 11
$$2x^2-9x+4=0;$$
Прежде чем решать уравнение, я рекомендую выписать все коэффициенты:
$$a=2 quad b=-9 quad c=4.$$
Используя значения коэффициентов, можем посчитать дискриминант:
$$D=b^2-4ac=(-9)^2-4*2*4=81-32=49;$$
Ура, дискриминант посчитан и он больше нуля! Значит корней будет два, найдем их по формулам:
$$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-9)+sqrt{49}}{2*2}=frac{9+7}{4}=frac{16}{4}=4;$$
$$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-9)—sqrt{49}}{2*2}=frac{9-7}{4}=frac{2}{4}=frac{1}{2};$$
Ответ: (x_1=4 quad и quad x_2=frac{1}{2}.)
Пример 12
$$10x^2+x-21=0;$$
$$a=10 quad b=1 quad c=-21.$$
$$D=b^2-4ac=1^2-4*10*(-21)=1+840=841;$$
$$x_1=frac{-b+sqrt{D}}{2a}=frac{-1+sqrt{841}}{2*10}=frac{-1+29}{20}=frac{28}{20}=frac{7}{5};$$
$$x_2=frac{-b-sqrt{D}}{2a}=frac{-1-sqrt{841}}{2*10}=frac{-1-29}{20}=frac{-30}{20}=frac{-3}{2};$$
Ответ: (x_1=frac{7}{5} quad и quad x_2=-frac{3}{2}.)
Пример 13
$$(x-7)^2=2x^2+11x+23;$$
Это уравнение еще нужно привести к стандартному виду, для этого раскроем скобки по формуле «квадрат разности» ((a-b)^2=a^2-2ab+b^2):
$$x^2-14x+49=2x^2+11x+23;$$
Перекинем все слагаемые в левую часть, не забывая при этом менять знак на противоположный:
$$x^2-14x+49-2x^2-11x-23=0;$$
Приводим подобные слагаемые:
$$-x^2-25x+26=0;$$
$$a=-1 quad b=-25 quad c=26.$$
$$D=b^2-4ac=(-25)^2-4*(-1)*26=625+104=729;$$
$$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-25)+sqrt{729}}{2*(-1)}=frac{25+27}{-2}=frac{52}{-2}=-26;$$
$$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-25)-sqrt{729}}{2*(-1)}=frac{25-27}{-2}=frac{-2}{-2}=1;$$
Ответ: (x_1=-26 quad и quad x_2=1.)
Пример 14
$$3x^2+7x+6=0;$$
$$a=3 quad b=7 quad c=6.$$
$$D=b^2-4ac=7^2-4*3*6=49-72=-23;$$
Стоп! Дискриминант получился отрицательный, это означает, что у этого квадратного уравнения не будет корней.
Ответ: Нет корней.
Пример 15
$$4x^2-4x+1=0;$$
$$a=4 quad b=-4 quad c=1.$$
$$D=b^2-4ac=(-4)^2-4*4*1=16-16=0;$$
Дискриминат получился равен нулю. В этом случае у квадратного уравнения будет всего один корень, который можно найти по формуле:
$$x=frac{-b}{2a}=frac{-(-4)}{2*4}=frac{4}{8}=frac{1}{2};$$
Ответ: (x=frac{1}{2}.)
Полезно знать! Если дискриминант получился равен нулю, то перед вами формула полного квадрата. Это значит, что квадратный многочлен можно разложить по формуле ((apm b)^2=a^2pm 2ab+b^2).
И пример №15 можно решить, используя эту формулу:
$$4x^2-4x+1=0;$$
$$(2x-1)^2=0;$$
Квадрат равен нулю только в том случае, если выражение под квадратом равно нулю:
$$2x-1=0;$$
$$2x=1;$$
$$x=frac{1}{2};$$
Ответ получили точно такой же, как и при решении через дискриминант.
Дискриминант деленный на 4
Квадратные уравнения иногда удобно решать по упрощенной формуле дискриминанта. Но применять ее можно не во всех случаях, а только, если коэффициент (b) в уравнении (ax^2+bx+c=0) четный (делится на 2).
Итак, представим, что коэффициент (b) четный, тогда дискриминант можно посчитать по формуле:
$$D_4=left(frac{b}{2}right)^2-ac;$$
А корни уравнения находятся по формулам:
$$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a};$$
$$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a};$$
Кстати, обычный дискриминант (D) отличается от (D_4) в 4 раза:
$$D_4=frac{D}{4}=frac{b^2-4ac}{4}=frac{b^2}{4}-frac{4ac}{4}=left(frac{b}{2}right)^2-ac;$$
Поэтому (D_4) называют «дискриминантом деленным на 4».
