Найдите корень уравнения как решать такие задачи

  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Решение уравнении (нахождение корней уравнения)

    Решение уравнении ( нахождение корней уравнения )

    Уравнение – это равенство двух выражений с переменными.

    Решить уравнение –найти корни данного уравнения или доказать, что их нет.

    1. Раскрыть скобки, если они имеются, применяя распределительное свойство

    a ( b + c ) = a b +a c

    ( a + b ) ( c + d ) = a c + a d + b c + b d

    2. Корни уравнения не изменятся, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменяя при этом его знак.

    ( Выражения с переменными собираем в одну сторону, числа в другую сторону, меняя знаки выражении и чисел при переходе через знак равенства.) Пример :

    3 ( 2 + 1,5 x ) = 0,5 x + 24

    6 + 4,5 х = 0,5 х + 24

    4,5 х – 0,5 х = 24 – 6

    Пример: вычислите координаты точек пересечения прямой 5 х + 7 у = 105 с осями координат.

    Решение : 1) с осью ОХ точка ( 21 ; 0 )

    у=0 ; 5 х + 7 *0 = 105 отсюда х = 21

    2) с осью ОУ точка ( 0 ; 15 )

    х=0; 5*0+7 у = 105 отсюда у = 15

    Ответ: с осью ОХ точка ( 21 ; 0 ) и с осью ОУ точка ( 0 ; 15 ).

    3. Корни уравнения не изменяются, если обе части уравнения умножить или

    разделить на одно и тоже число, не равное 0

    Пример : ! *4

    Решение рациональных уравнений.

    Пример:

    Пример :

    ОДЗ х (х +1 ) = 0

    разделим на – 1

    х =0,5 не удовлетворяет условию ОДЗ.

    Пример :

    Разложим квадратные трехчлены на множители по формуле ,где — корни квадратного уравнения

    дробь равна 0, если числитель равен 0, а знаменатель не равен 0.

    2x+2+6x – 24 — +4x — x+4=0 О. Д.З.

    + 11x – 18 = 0

    — 11x + 18 = 0

    По теореме Виета

    Отсюда корни данного уравнения 2 и 9.

    Пример : Чему равно произведение корней уравнения

    Решение: Произведение равно нулю, если один из множителей равен 0 .

    и ; ОДЗ

    ОДЗ удовлетворяют три корня и их произведение равно

    преобразуем выражение

    обозначим

    Получаем квадратное уравнение , корни которого 4 и 1,5.

    Отсюда 1)

    2)

    Ответ:

    Решение биквадратных уравнений

    Ответ : -0,5 ; 0,5 ; — 1 ; 1 .

    Пример :

    по теореме Виета

    Отсюда

    x – 2 = — 2 x – 2 = 2

    Ответ : 2 ; -6 ; 1 ; -5 .

    Метод группировки при решений уравнении:

    х +3=0 или х – 2 = 0 или х +2 = 0

    х = — 3 х = 2 х = — 2

    Ответ : — 3 ; — 2 ; 2 .

    Пример :

    Произведение равно 0 , если один из

    множителей равен 0. , решаем квадратное уравнение:

    =0 По теореме Виета имеем

    Решение систем уравнений

    Опр. Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.

    Методы решение систем уравнений.

    1) графический (строим графики уравнений системы, находим по графикам точки пересечения, координаты точек пересечения будут и решениями системы уравнений ).

    строим отдельно графики прямых 2х+3у=5 и 3х – у = — 9


    Строим графики данных функций в одной системе координат и находим координаты точек пересечения. В данном примере одна точка пересечения и его координаты равны х = — 2 и у = 3 .

    2) метод подстановки ( выражаем одну переменную через другую в одном из уравнении подставляем во второе уравнение и решаем полученное уравнение относительно одной переменной, найденное значение переменной подставляем во второе уравнение и находим вторую переменную. и записываем ответ )

    Пример : решить систему уравнений

    — 5x +2 (7 – 3x)=+4y) – 2y=30

    -5x +14 – 6x = 3 75 + 12y – 2y=30

    -11x = 3 – 14 10y=30 — 75

    — 11x = — 11 10y= — 25

    x=1 y = 7 – 3 *1=4 y= — 2,5 x= 25+4*(- 2,5)=15

    Ответ : х = 1 ; у = 4 Ответ: х = 15 ; у = — 2,5

    3) метод сложения ( умножаем обе части первого уравнения на одно число , обе части другого уравнения на другое число, эти два числа таковы, что при умножении их получаются одинаковые переменные с противоположными коэффициентами )

    Пример : решить систему уравнении

    +

    Ответ : а = 10 b = 5

    Пример : решить систему уравнении

    + 33у= — 165 у = 5

    Ответ : х = — 10 у = 5

    Пример : вычислите координаты точек пересечения прямых

    2 х – 3 у = 7 и 5 х + 4 у =6

    Решение: по условию координаты точек удовлетворяют обоим уравнениям, то есть являются решением системы данных уравнений.

    Прямая y= k x + b проходит через точки А ( — 1 ; 3 ) и В ( 2 ; Напишите уравнение этой прямой.

    Решение : подставляем в уравнение прямой значения координат заданных точек и получаем систему уравнении.

    y = k x +b ; подставляем значения k и b, и получаем уравнение прямой :

    Ответ:

    Пример : решить систему уравнении

    Далее решаем методом сложения

    Подставляем в 1-ое уравнение

    Находим координаты точек пересечения (-2;-1) , (-2;1) , (2;-1) , (2;1)

    Отсюда решаем две системы уравнении.

    Решая методом сложения получаем:

    подставляя в первое уравнение получаем:

    Это же уравнение можно решить методом подстановки.

    пусть получаем

    u-3(4-2u)=9 v=4 – 2*3= — 2

    подставляя значения u и v получаем :

    Ответ: .

    Решение систем уравнений второй степени

    Ответ : ( -3 ; -1 ) и ( 0,7 ; 5,5 )

    Вычислите координаты точек пересечения парабол:

    Чтобы вычислить точки пересечения парабол, надо решить систему уравнении

    Отсюда точки пересечения парабол имеют соответствующие координаты.