Эти формулы нужны, чтобы, когда это возможно, сократить вычисления. Разберем на примере:
Пример 16
$$7x^2-20x-1067=0;$$
$$a=7 quad b=-20 quad c=-1067.$$
(b=-20) — четный, поэтому воспользуемся дискриминантом деленным на 4:
$$D_4=left(frac{b}{2}right)^2-ac=left(frac{-20}{2}right)^2-7*(-1067)=(-10)^2+7469=100+7469=7569;$$
$$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a}=frac{-frac{-20}{2}+sqrt{7569}}{7}=frac{10+87}{7}=frac{97}{7};$$
$$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a}=frac{-frac{-20}{2}-sqrt{7569}}{7}=frac{10-87}{7}=frac{-77}{7}=-11;$$
Ответ: (x_1=frac{97}{7} quad и quad x_2=-11.)
Возникает вопрос, зачем вообще нужен этот (D_4), если все можно считать через обычный дискриминант? Если бы мы считали пример №16 как обычно, то наш дискриминант, который и так получился не маленьким — ((D_4=7659)), был бы в четыре раза больше. А чем больше числа, тем сложнее расчеты.
Теорема Виета для решения квадратных уравнений
Теорема Виета — это еще один способ упростить решение полных квадратных уравнений. Ее очень часто используют для решения несложных квадратных уравнений в уме и для анализа квадратного многочлена, особенно это актуально в сложных заданиях с параметром в ЕГЭ.
Прежде чем сформулировать теорему Виета, познакомимся с приведенными квадратными уравнениями.
Приведенное квадратное уравнение
Квадратные уравнения (ax^2+bx+c=0), у которых коэффициент (a) при (x^2) равен (1), называют приведенными.
Например:
$$x^2+4x-3=0;$$
$$x^2-140x-65=0;$$
Любое полное квадратное уравнение всегда можно свести к приведенному. Для этого надо поделить все уравнение на коэффициент (a):
Пример 17
Привести квадратное уравнение к приведенному.
$$3x^2-15x+9=0;$$
Разделим уравнение на (a=3). (Так можно делать: если левую и правую части уравнения поделить на одно и то же число, то корни уравнения от этого не изменятся.)
$$frac{3x^2-15x+9}{3}=frac{0}{3};$$
В результате каждое слагаемое поделится на (3):
$$frac{3x^2}{3}-frac{15x}{3}+frac{9}{3}=0;$$
$$x^2-5x+3=0;$$
Формулы Виета
Сумма корней приведенного квадратного уравнения (x^2+bx+c=0) равна второму коэффициенту (b) со знаком минус, а произведение корней равно свободному члену (c).
Пусть (x_1), и (x_2) — корни квадратного уравнения (x^2+bx+c=0), тогда справедливы формулы:
$$ begin{cases}
x_1+x_2=-b; \
x_1*x_2=c. \
end{cases}$$
На первый взгляд может показаться, что это очень запутанно, но на самом деле, теорема Виета часто помогает решить уравнение в уме. Попробуем на практике:
Пример 18
$$x^2+4x+3=0;$$
$$a=1 quad b=4 quad c=3.$$
Воспользуемся теоремой Виета и выпишем формулы:
$$ begin{cases}
x_1+x_2=-b; \
x_1*x_2=c. \
end{cases}$$
Подставим коэффициенты:
$$ begin{cases}
x_1+x_2=-4; \
x_1*x_2=3. \
end{cases}$$
Нужно найти такие (x_1) и (x_2), которые удовлетворяют и первому, и второму уравнениям в системе. Подобрать корни достаточно просто: рассмотрим второе уравнение, какие два числа дают при умножении (3ку)?
Либо: (3=1*3);
Либо: (3=(-1)*(-3)).
Осталось проверить, будут ли найденные множители удовлетворять первому уравнению в системе, просто подставим их:
$$1+3 neq -4;$$
$$-1+(-3) = -4;$$
Вот мы и нашли корни системы уравнений: (x_1=-1) и (x_2=-3). А самое главное, мы нашли корни исходного квадратного уравнения.
Ответ: (x_1=-1 quad и quad x_2=-3.)
Если потренироваться, то все эти вычисления можно легко проводить в уме, если коэффициенты небольшие. Главное запомнить, что произведение корней должно быть равно свободному члену (c), а сумма корней равна ((-b)).
Теорема Виета, если (aneq1)
По теореме Виета можно решать не только приведенные квадратные уравнения (у которых (a=1)). Но перед тем, как применять формулы Виета, надо привести уравнение к приведенному, поделив на первый коэффициент (a):
$$ax^2+bx+c=0; quad mid :a$$
$$frac{ax^2}{a}+frac{bx}{a}+frac{c}{a};$$
$$x^2+frac{b}{a}*x+frac{c}{a};$$
Получили приведенное квадратное уравнение, для которого можно записать формулы Виета, где вторым коэффициентом будет (frac{b}{a}), а свободным членом (frac{c}{a}):
$$ begin{cases}
x_1+x_2=-frac{b}{a}; \
x_1*x_2=frac{c}{a}. \
end{cases}$$
Пример 19
$$12x^2+x-1=0;$$
$$a=12 quad b=1 quad c=-1.$$
Коэффициент (a=12 neq 1), поэтому разделим все уравнение на (a=12):
$$12x^2+x-1=0; quad mid :12$$
$$x^2+frac{1}{12}x-frac{1}{12}=0;$$
$$a=1 quad b=frac{1}{12} quad c=-frac{1}{12}.$$
Теорема Виета:
$$ begin{cases}
x_1+x_2=-frac{1}{12}; \
x_1*x_2=-frac{1}{12}. \
end{cases}$$
Подбираем корни:
$$x_1=-frac{1}{3};$$
$$x_2=frac{1}{4};$$
Ответ: (x_1=-frac{1}{3} quad и quad x_2=frac{1}{4}.)
Теорема Виета удобна, когда у квадратного уравнения небольшие коэффициенты и можно легко подобрать корни. В остальных случаях лучше пользоваться дискриминантом.
План урока:
Определение квадратного уравнения
Решение квадратного уравнения
Уравнения, сводящиеся к квадратным
Задачи, решаемые с помощью квадратных уравнений
Теорема Виета
Разложение квадратного трехчлена на множители
Дробно-рациональные уравнения
Определение квадратного уравнения
Изучая понятие многочленов, мы познакомились с квадратными трехчленами. Так называют полином 2-ой степени, содержащий только одну переменную. Если его приравнять к нулю, то получится квадратное уравнение. Дадим определение квадратному уравнению:
Приведем несколько конкретных примеров:
- 5х2 + 4х + 7 = 0
- – 3х2 + х – 1,5 = 0
- 0,05х2 + 99,568х – 47,21 = 0
Числа a, b и с называют коэффициентами квадратного уравнения. Отметим, что числа b и c могут равняться нулю, и в этом случае соответствующее слагаемое просто не записывается:
- 9х2 + 5х = 0
- 17х2 – 34 = 0
Эти уравнения именуют неполными.
Если же коэффициент а=0, то получается линейное уравнение, которое мы уже умеем решать:
- 6х – 2 = 0
- 67х + 89 = 0
Естественно, что для обозначения переменной может использоваться любая буква, а не только х:
- у2 + 3,5х – 93 = 0
- – 32z2 + 11z – 78 = 0
Для обозначения коэффициентов могут использоваться специальные термины:
- а – старший коэффициент;
- b– второй коэффициент;
- с – свободный член.
Неполные квадратные уравнения можно очень легко решить. Сначала рассмотрим пример, в котором b = 0:
5х2 – 45 = 0
Перенесем вправо свободный коэффициент:
5х2 = 45
Далее поделим на старший коэффициент обе части равенства:
х2 = 9
Понятно, что х равен квадратному корню из 9. Напомним, что у каждого положительного числа есть два квадратных корня! Один из них является положительным числом и называется арифметическим, а другой противоположен ему по знаку. Поэтому можно записать, что
Иногда используют более короткую запись:
х = ± 3
Не любое квадратное уравнение, у которого нет второго коэффициента b, будет иметь решение. Рассмотрим уравнение
3х2 + 75 = 0
Будем решать его таким же путем, перенося свободный коэффициент c вправо и деля уравнение на старший коэффициент a:
3х2 + 75 = 0
3х2 = – 75
х2 = – 25
Квадрат действительного числа не может быть отрицательным. Значит, данное уравнение не будет иметь корней.
Сформулируем общий алгоритм решения неполных квадратных уравнений такого типа:
Теперь изучим неполные уравнения, в которых нет свободного слагаемого с. Рассмотрим их на примере:
7х2 + 21х = 0
Слева вынесем переменную х за скобки:
х(7х + 21) = 0
Теперь слева находится произведение двух множителей, а справа – ноль. Очевидно, что произведение может равняться нулю лишь в том случае, когда один из составляющих его множителей (х или 7х + 21) является нулем.