    Ответ:

    Уравнения с параметрами:

    Пример : Найдите все значения k , при которых уравнение имеет два корня.

    Решение : Уравнение имеет два корня, если D>0 . Найдем

    Ответ :

    Пример 2: При каком значений m уравнение имеет два корня? Найдите эти корни.

    Решение: Вынесем за скобки х, получаем

    Один из корней равен 0, тогда уравнение имеет один корень при D=0,т. е. 36 – 4m=0, m=9.

    Уравнение имеет один корень равный -3.

    Пример 3: При каких значениях p корни уравнения

    принадлежат промежутку

    Решение: Определяем значения p, при которых данное уравнение имеет два корня.

    при любых значениях p

    Отсюда

    Тогда получаем систему неравенств отсюда , так как p меньший корень, а p+2 больший корень.

    Ответ:

    Пример 4: При каких значениях b уравнение , имеет два различных положительных корня?

    Решение: уравнение имеет два корня, значит дискриминант больше 0.

    Так как по условию корни положительные, то

    Корни положительны, если b+1 2.

    Учитель математики Мари–Куптинской средней школы

    Предлагаемое учебное пособие позволяет подготовится к сдаче единого государственного экзамена (ЕГЭ) по математике. Пособие содержит примеры решений уравнений и систем уравнений.

    Пособие предназначено учащимся старших классов средней школы и учителям.

    Мари – Купта, 2007 год.

    1. Сборник заданий для подготовки к итоговой аттестации в 9 классе.

    2. Итоговая аттестация – 2007 . Предпрофильная подготовка. Под редакцией

    Решение задач с помощью уравнений

    Решение задачи обычно свóдится к тому, чтобы путем логических рассуждений и вычислений найти значение какой-нибудь величины. Например, найти скорость, время, расстояние, массу какого-нибудь предмета или количество чего-то.

    Такую задачу можно решить с помощью уравнения. Для этого искомое значение обозначают через переменную, затем путем логических рассуждений составляют и решают уравнение. Решив уравнение, производят проверку на то, удовлетворяет ли решение уравнения условиям задачи.

    Запись выражений, содержащих неизвестное

    Решение задачи сопровождается составлением уравнения к этой задаче. На начальном этапе изучения задач желательно научиться составлять буквенные выражения, описывающие ту или иную жизненную ситуацию. Этот этап не является сложным и его можно изучать в процессе решения самой задачи.

    Рассмотрим несколько ситуаций, которые можно записать с помощью математического выражения.

    Задача 1. Возраст отца x лет. Мама на два года младше. Сын младше отца в 3 раза. Запишите возраст каждого с помощью выражений.

    Решение:

    Задача 2. Возраст отца x лет, мама на 2 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Запишите возраст каждого с помощью выражений.

    Решение:

    Задача 3. Возраст отца x лет, мама на 3 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Сколько лет каждому, если общий возраст отца, мамы, сына и дочери составляет 92 года?

    Решение:

    В данной задаче помимо записи выражений, необходимо вычислить возраст каждого члена семьи.

    Сначала запишем возраст каждого члена семьи с помощью выражений. За переменную x примем возраст отца, и далее пользуясь этой переменной составим остальные выражения:

    Теперь определим возраст каждого члена семьи. Для этого нам нужно составить и решить уравнение. Все компоненты уравнения у нас уже готовы. Осталось только собрать их воедино.

    Общий возраст в 92 года получился путем сложения возрастов папы, мамы, сына и дочери:

    Для каждого возраста мы составили математическое выражение. Эти выражения и будут компонентами нашего уравнения. Давайте соберем наше уравнение согласно данной схеме и таблице, которая была приведена выше. То есть слова папа, мама, сын, дочь заменим на соответствующее им в таблице выражение:

    Выражение, отвечающее за возраст мамы x − 3, для наглядности было взято в скобки.

    Теперь решим получившееся уравнение. Для начала можно раскрыть скобки там, где это можно:

    Чтобы освободить уравнение от дробей, умножим обе части на 3

    Решим получившееся уравнение, пользуясь известными тождественными преобразованиями:

    Мы нашли значение переменной x . Эта переменная отвечала за возраст отца. Значит возраст отца составляет 36 лет.

    Зная возраст отца, можно вычислить возрасты остальных членов семьи. Для этого нужно подставить значение переменной x в те выражения, которые отвечают за возраст конкретного члена семьи.

    В задаче было сказано, что мама на 3 года младше отца. Ее возраст мы обозначили через выражение x−3. Значение переменной x теперь известно, и чтобы вычислить возраст мамы, нужно в выражении x − 3 вместо x подставить найденное значение 36

    x − 3 = 36 − 3 = 33 года маме.

    Аналогично определяется возраст остальных членов семьи:

    Проверка:

    Задача 4. Килограмм яблок стоит x рублей. Запишите выражение, вычисляющее сколько килограмм яблок можно купить на 300 рублей.

    Решение

    Если килограмм яблок стоит x рублей, то на 300 рублей можно купить килограмм яблок.

    Пример. Килограмм яблок стоит 50 рублей. Тогда на 300 рублей можно купить , то есть 6 килограмм яблок.

    Задача 5. На x рублей было куплено 5 кг яблок. Запишите выражение, вычисляющее сколько рублей стоит один килограмм яблок.

    Решение

    Если за 5 кг яблок было уплачено x рублей, то один килограмм будет стоит рублей

    Пример. За 300 рублей было куплено 5 кг яблок. Тогда один килограмм яблок будет стоит , то есть 60 рублей.

    Задача 6. Том, Джон и Лео на перемене пошли в столовую и купили по бутерброду и по кружке кофе. Бутерброд стоит x рублей, а кружка кофе — 15 рублей. Определите стоимость бутерброда, если известно, что за всё было уплачено 120 рублей?

    Решение

    Конечно, данная задача проста как три копейки и ее можно решить не прибегая к уравнению. Для этого из 120 рублей нужно вычесть стоимость трех кружек кофе (15 × 3) , и полученный результат разделить на 3

    Но наша цель — составить уравнение к задаче и решить это уравнение. Итак, стоимость бутерброда x рублей. Куплено их всего три. Значит увеличив стоимость в три раза, мы получим выражение описывающее сколько рублей было уплачено за три бутерброда

    3x — стоимость трех бутербродов

    А стоимость трех кружек кофе можно записать как 15 × 3 . 15 это стоимость одной кружки кофе, а 3 множитель (Том, Джон и Лео), увеличивающий эту стоимость в три раза.

    По условию задачи за все уплачено 120 рублей. У нас уже появляется примерная схема, что нужно делать:

    Выражения, описывающие стоимость трех бутербродов и трех кружек кофе, у нас уже готовы. Это выражения 3x и 15 × 3 . Пользуясь схемой составим уравнение и решим его:

    Итак, стоимость одного бутерброда составляет 25 рублей.

    Задача решается верно только в том случае, если уравнение к ней составлено правильно. В отличие от обычных уравнений, по которым мы учимся находить корни, уравнения для решения задач имеют своё конкретное применение. Каждый компонент такого уравнения может быть описан в словесной форме. Составляя уравнение, обязательно нужно понимать для чего мы включаем в его состав тот или иной компонент и зачем он нужен.

    Также необходимо помнить, что уравнение это равенство, после решения которого левая часть должна будет равняться правой части. Составленное уравнение не должно противоречить этой идее.

    Представим, что уравнение это весы с двумя чашами и экраном, показывающим состояние весов.

    В данный момент экран показывает знак равенства. Понятно почему левая чаша равна правой чаше — на чашах ничего нет. Состояние весов и отсутствие на чашах чего-либо запишем с помощью следующего равенства:

    Положим на левую чашу весов арбуз:

    Левая чаша перевесила правую чашу и экран забил тревогу, показав знак не равно ( ≠ ). Этот знак говорит о том, что левая чаша не равна правой чаше.

    Теперь попробуем решить задачу. Пусть требуется узнать сколько весит арбуз, который лежит на левой чаше. Но как это узнать? Ведь наши весы предназначены только для проверки равна ли левая чаша правой.

    На помощь приходят уравнения. Вспомним, что уравнение по определению есть равенство, содержащее в себе переменную значение которой требуется найти. Весы в данном случае играют роль этого самого уравнения, а масса арбуза это переменная, значение которой нужно найти. Наша цель правильно составить это уравнение. Понимай, выровнять весы так, чтобы можно было вычислить массу арбуза.

    Чтобы выровнять весы, на правую чашу можно положить какой-нибудь тяжелый предмет. Например, положим туда гирю массой 7 кг.

    Теперь наоборот правая чаша перевесила левую. Экран по прежнему показывает, что чаши не равны.

    Попробуем на левую чашу положить гирю массой 4 кг

    Теперь весы выровнялись. На рисунке видно, что левая чаша на уровне правой чаши. А экран показывает знак равенства. Этот знак говорит о том, что левая чаша равна правой чаше.

    Таким образом мы получили уравнение — равенство, содержащее неизвестное. Левая чаша — это левая часть уравнения, состоящая из компонентов 4 и переменной x (массы арбуза), а правая чаша — это правая часть уравнения, состоящая из компонента 7.

    Ну и нетрудно догадаться, что корень уравнения 4 + x = 7 равен 3. Значит масса арбуза равна 3 кг.

    Аналогично дела обстоят и с другими задачами. Чтобы найти какое-нибудь неизвестное значение, к левой или к правой части уравнения добавляют различные элементы: слагаемые, множители, выражения. В школьных задачах эти элементы бывают уже даны. Остается только правильно структурировать их и построить уравнение. Мы же в данном примере занимались подбором, пробуя гири разной массы, чтобы вычислить массу арбуза.

    Естественно, те данные которые даны в задаче сначала нужно привести к виду, при котором их можно включить в уравнение. Поэтому, как говорят «хочешь не хочешь, а думать придётся».

    Рассмотрим следующую задачу. Возраст отца равен возрасту сына и дочери вместе. Сын вдвое старше дочери и на двадцать лет моложе отца. Сколько лет каждому?

    Возраст дочери можно обозначить через x . Если сын вдвое старше дочери, то его возраст будет обозначаться как 2x . В условии задачи сказано, что вместе возраст дочери и сына равен возрасту отца. Значит возраст отца будет обозначаться суммой x + 2x

    В выражении можно привести подобные слагаемые. Тогда возраст отца будет обозначаться как 3x

    Теперь составим уравнение. Нам нужно получить равенство в котором можно найти неизвестное x . Воспользуемся весами. На левую чашу положим возраст отца (3x) , а на правую чашу возраст сына (2x)

    Понятно почему левая чаша перевесила правую и почему экран показывает знак ( ≠ ) . Ведь логично, что возраст отца больше возраста сына.

    Но нам нужно уравнять весы, чтобы можно было вычислить неизвестное x . Для этого к правой чаше нужно прибавить какое-нибудь число. Какое именно число указано в задаче. В условии было сказано, что сын моложе отца на 20 лет. Значит 20 лет это то самое число, которое нужно положить на весы.

    Весы выровнятся, если мы эти 20 лет добавим на правую чашу весов. Иными словами, вырастим сына до возраста отца

    Теперь весы выровнялись. Получилось уравнение , которое решается легко:

    В начале решения данной задачи через переменную x мы обозначили возраст дочери. Теперь мы нашли значение этой переменной. Дочери 20 лет.

    Далее было сказано, что сын двое старше дочери, значит сыну (20 × 2) , то есть 40 лет.

    Ну и наконец вычислим возраст отца. В задаче было сказано, что он равен сумме возрастов сына и дочери, то есть (20 + 40) лет.