Зная это, запишем:
х = 0 или 7х + 21 = 0
Получили корень х = 0 и ещё одно линейное уравнение, которое легко решить:
7х + 21 = 0
7х = – 21
х = – 3
В результате имеем два корня: 0 и – 3
Опишем общий алгоритм решения этих неполных уравнений:
Решение квадратного уравнения
Найти решение квадратного уравнения, если оно полное, достаточно тяжело. Нам поможет формула квадрата суммы:
(а + b)2 = a2 + 2ab + b2
Напомним, что с ее помощью можно разложить на множители некоторые квадратные полиномы:
х2 + 8х + 16 = х2 + 2•4•х + 42 = (х + 4)2
Конечно, здесь нам повезло с квадратным трехчленом – его коэффициенты позволяли воспользоваться формулой квадрата суммы. Однако похожие преобразования можно выполнить и тогда, когда коэффициенты не такие удобные:
х2 + 8х + 20 = х2 + 8х + 16 + 4 =(х2 + 8х + 16) + 4 = (х2 + 2•4•х + 42) + 4 =
= (х + 4)2 + 4
Здесь мы разложили число 20 на сумму 16 + 4, чтобы можно было часть выражения «свернуть» формулой квадрата суммы. Такой прием можно применить вообще к любому квадратному трехчлену:
4х2 + 10х + 4 = (2х)2 + 2•2х•2,5 + 2,52 – 2,52 + 4 = (2х + 2,5)2 – 2,52 + 4 =
= (2х + 2,5)2 – 6,25 + 4 = (2х + 2,5)2 – 2,25
Здесь мы добавили к трехчлену слагаемое 2,52 и тут же его отняли. Оно было необходимо для получения формулы квадрата суммы.
Отметим, что подобное свертывание можно использовать для решения квадратного уравнения. Действительно, пусть дано уравнение
4х2 + 10х + 4 = 0
Выше мы уже преобразовали трехчлен, стоящий слева. Произведем замену:
(2х + 2,5)2 – 2,25 = 0
Имеем уравнение, очень похожее на неполное, где отсутствует коэффициент b. Попробуем его решить аналогичным путем:
Из этой записи мы получили два линейных уравнения:
2х + 2,5 = – 1,5 или 2х + 2,5 = 1,5
Решая их, находим два корня:
2х = – 1,5 – 2,5 или 2х = 1,5 – 2,5
2х = – 4 или 2х = – 1
х = – 2 или х = – 0,5
Аналогично можно решить и любое другое полное квадратное уравнение. Однако проще пользоваться специальными формулами, в которые надо подставлять значения коэффициентов a, b, с и получать корни квадратного уравнения. Выведем эти формулы.
Пусть есть уравнение
ах2 + bх + с = 0
Поделим обе части уравнения на коэффициент а:
Далее надо выделить квадрат суммы, что бы потом свернуть его по формуле сокращенного умножения:
Далее обозначим числитель в правой части (b2 – 4ac) буквой D. Эту величину называют дискриминантом квадратного уравнения.
Перепишем уравнение с учетом этой замены:
Далее рассмотрим три случая:
- D< 0. Если D отрицателен, то и вся дробь справа меньше нуля (так как в знаменателе стоит 4а2 – заведомо положительное число). Слева стоит квадрат выражения, а он никак не может оказаться отрицательным. В итоге имеем, что при отрицательном дискриминанте у уравнения отсутствуют корни.
- D = 0. При таком варианте справа получается ноль:
Квадрат только одного числа равен нулю – самого нуля, поэтому
Итак, при нулевом дискриминанте у уравнения есть только один корень.
- D> 0. В этом варианте дробь справа оказывается положительным числом, а потому у нее есть два квадратных корня. Решение будет выглядеть так:
Полученное выражение называют основной формулой корней квадратного уравнения.
Если дискриминант – положительное число, то уравнение существует два корня. Для вычисления первого из них надо в формуле квадратного уравнения вместо знака ± поставить минус, а для вычисления второго – знак плюс. Часто 1-ый корень обозначают как х1, а 2-ой – как х2. Заметим, что если D = 0, то при подстановке в основную формулу будет получаться один и тот же корень независимо от выбора знака плюс или минус.
Пример. Решите уравнение
2х2 – 5х – 3 = 0
Решение. Выпишем коэффициенты уравнения
a = 2
b = – 5
c = – 3
Вычислим значение дискриминанта:
D = b2 – 4ас = (– 5)2 – 4•2•(– 3) = 25 + 24 = 49
Так как он больше нуля, то должно получиться два корня. Их можно найти по основной формуле квадратного уравнения:
Ответ: – 0,5; 3
Пример. Найдите все корни уравнения
3х2 + 6х + 5 = 0
Решение. Найдем дискриминант:
D = b2 – 4ас = 62 – 4•3•5 = 36 – 60 = – 24
Дискриминант оказался отрицательным, значит, и корней у уравнения нет.
Ответ: нет корней.