    Вернемся к середине задачи и обратим внимание на один момент. Когда мы положили на весы возраст отца и возраст сына, левая чаша перевесила правую

    Но мы решили эту проблему, добавив на правую чашу еще 20 лет. В результате весы выровнялись и мы получили равенство

    Но можно было не добавлять к правой чаше эти 20 лет, а вычесть их из левой. Мы получили бы равенство и в таком случае

    В этот раз получается уравнение . Корень уравнения по прежнему равен 20

    То есть уравнения и являются равносильными. А мы помним, что у равносильных уравнений корни совпадают. Если внимательно посмотреть на эти два уравнения, то можно увидеть что второе уравнение получено путем переноса числа 20 из правой части в левую с противоположным знаком. А это действие, как было указано в предыдущем уроке, не меняет корней уравнения.

    Также нужно обратить внимание на то, что в начале решения задачи возрасты каждого члена семьи можно было обозначить через другие выражения.

    Скажем возраст сына обозначить через x и поскольку он двое старше дочери, то возраст дочери обозначить через (понимай сделать её младше сына в два раза). А возраст отца поскольку он является суммой возрастов сына и дочери обозначить через выражение . Ну и напоследок для построения логически правильного уравнения, к возрасту сына нужно прибавить число 20, ведь отец старше на двадцать лет. В итоге получается совсем другое уравнение . Решим это уравнение

    Как видно ответы к задаче не поменялись. Сыну по прежнему 40 лет. Дочери по прежнему лет, а отцу 40 + 20 лет.

    Другими словами, задача может решаться различными методами. Поэтому не следует отчаиваться, что не получается решить ту или иную задачу. Но нужно иметь ввиду, что существует наиболее простые пути решения задачи. К центру города можно доехать различными маршрутами, но всегда существует наиболее удобный, быстрый и безопасный маршрут.

    Примеры решения задач

    Задача 1. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?

    Решение

    Обозначим через x количество тетрадей, которое было в первой пачке. Если всего тетрадей было 30, а переменная x это количество тетрадей из первой пачке, то количество тетрадей во второй пачке будет обозначаться через выражение 30 − x . То есть от общего количества тетрадей вычитаем количество тетрадей из первой пачки и тем самым получаем количество тетрадей из второй пачки.

    Далее сказано, что если переложить 2 тетради из первой пачки во вторую, то в первой пачке окажется вдвое больше тетрадей. Итак, снимем с первой пачки две тетради

    и добавим эти две тетради во вторую пачку

    Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

    Попробуем составить уравнение из имеющихся выражений. Положим на весы обе пачки тетрадей

    Левая чаша тяжелее правой. Это потому, что в условии задачи сказано, что после того как из первой пачки взяли две тетради и положили их во вторую, количество тетрадей в первой пачке стало вдвое больше, чем во второй.

    Чтобы выровнять весы и получить уравнение, увеличим правую часть вдвое. Для этого умножим её на 2

    Получается уравнение . Решим данное уравнение:

    Первую пачку мы обозначали через переменную x . Теперь мы нашли её значение. Переменная x равна 22. Значит в первой пачке было 22 тетради.

    А вторую пачку мы обозначали через выражение 30 − x и поскольку значение переменой x теперь известно, то можно вычислить количество тетрадей во второй пачке. Оно равно 30 − 22 , то есть 8 шт .

    Задача 2. Два человека чистили картофель. Один очищал в минуту две картофелины, а второй — три картофелины. Вместе они очистили 400 шт. Сколько времени работал каждый, если второй проработал на 25 минут больше первого?

    Решение

    Обозначим через x время работы первого человека. Поскольку второй человек проработал на 25 минут больше первого, то его время будет обозначаться через выражение

    Первый рабочий в минуту очищал 2 картофелины, и поскольку он работал x минут, то всего он очистил 2x картофелин.

    Второй человек в минуту очищал три картофелины, и поскольку он работал минут, то всего он очистил картофелин.

    Вместе они очистили 400 картофелин

    Из имеющихся компонентов составим и решим уравнение. В левой части уравнения будут картофелины, очищенные каждым человеком, а в правой части их сумма:

    В начале решения данной задачи через переменную x мы обозначили время работы первого человека. Теперь мы нашли значение этой переменной. Первый человек работал 65 минут.

    А второй человек работал минут, и поскольку значение переменной x теперь известно, то можно вычислить время работы второго человека — оно равно 65 + 25 , то есть 90 мин .

    Задача из Учебника по алгебре Андрея Петровича Киселева. Из сортов чая составлена смесь в 32 кг. Килограмм первого сорта стоит 8 руб., а второго сорта 6 руб. 50 коп. Сколько килограммов взято того и другого сорта, если килограмм смеси стоит (без прибыли и убытка) 7 руб. 10 коп.?

    Решение

    Обозначим через x массу чая первого сорта. Тогда масса чая второго сорта будет обозначаться через выражение 32 − x

    Килограмм чая первого сорта стоит 8 руб. Если эти восемь рублей умножить на количество килограмм чая первого сорта, то можно будет узнать во сколько рублей обошлись x кг чая первого сорта.

    А килограмм чая второго сорта стоит 6 руб. 50 коп. Если эти 6 руб. 50 коп. умножить на 32 − x , то можно узнать во сколько рублей обошлись 32 − x кг чая второго сорта.

    В условии сказано, что килограмм смеси стоит 7 руб. 10 коп. Всего же было приготовлено 32 кг смеси. Умножим 7 руб. 10 коп. на 32 мы сможем узнать сколько стоит 32 кг смеси.

    Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

    Попробуем составить уравнение из имеющихся выражений. Положим на левую чашу весов стоимость смесей чая первого и второго сорта, а на правую чашу положим стоимость 32 кг смеси, то есть общую стоимость смеси, в составе которой оба сорта чая:

    Получили уравнение . Решим его:

    В начале решения данной задачи через переменную x мы обозначили массу чая первого сорта. Теперь мы нашли значение этой переменной. Переменная x равна 12,8. Значит для приготовления смеси было взято 12,8 кг чая первого сорта.

    А через выражение 32 − x мы обозначили массу чая второго сорта и поскольку значение переменой x теперь известно, то можно вычислить массу чая второго сорта. Оно равно 32 − 12,8 то есть 19,2 . Значит для приготовления смеси было взято 19,2 кг чая второго сорта.