Пример. Найдите значения х, при которых выполняется равенство
4х2 – 12х + 9 = 0
Решение. Вычислим дискриминант:
D = (– 12)2 – 4•4•9 = 144 – 144 = 0
Так как D = 0, существует лишь один корень:
Ответ: 1,5
Пример. Найдите значения у, при которых справедливо равенство
2у2 + 4у + 9 = у2 + 11у + 3
Решение. На первый взгляд это уравнение не похоже на изучавшие до этого квадратные уравнения. Однако слагаемые, записанные справа, можно перенести влево, после чего можно будет привести подобные слагаемые:
2у2 + 4у + 9 = у2 + 11у + 3
2у2 + 4у+ 9–у2– 11у– 3 = 0
у2 – 7у + 6 = 0
Получили классическое квадратное уравнение, для которого можно рассчитать дискриминант:
D = b2 – 4ас = (– 7)2 – 4•1•6 = 49 – 24 = 25
Найдем значения двух корней:
Ответ: 1; 6
Уравнения, сводящиеся к квадратным
Так как любое квадратное уравнение решается довольно легко, то другие, более сложные уравнения, часто пытаются свести к квадратным. Сначала рассмотрим так называемые биквадратные уравнения. Пусть надо решить уравнение
2х4–26х2 + 72 = 0
На первый взгляд в левой части стоит полином четвертой, а не второй степени, то есть это уравнение не является квадратным. Введем переменную t, равную х2:
t = х2
Если это выражение возвести в квадрат, то получим
t2 = (х2)2 = х4
Теперь заменим в исходном уравнении х4 на t2, а х2 на t:
2t2–26t + 72 = 0
Получили квадратное уравнение, из которого можно найти значение t. Посчитаем дискриминант:
D = (– 26)2– 4•2•72 = 676 – 576 = 100
Можно найти два значения t:
Однако нам надо найти значение х, а не t. Вспомним, что мы проводили замену
х2 = t
Подставляя вместо t найденные корни 4 и 9, получим ещё два уравнения:
х2 = 4
х2 = 9
Первое имеет корни (– 2) и 2, а второе (– 3) и 3. Все эти 4 числа являются корнями исходного уравнения
2х4 – 26х2 + 72 = 0
Уравнения, которые можно свести к квадратному заменой переменных t = x2, называют биквадратными уравнениями.
Мы рассмотрели пример, в котором биквадратное уравнение имело 4 корня. Однако порою их может быть и меньше.
Пример. Укажите все корни уравнения
у4 + 4у2 – 5 = 0
Решение. Данное уравнение подходит под определение биквадратного, а потому произведем замену t = y2:
t2 + 4t – 5 = 0
Решаем его:
D = 42– 4•1•(– 5) = 16 – (– 20) = 36
далее проводим обратную замену и получаем уравнения:
у2 = – 5
у2 = 1
Первое из них не имеет решения, ведь квадрат числа – это неотрицательное число. Поэтому решать придется только второе уравнение:
у2 = 1
у = –1 и у = 1
Ответ –1 и 1.
Подстановка t = x2 самая простая и очевидная, однако, порою нужно выполнять более сложные подстановки.
Пример. Найдите все z, для которых выполняется условие
(z – 2)(z – 3)(z – 4)(z – 5) = 24
Решение.Замена неочевидна, и всё же попробуем такой вариант:
t = z– 3,5
Тогда содержимое каждой скобки примет вид:
z– 2 = z– 3,5 + 1,5 = t + 1,5
z– 3 = z– 3,5 + 0,5 = t + 0,5
z– 4 = z– 3,5 – 0,5 = t–0,5
z– 5 = z – 3,5 – 1,5 = t–1,5
Уравнение примет вид:
(t + 1,5)(t + 0,5)(t – 0,5)(t – 1,5) = 24
Поменяем местами скобки:
(t – 0,5)(t + 0,5)(t – 1,5)(t + 1,5) = 24
Можно заметить, что в соседние скобки можно переписать, используя формулу разности квадратов:
(t2– 0,52)(t2– 1,52) = 24
Для удобства произведем ещё одну замену s = t2:
(s– 0,52)(s– 1,52) = 24
(s– 0,25)(s– 2,25) = 24
Раскроем скобки в левой части:
s2– 2,25s– 0,25s + 0,5625 = 24
s2– 2,5s + 0,5625– 24 = 0
s2– 2,5s– 23,4375 = 0
Получили классическое квадратное уравнение, которое решается через дискриминант:
D = (– 2,5)2 – 4•1•(– 23,4375) = 6,25 + 93,75 = 100
Произведем 1-ую обратную замену t2 = s:
t2 = – 3,75
t2 = 6,25
Первое уравнение решений не имеет, а у второго ровно 2 корня:
Пришло время второй замены z– 3,5 = t, из которой получаем два уравнения:
z– 3,5 = – 2,5 или z– 3,5 = 2,5
z= – 2,5 + 3,5 или z= 2,5 + 3,5
z = – 1 или z = 6
Ответ: – 1 и 6.