    Задача 3. Велосипедист проехал некоторое расстояние со скоростью 8 км/ч. Возвратиться он должен был другой дорогой, которая была на 3 км длиннее первой, и, хотя возвращаясь, ехал со скоростью 9 км/ч, он употребил времени на минут более. Как длинны были дороги?

    Решение

    Некоторые задачи могут затрагивать темы, которые человек возможно не изучал. Данная задача относится к такому кругу задач. В ней затрагиваются понятия расстояния, скорости и времени. Соответственно, чтобы решить подобную задачу, нужно иметь представление о тех вещах, о которых говорится в задаче. В нашем случае, надо знать что представляет собой расстояние, скорость и время.

    В задаче нужно найти расстояния двух дорог. Мы должны составить уравнение, которое позволит вычислить эти расстояния.

    Вспомним, как взаимосвязаны расстояние, скорость и время. Каждая из этих величин может быть описана с помощью буквенного уравнения:

    Правую часть одного из этих уравнений мы будем использовать для составления своего уравнения. Чтобы узнать какую именно, нужно вернуться к тексту задачи и обратить внимание на следующий момент:

    Следует обратить внимание на момент, где велосипедист на обратном пути употребил времени на минут более. Эта подсказка указывает нам, что можно воспользоваться уравнением , а именно его правой частью. Это позволит нам составить уравнение, которое содержит переменную S .

    Итак, обозначим длину первой дороги через S . Этот путь велосипедист проехал со скоростью 8 км/ч . Время за которое он преодолел этот путь будет обозначаться выражением , поскольку время это отношение пройденного расстояния к скорости

    Обратная дорога для велосипедиста была длиннее на 3 км . Поэтому её расстояние будет обозначаться через выражение S + 3 . Эту дорогу велосипедист проехал со скоростью 9 км/ч . А значит время за которое он преодолел этот путь будет обозначаться выражением .

    Теперь составим уравнение из имеющихся выражений

    Правая чаша тяжелее левой. Это потому, что в задаче сказано, что на обратную дорогу велосипедист затратил времени на больше.

    Чтобы уравнять весы прибавим к левой части эти самые минут. Но сначала переведем минуты в часы, поскольку в задаче скорость измеряется в километрах в час, а не в метрах в минуту.

    Чтобы минут перевести в часы, нужно разделить их на 60

    минут составляют часа. Прибавляем эти часа к левой части уравнения:

    Получается уравнение . Решим данное уравнение. Чтобы избавиться от дробей, обе части части можно умножить на 72. Далее пользуясь известными тождественными преобразованиями, найдем значение переменной S

    Через переменную S мы обозначали расстояние первой дороги. Теперь мы нашли значение этой переменной. Переменная S равна 15. Значит расстояние первой дороги составляет 15 км.

    А расстояние второй дороги мы обозначили через выражение S + 3 , и поскольку значение переменной S теперь известно, то можно вычислить расстояние второй дороги. Это расстояние равно сумме 15 + 3 , то есть 18 км .

    Задача 4. По шоссе идут две машины с одной и той же скоростью. Если первая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на 10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за 3 ч. С какой скоростью идут автомашины?

    Решение

    Обозначим через v скорость каждой машины. Далее в задаче приводятся подсказки: скорость первой машины увеличить на 10 км/ч, а скорость второй — уменьшить на 10 км/ч. Воспользуемся этой подсказкой

    Далее говорится, что при таких скоростях (увеличенных и уменьшенных на 10 км/ч) первая машина пройдет за 2 часа столько же расстояния сколько вторая за 3 часа. Фразу «столько же» можно понимать как «расстояние, пройденное первой машиной, будет равно расстоянию, пройденному второй машиной».

    Расстояние как мы помним, определяется по формуле . Нас интересует правая часть этого буквенного уравнения — она позволит нам составить уравнение, содержащее переменную v .

    Итак, при скорости v + 10 км/ч первая машина пройдет 2(v+10) км , а вторая пройдет 3(v − 10) км . При таком условии машины пройдут одинаковые расстояния, поэтому для получения уравнения достаточно соединить эти два выражения знаком равенства. Тогда получим уравнение . Решим его:

    В условии задачи было сказано, что машины идут с одинаковой скоростью. Мы обозначили эту скорость через переменную v . Теперь мы нашли значение этой переменной. Переменная v равна 50. Значит скорость обеих машин составляла 50 км/ч.

    Задача 5. За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.

    Решение

    Обозначим через v собственную скорость теплохода. Скорость течения реки равна 2 км/ч. По течению реки скорость теплохода будет составлять v + 2 км/ч , а против течения — (v − 2) км/ч .

    В условии задачи сказано, что за 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Фразу «тот же путь» можно понимать как «расстояние, пройденное теплоходом по течению реки за 9 часов, равно расстоянию, пройденному теплоходом против течения реки за 11 часов». То есть расстояния будут одинаковыми.

    Расстояние определяется по формуле . Воспользуемся правой частью этого буквенного уравнения для составления своего уравнения.

    Итак, за 9 часов по течению реки теплоход пройдет 9(v + 2) км , а за 11 часов против течения — 11(v − 2) км . Поскольку оба выражения описывают одно и то же расстояние, приравняем первое выражение ко второму. В результате получим уравнение . Решим его:

    Значит собственная скорость теплохода составляет 20 км/ч.

    При решении задач полезной привычкой является заранее определить на каком множестве ищется для неё решение.

    Допустим, что в задаче требовалось найти время, за которое пешеход преодолеет указанный путь. Мы обозначили время через переменную t , далее составили уравнение, содержащее эту переменную и нашли её значение.

    Из практики мы знаем, что время движения объекта может принимать как целые значения, так и дробные, например 2 ч, 1,5 ч, 0,5 ч. Тогда можно сказать, что решение данной задачи ищется на множестве рациональных чисел Q, поскольку каждое из значений 2 ч, 1,5 ч, 0,5 ч может быть представлено в виде дроби.