Задачи, решаемые с помощью квадратных уравнений
При рассмотрении задач, связанных с геометрией, свойствами чисел, движением тел, очень часто возникают квадратные уравнения.
Пример. Площадь прямоугольника составляет 126 см2, а одна из его сторон на 5 см длиннее другой. Каковы длины сторон этого прямоугольника?
Решение. Обозначим как k длину той стороны прямоугольника, которая меньше. Тогда протяженность второй стороны будет равна k + 5 см. Площадь прямоугольника – это произведение его сторон, а потому можно записать:
k(k + 5) = 126
Решим это уравнение:
k(k + 5) – 126 = 0
k2 + 5k – 126 = 0
D = 52– 4•1•(– 126) = 25 + 504 = 529
Первый корень равен (– 14). Однако ясно, что длина стороны прямоугольника не может измеряться отрицательным числом, поэтому этот корень надо отбросить. Остается только k = 9. То есть длина первой стороны равна 9 см. Вторая сторона равна k + 5, то есть 9 + 5 = 14 см.
Ответ: 9 и 14 см.
Пример. Сумма квадратов двух последовательных нечетных чисел составляет 290. Что это за числа?
Решение. Обозначим первое число как n. Нечетные числа чередуются с четными, поэтому следующим нечетным числом будет n + 2. Перепишем условие задачи в виде уравнения и найдем его корни:
n2 + (n + 2)2 = 290
n2 + n2 + 4n + 4 – 290 = 0
2n2 + 4n – 286 = 0
D = 42– 4•2•(– 286) = 16 + 2288 = 2304
Получили два решения. Если первое число равно – 13, то второе составит n + 2 = – 11. Если же n = 11, то второе число будет равно 13.
Ответ: – 13 и 11, либо 11 и 13.
Теорема Виета
Большое значения имеют уравнения, у которых старшим коэффициентом является единица. Математики называют их приведенными уравнениями.
Дадим несколько примеров приведенных квадратных уравнений:
- х2 + 6х + 29 = 0
- у2 – 7,54у + 87 = 0
- z2 + 21z + 112 = 0
Название «приведенное» возникло из-за того, что каждое квадратное уравнение можно сделать приведенным, если поделить его части на коэффициент перед х2. Пусть есть уравнение
4х2 + 5х + 6 = 0
Поделим на 4 обе его части:
х2 + 1,25х + 1,5 = 0
Для приведенного уравнения сформулирована теорема Виета, которая указывает на взаимосвязь его корней и коэффициентов:
Доказать это очень легко. Если у уравнения
х2 + px + q = 0
существует два корня, то они вычисляются по формулам:
Найдем их сумму:
Аналогично можно посчитать и их произведение:
Естественно, если у уравнения не существует корней (D< 0), то теорема к нему неприменима. Если же корень есть ровно один корень, тогда надо считать, что у уравнения два одинаковых корня.
Удостоверимся в верности этой теоремы на примерах.
- х2– 8х + 15 = 0; корни (х1 и х2) равны 3 и 5, в чем можно убедиться подстановкой:
32 – 8•3 + 15 = 0
52 – 8•5 + 15 = 0
Перемножим корни и получим 3•5 = 15 (свободный член), при сложении корней получается 3 + 5 = 8 (второй коэффициент без минуса);
- у2 + 13у + 42= 0, корни (– 6) и (– 7), произведение корней 42, сумма корней – 13;
- х2 + 2х – 8 = 0, корни (– 4) и 2, их сумма равна (– 2), а произведение (– 8).
Справедливо и утверждение, известное как обратная теорема Виета:
Возьмем числа 4 и 9. Их сумма равна 13, а произведение 36, поэтому они являются корнями уравнения:
х2 – 13х + 36 = 0
в чем можно убедиться, подставив их вместо х.
Пример. Учитель математики перед уроком составляет квадратные уравнения, причем стремится к тому, чтобы у них были целые корни (чтобы детям было просто считать). Подскажите ему пример уравнения, чьи корни равны 3 и 8.
Решение. Перемножим и сложим числа 3 и 8:
3•8 = 24
3 + 8 = 11
Соответственно, уравнением с корнями 3 и 8 будет
х2 – 11х + 24 = 0
Ответ: х2 – 11х + 24 = 0
Разложение квадратного трехчлена на множители
При решении уравнения
ах2 + bх + с = 0
мы находим его корни. Однако отдельно выделяют и такое понятие, как корень многочлена. Так называют значение переменной, которая обращает полином в ноль.
Понятно, что для нахождения корней полинома второй степени следует решить квадратное уравнение.
Сначала рассмотрим трехчлены, у которых коэффициент при х2а равен 1. Предположим, что нам удалось разложить его на произведение двух линейных полиномов:
х2 + bх + с = (х –s)(х –k)
где s и k– какие-то произвольные числа.
Выражение справа является произведением, а потому обращается в ноль только тогда, когда нулю равен один из множителей:
х – s = 0 или х – k = 0
х = s или х = k
Так как при х = s или х = k в ноль обращается правая часть тождества, то также должна обращаться и левая часть. Получается, что числа s и k – это корни трехчлена х2 + bх + с.
Убедимся в этом, раскрыв скобки в правой части тождества:
(х –s)(х –k) = х2–kx–sx + sk = х2– (k + s)х + sk
подставим это выражение в исходное равенство:
х2 + bх + с = (х – s)(х — k) = х2 – (k + s)х + sk
х2 + bх + с = х2 – (k + s)х + sk
Получается, произведение s и k дает свободный член, а их сумма в точности равна коэффициенту при х, взятому со знаком минус. Значит, по теореме Виета, они являются корнями уравнения!
Обозначим корни уравнения как х1 и х2. Если у трехчлена коэффициент а отличен от единицы, то эта формула (ее называют формулой разложения квадратного трехчлена на множители) примет несколько иной вид:
ах2 + bx + c = а(х – х1)(х – х2)
То есть справедливо утверждение:
А теперь и докажем его.
Пусть есть уравнение ах2 + bx + c = 0 с корнями х1 и х2. Поделим его на а:
х2 + (b/a)х + с/а = 0
по теореме Виета можно записать:
х1+ х2 = – b/a
х1•х2 = с/а
Умножив первое тождество на (– а), а второе наа, получим
– а(х1 + х2) = b
ах1•х2 = с
Осталось подставить эти равенства в исходный многочлен:
ах2 + bx + c = ах2– а(х1 + х2)х + ах1•х2= а(х2– хх1–хх2 + х1•х2) =
= а(х(х – х1) – х2(х – х1)) = а(х – х1)(х – х2)
Для чего же мы доказывали эту теорему? С ее помощью можно выполнить разложение квадратного трехчлена на множители. Проиллюстрируем это на примерах.
Пример. Разложите полином
2х2 + 12х – 14
на множители.
Решение. Для начала следует решить уравнение 2х2 + 12х – 14 = 0:
D = 122– 4•2•(– 14) = 144 + 112 = 256
Найдя х1 и х2, можем выполнить и разложение:
2х2 + 12х – 14 = 2(х – 1)(х – (– 7)) = 2(х – 1)(х + 7)
Ответ: 2(х – 1)(х + 7)
Пример. Упростите выражение
Решение. На первый взгляд кажется, что сокращать нечего. Однако и в числителе, и в знаменателе находятся квадратные трехчлены. Разложим их на множители, решив соответствующие уравнения:
h2+ 2h– 15 = 0
D = 22 – 4•1•(– 15) = 4 + 60 = 64
Получаем, что
h2– 2h– 15 = (h+ 5)(h– 3)
Теперь раскладываем второй полином:
h2– 9h +18 = 0
D = (– 9)2 – 4•1•18 = 81 – 72 = 9
Соответственно, можно записать:
h2– 9h +18 = (h– 3)(h– 6)
А теперь подставим в исходную дробь полученные выражения:
Отметим, что если у полинома второй степени нет корней, то и разложить его на множители не получится.
Дробно-рациональные уравнения
Периодически приходится сталкиваться с уравнениями, где переменные присутствуют в знаменателе какой-нибудь дроби. Их называют дробно-рациональными уравнениями. Обычно их можно свести к более простому виду, но при этом следует учитывать ту особенность, что корень уравнения не должен обращать знаменатель в ноль.
Пример. Найдите решение дробно-рационального уравнения
Решение. Для начала перенесем дробь из правой части в левую, а потом приведем дроби к общему знаменателю:
Умножим уравнение на величину (х – 2)(х + 3)
(х + 1)(х – 2) + 10х – 4(х + 3) = 0
х2 – 2х + х – 2 + 10х – 4х – 12 = 0
х2 + 5х – 14 = 0
D = 52– 4•1•(– 14) = 25 + 56 = 81
Казалось бы, мы нашли два корня: 2 и (– 7). Однако в исходном уравнении в знаменателе стоит выражение (х – 2)(х – 3). При х = 2 оно обращается в нуль, то есть дробь потеряет смысл. Поэтому корень 2 следует отбросить, и остается лишь корень (– 7)
Ответ: – 7
Квадратное уравнение – что это?
Квадратное уравнение – это уравнение, которое имеет вид:
(ax^2+bx+c=0)
Что такое a, b и с? Это коэффициенты. У каждого есть свои названия:
а – старший коэффициент;
b – средний коэффициент;
с – свободный член;
a, b, c – абсолютно любые числа. Но здесь важно: а ≠ 0.