    Поэтому после того, как неизвестную величину обозначили через переменную, полезно указать к какому множеству эта величина принадлежит. В нашем примере время t принадлежит множеству рациональных чисел Q

    Ещё можно ввести ограничение для переменной t , указав что она может принимать только положительные значения. Действительно, если объект затратил на путь определенное время, то это время не может быть отрицательным. Поэтому рядом с выражением tQ укажем, что её значение должно быть больше нуля:

    Если решив уравнение, мы получим отрицательное значение для переменной t , то можно будет сделать вывод, что задача решена неправильно, поскольку это решение не будет удовлетворять условию tQ , t > 0 .

    Ещё пример. Если бы мы решали задачу в которой требовалось найти количество человек для выполнения той или иной работы, то это количество мы обозначили бы через переменную x . В такой задаче решение искалось бы на множестве натуральных чисел

    Действительно, количество человек является целым числом, например 2 человека, 3 человека, 5 человек. Но никак не 1,5 (один целый человек и половина человека) или 2,3 (два целых человека и еще три десятых человека).

    Здесь можно было бы указать, что количество человек должно быть больше нуля, но числа входящие во множество натуральных чисел N сами по себе являются положительными и большими нуля. В этом множестве нет отрицательных чисел и числа 0. Поэтому выражение x > 0 можно не писать.

    Задача 6. Для ремонта школы прибыла бригада в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально

    Решение

    Обозначим через x плотников, прибывших на ремонт первоначально.

    Количество плотников является целым числом, большим нуля. Поэтому укажем, что x принадлежит множество натуральных чисел

    Маляров было в 2,5 раза больше, чем плотников. Поэтому количество маляров будет обозначаться как 2,5x .

    Далее говорится, что прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. Сделаем для своих выражений тоже самое. Уменьшим количество плотников на 2

    А количество маляров увеличим на 4

    Теперь количество плотников и маляров будут обозначаться через следующие выражения:

    Попробуем составить уравнение из имеющихся выражений:

    Правая чаша больше, поскольку после включения в бригаду ещё четырёх маляров, и перемещения двух плотников на другой объект, количество маляров в бригаде оказалось в 4 раза больше чем плотников. Чтобы уравнять весы, нужно левую чашу увеличить в 4 раза:

    Получили уравнение . Решим его:

    Через переменную x было обозначено первоначальное количество плотников. Теперь мы нашли значение этой переменной. Переменная x равна 8. Значит 8 плотников было в бригаде первоначально.

    А количество маляров было обозначено через выражение 2,5 x и поскольку значение переменной x теперь известно, то можно вычислить количество маляров — оно равно 2,5 × 8 , то есть 20 .

    Возвращаемся к началу задачи и удостоверяемся, что соблюдается условие xN. Переменная x равна 8, а элементы множества натуральных чисел N это все числа, начинающиеся с 1, 2, 3 и так далее до бесконечности. В это же множество входит число 8, которое мы нашли.

    Тоже самое можно сказать о количестве маляров. Число 20 принадлежит множеству натуральных чисел:

    Для понимания сути задачи и правильного составления уравнения, вовсе необязательно использовать модель весов с чашами. Можно использовать и другие модели: отрезки, таблицы, схемы. Можно придумать свою модель, которая хорошо описывала бы суть задачи.

    Задача 9. Из бидона отлили 30% молока. В результате в нем осталось 14 л. Сколько литров молока было в бидоне первоначально?

    Решение

    Искомое значение это первоначальное число литров в бидоне. Изобразим число литров в виде линии и подпишем эту линию как X

    Сказано, что из бидона отлили 30% молока. Выделим на рисунке приблизительно 30%

    Процент по определению есть одна сотая часть чего-то. Если 30% молока отлили, то остальные 70% остались в бидоне. На эти 70% приходятся 14 литров, указанные в задаче. Выделим на рисунке оставшиеся 70%

    Теперь можно составить уравнение. Вспомним, как находить процент от числа. Для этого общее количество чего-то делят на 100 и полученный результат умножают на искомое количество процентов. Замечаем, что 14 литров, составляющих 70% можно получить таким же образом: первоначальное число литров X разделить на 100 и полученный результат умножить на 70. Всё это приравнять к числу 14

    Или получить более простое уравнение: 70% записать как 0,70, затем умножить на X и приравнять это выражение к 14

    Значит первоначально в бидоне было 20 литров молока.

    Задача 9. Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1 : 9, а в другом 2 : 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1 : 4?

    Решение

    Попробуем сначала узнать сколько золота и серебра будет содержáться в 15 кг нового сплава. В задаче сказано, что содержание этих металлов должно быть в отношении 1 : 4, то есть на одну часть сплава должно приходиться золото, а на четыре части — серебро. Тогда всего частей в сплаве будет 1 + 4 = 5, а масса одной части будет 15 : 5 = 3 кг.

    Определим сколько золота будет содержáться в 15 кг сплава. Для этого 3 кг умножим на количество частей золота:

    Определим сколько серебра будет содержáться в 15 кг сплава:

    Значит сплав массой 15 кг будет содержать 3 кг золота и 12 кг серебра. Теперь вернёмся к исходным сплавам. Использовать нужно каждый из них. Обозначим через x массу первого сплава, а массу второго сплава можно обозначить через 15 − x

    Выразим в процентах все отношения, которые даны в задаче и заполним ими следующую таблицу:

    В первом сплаве золото и серебро находятся в отношении 1 : 9. Тогда всего частей будет 1 + 9 = 10 . Из них золота будет , а серебра .

    Перенесём эти данные в таблицу. 10% занесём в первую строку в графу «процент золота в сплаве», 90% также занесём в первую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём переменную x , поскольку так мы обозначили массу первого сплава:

    Аналогично поступаем со вторым сплавом. Золото и серебро в нём находятся в отношении 2 : 3. Тогда всего частей будет 2 + 3 = 5. Из них золота будет , а серебра .

    Перенесём эти данные в таблицу. 40% занесем во вторую строку в графу «процент золота в сплаве», 60% также занесём во вторую строку графу «процент серебра в сплаве», а в последнюю графу «масса сплава» занесём выражение 15 − x , поскольку так мы обозначили массу второго сплава:

    Заполним последнюю строку. Полученный сплав массой 15 кг будет содержать 3 кг золота, что составляет сплава, а серебра будет сплава. В последнюю графу записываем массу полученного сплава 15

    Теперь по данной таблице можно составить уравнения. Вспоминаем задачи на концентрацию, сплавы и смеси. Если мы отдельно сложим золото обоих сплавов и приравняем эту сумму к массе золота полученного сплава, то сможем узнать чему равно значение x.

    Далее для удобства проценты будем выражать в десятичной дроби.

    В первом сплаве золота было 0,10x , а во втором сплаве золота было 0,40(15 − x) . Тогда в полученном сплаве масса золота будет суммой масс золота первого и второго сплавов и эта масса составляет 20% от нового сплава. А 20% от нового сплава это 3 кг золота, вычисленные нами ранее. В результате получаем уравнение 0,10x + 0.40(15 − x) = 3 . Решим это уравнение:

    Изначально через x мы обозначили массу первого сплава. Теперь мы нашли значение этой переменной. Переменная x равна 10. А массу второго сплава мы обозначили через 15 − x , и поскольку значение переменной x теперь известно, то можно вычислить массу второго сплава, она равна 15 − 10 = 5 кг .

    Значит для получения нового сплава массой 15 кг в котором золото и серебро относились бы как 1 : 4, нужно взять 10 кг первого и 5 кг второго сплава.

    Уравнение можно было составить, воспользовавшись и вторым столбцом получившейся таблицы. Тогда мы получили бы уравнение 0,90x + 0.60(15 − x) = 12. Корень этого уравнения тоже равен 10

    Задача 10. Имеется руда из двух пластов с содержанием меди в 6% и 11%. Сколько надо взять бедной руды, чтобы получить при смешивании с богатой 20 тонн с содержанием меди 8%?

    Решение

    Обозначим через x массу бедной руды. Поскольку нужно получить 20 тонн руды, то богатой руды будет взято 20 − x . Поскольку содержание меди в бедной руде составляет 6%, то в x тоннах руды будет содержáться 0,06x тонн меди. В богатой руде содержание меди составляет 11%, а в 20 − x тоннах богатой руды будет содержáться 0,11(20 − x) тонн меди.

    В получившихся 20 тоннах руды содержание меди должно составлять 8%. Значит в 20 тоннах руды меди будет содержáться 20 × 0,08 = 1,6 тонн.

    Сложим выражения 0,06x и 0,11(20 − x) и приравняем эту сумму к 1,6. Получим уравнение 0,06x + 0,11(20 − x) = 1,6

    Решим данное уравнение:

    Значит для получения 20 тонн руды с содержанием меди 8%, нужно взять 12 тонн бедной руды. Богатой же будет взято 20 − 12 = 8 тонн.

    Задача 11. Увеличив среднюю скорость с 250 до 300 м/мин спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?

    Решение

    Длину дистанции (или расстояние дистанции) можно описать следующим буквенным уравнением:

    Воспользуемся правой частью этого уравнения для составления своего уравнения. Изначально спортсменка пробегала дистанцию со скоростью 250 метров в минуту. При такой скорости длина дистанции будет описываться выражением 250t

    Затем спортсменка увеличила свою скорость до 300 метров в минуту. При такой скорости длина дистанции будет описываться выражением 300t

    Заметим, что длина дистанции это величина постоянная. От того, что спортсменка увеличит скорость или уменьшит её, длина дистанции останется неизменной.

    Это позволяет нам приравнять выражение 250t к выражению 300t , поскольку оба выражения описывают длину одной и той же дистанции

    Но в задаче сказано, что при скорости 300 метров в минуту спортсменка стала пробегать дистанцию на 1 минуту быстрее. Другими словами, при скорости 300 метров в минуту, время движения уменьшится на единицу. Поэтому в уравнении 250t = 300t в правой части время нужно уменьшить на единицу:

    Получилось простейшее уравнение. Решим его:

    При скорости 250 метров в минуту спортсменка пробегает дистанцию за 6 минут. Зная скорость и время, можно определить длину дистанции:

    S = 250 × 6 = 1500 м

    А при скорости 300 метров в минуту спортсменка пробегает дистанцию за t − 1 , то есть за 5 минут. Как было сказано ранее длина дистанции не меняется:

    S = 300 × 5 = 1500 м

    Задача 12. Всадник догоняет пешехода, находящегося впереди него на 15 км. Через сколько часов всадник догонит пешехода, если каждый час первый проезжает по 10 км, а второй проходит только по 4 км?

    Решение

    Данная задача является задачей на движение. Её можно решить, определив скорость сближения и разделив изначальное расстояние между всадником и пешеходом на эту скорость.

    Скорость сближения определяется вычитанием меньшей скорости из большей:

    10 км/ч − 4 км/ч = 6 км/ч (скорость сближения)

    С каждым часом расстояние в 15 километров будут сокращаться на 6 км. Чтобы узнать, когда оно сократится полностью (когда всадник догонит пешехода), нужно 15 разделить на 6

    2,5 ч это два целых часа и половина часа. А половина часа это 30 минут. Значит всадник догонит пешехода через 2 часа 30 минут.

    Решим эту задачу с помощью уравнения.

    Будем считать, что пешеход и всадник вышли в путь из одного и того же места. Пешеход вышел раньше всадника и успел преодолеть 15 км

    После этого вслед за ним в путь вышел всадник со скоростью 10 км/ч. А скорость пешехода составляет только 4 км/ч. Это значит, что всадник через некоторое время догонит пешехода. Это время нам нужно найти.

    Когда всадник догонит пешехода это будет означать, что они вместе прошли одинаковое расстояние. Расстояние, пройденное всадником и пешеходом описывается следующим уравнением:

    Воспользуемся правой частью этого уравнения для составления своего уравнения.

    Расстояние, пройденное всадником, будет описываться выражением 10t . Поскольку пешеход вышел в путь раньше всадника и успел преодолеть 15 км, то расстояние пройденное им будет описываться выражением 4t + 15 .