Почему именно так? Давай поразмышляем: если предположить, что а все же будет равно 0, то наше уравнение уже не будет квадратным и превратится в линейное:
(bx+c=0)
А такие уравнения ты уже решать умеешь, поэтому мы вернемся обратно к квадратным уравнениям.
Как выглядит квадратное уравнение?
К слову, квадратное уравнение может выглядеть необязательно как стандартное: (ax^2+bx+c=0)
Оно может иметь и другой вид, например:
(ac^2+bx=c)
(здесь свободный член с находится по другую сторону знака равно) или (ax^2=c) (тут средний коэффициент b = 0, а с находится по другую сторону знака равно). Также коэффициенты могут быть отрицательными и т.д.
Однако следует помнить, что абсолютно любое квадратное уравнение можно привести к стандартному виду:
(ax^2+bx+c=0)
Как же решать квадратное уравнение?
Существует всего три результата решения квадратного уравнения:
- Уравнение не имеет решения.
- Уравнение имеет только один корень.
- Уравнение имеет два корня.
Как определить, под какой из этих случаев подпадет наше квадратное уравнение? Для этого нам понадобится дискриминант: он нам поможет в решении квадратного уравнения. Дискриминантом (образован от латинского discrimino – «разбираю») мы обозначим следующее выражение:
(D=b^2-4ac),
где D – дискриминант, а a, b, c – коэффициенты квадратного уравнения.
Чем конкретно нам может помочь дискриминант?
- Если D < 0 – то квадратное уравнение не имеет решений;
- Если D = 0 – то уравнение будет иметь только один корень;
- Если D > 0 – то уравнение имеет два решения.
То есть благодаря дискриминанту мы будем знать о результате и количестве решений квадратного уравнения.
Итак, мы посчитали, чему равен наш дискриминант, потом определили количество решений уравнения, что дальше? А дальше определяем корни квадратного уравнения по формулам.
- В первом случае, когда D < 0, считать ничего не нужно, т.к. уравнение не имеет решений. Это значит, что корней квадратного уравнения на множестве действительных чисел нет.
- Во втором варианте, когда D = 0, решение будет одно и единственный корень квадратного уравнения будет равен: (x=frac{-b}{2a})
- Третий случай, при D > 0, наиболее сложный из всех трех возможных: в ответе должно получиться два корня квадратного уравнения.
(x_1=frac{-b+sqrt D}{2a})– первый корень квадратного уравнения;
(x_1=frac{-b-sqrt D}{2a})– второй корень квадратного уравнения.
Как найти дискриминант квадратного уравнения
Дискриминант квадратного уравнения — это выражение, равное b2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.
Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.
Как решать квадратные уравнения через дискриминант
Алгоритм решения квадратного уравнения ax2 + bx + c = 0:
Определим, чему равны коэффициенты a, b, c.
Вычислим значение дискриминанта по формуле D = b2 − 4ac.
- Если дискриминант D < 0, то корней нет.
- Если D = 0, то есть один корень, равный −b/2a.
- Если D > 0, то у уравнения две корня, равные.
Примеры решения квадратных уравнений с помощью дискриминанта
Пример 1. Решить уравнение: 3×2 — 4x + 2 = 0.
Как решаем:
Определим коэффициенты: a = 3, b = -4, c = 2.
Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 3 * 2 = 16 — 24 = -8.
Ответ: D < 0, корней нет.
Пример 2. Решить уравнение: x2 — 6x + 9 = 0.
Как решаем:
Определим коэффициенты: a = 1, b = -6, c = 9.
Найдем дискриминант: D = b2 — 4ac = (-6)2 — 4 * 1 * 9 = 36 — 36 = 0.
D = 0, значит уравнение имеет один корень:
Ответ: корень уравнения 3.
Решение квадратных уравнений на самом деле не настолько сложное, как кажется на первый взгляд. Всего-то нужно запомнить несколько формул и алгоритм действий. Главное — не бояться вида квадратных уравнений, мы уверены: все у тебя получится! Запишись на бесплатный пробный урок тут и разберись с тем, что тебе непонятно.
Часто задаваемые вопросы:
✅ Как решить квадратное уравнение?
↪ Квадратное уравнение можно решить, используя формулу Квадратного корня: (x = (-b ± √(b^2 — 4ac)) / 2a). Необходимо вычислить значение выражения под корнем и подставить его в формулу.
✅ Каковы особенности решения квадратного уравнения?
↪ Квадратное уравнение может иметь два, один или ноль корней. Количество корней зависит от дискриминанта (D = b^2 — 4ac). Если D > 0, то уравнение имеет два корня, если D = 0, то уравнение имеет один корень, если D < 0, то уравнение не имеет корней в области действительных чисел.
Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!
Запишитесь на бесплатное тестирование знаний!