    На момент, когда всадник догонит пешехода, оба они пройдут одинаковое расстояние. Это позволяет нам приравнять расстояния, пройденные всадником и пешеходом:

    Получилось простейшее уравнение. Решим его:

    Задачи для самостоятельного решения

    Решение

    Скорости поездов в данной задаче измеряются в километрах в час. Поэтому 45 мин, указанные в задаче, переведем в часы. 45 мин это 0,75 ч

    Обозначим время, за которое товарный поезд приезжает в город, через переменную t . Поскольку пассажирский поезд приезжает в этот город на 0,75 ч быстрее, то время его движения будет обозначаться через выражение t − 0,75

    Пассажирский поезд преодолел 48(t − 0.75) км, а товарный 36t км. Поскольку речь идет об одном и том же расстоянии, приравняем первое выражение ко второму. В результате получим уравнение 48(t − 0.75) = 36t . Решим его:

    Теперь вычислим расстояние между городами. Для этого скорость товарного поезда (36 км/ч) умножим на время его движения t. Значение переменной t теперь известно — оно равно трём часам

    Для вычисления расстояния можно воспользоваться и скоростью пассажирского поезда. Но в этом случае значение переменной t необходимо уменьшить на 0,75 поскольку пассажирский поезд затратил времени на 0,75 ч меньше

    48 × (3 − 0,75) = 144 − 36 = 108 км

    Ответ: расстояние между городами равно 108 км.

    Решение

    Пусть t время через которое автомобили встретились. Тогда первый автомобиль на момент встречи проедет 65t км, а второй 60t км. Сложим эти расстояния и приравняем к 150. Получим уравнение 65t + 60t = 150

    Значение переменной t равно 1,2. Значит автомобили встретились через 1,2 часа.

    Ответ: автомобили встретились через 1,2 часа.

    Решение

    Пусть x рабочих было в первом цехе. Во втором цехе было в три раза больше, чем в первом, поэтому количество рабочих во втором цехе можно обозначить через выражение 3x . В третьем цехе было на 15 рабочих меньше, чем во втором. Поэтому количество рабочих в третьем цехе можно обозначить через выражение 3x − 15 .

    В задаче сказано, что всего рабочих было 685. Поэтому можно сложить выражения x, 3x, 3x − 15 и приравнять эту сумму к числу 685. В результате получим уравнение x + 3x + (3x − 15) = 685

    Через переменную x было обозначено количество рабочих в первом цехе. Теперь мы нашли значение этой переменной, оно равно 100. Значит в первом цехе было 100 рабочих.

    Во втором цехе было 3x рабочих, то есть 3 × 100 = 300 . А в третьем цехе было 3x − 15 , то есть 3 × 100 − 15 = 285

    Ответ: в первом цехе было 100 рабочих, во втором — 300, в третьем — 285.

    Решение

    Пусть x моторов должна была отремонтировать первая мастерская. Тогда вторая мастерская должна была отремонтировать 18 − x моторов .

    Поскольку первая мастерская выполнила свой план на 120%, это означает что она отремонтировала 1,2x моторов . А вторая мастерская выполнила свой план на 125%, значит она отремонтировала 1,25(18 − x) моторов.

    В задаче сказано, что было отремонтировано 22 мотора. Поэтому можно сложить выражения 1,2x и 1,25(18 − x) , затем приравнять эту сумму к числу 22. В результате получим уравнение 1,2x + 1,25(18 − x) = 22

    Через переменную x было обозначено количество моторов, которые должна была отремонтировать первая мастерская. Теперь мы нашли значение этой переменной, она равна 10. Значит первая мастерская должна была отремонтировать 10 моторов.

    А через выражение 18 − x было обозначено количество моторов, которые должна была отремонтировать вторая мастерская. Значит вторая мастерская должна была отремонтировать 18 − 10 = 8 моторов.

    Ответ: первая мастерская должна была отремонтировать 10 моторов, а вторая — 8 моторов.

    Решение

    Пусть x рублей стоил товар до повышения цены. Если цена увеличилась на 30% это означает, что она увеличилась на 0,30x рублей. После повышения цены товар начал стоить 91 руб. Сложим x с 0,30x и приравняем эту сумму к 91. В результате получим уравнение x + 0.30x = 91

    Значит до повышения цены товар стоил 70 рублей.

    Ответ: до повышения цены товар стоил 70 рублей.

    Решение

    Пусть x — исходное число. Увеличим его на 25%. Получим выражение x + 0,25x . Приведем подобные слагаемые, получим x + 0,25x = 1.25x .

    Узнаем какую часть исходное число x составляет от нового числа 1,25x

    Если новое число 1,25x считать за 100%, а исходное число x составляет от него 80%, то уменьшив новое число на 20% можно получить исходное число x

    Ответ: чтобы получить исходное число, новое число нужно уменьшить на 20%.

    Решение

    Пусть x — первоначальное число. Увеличим его на 20%. Получим выражение x + 0,20x . Приравняем эту сумму к числу 144, получим уравнение x + 0,20x = 144

    Ответ: первоначальное значение числа равно 120.

    Решение

    Пусть x — первоначальное число. Уменьшим его на 10%. Получим выражение x − 0,10x . Приравняем эту разность к числу 45, получим уравнение x − 0,10x = 45

    Ответ: первоначальное значение числа равно 50.

    Решение

    Пусть x рублей — первоначальная цена альбома. Снизим эту цену на 15%, получим x − 0,15x . Снизим цену ещё на 15 руб., получим x − 0,15x − 15 . После этих снижений альбом стал стоить 19 руб. Приравняем выражение x − 0,15x − 15 к числу 19, получим уравнение x − 0,15x − 15 = 19

    Ответ: первоначальная цена альбома составляет 40 руб.

    Решение

    Если 80% массы теряется, то на оставшиеся 20% будут приходиться 4 т сена. Пусть x тонн травы требуется для получения 4 т сена. Если 4 т будут составлять 20% травы, то можно составить уравнение:

    Ответ: для получения 4 т сена, нужно накосить 20 т травы.

    Решение

    Пусть x кг 20%-го раствора соли нужно добавить к 1 кг 10%-го раствора.

    В 1 кг 10%-го раствора соли содержится 0,1 кг соли. А в x кг 20%-го раствора соли содержится 0,20 x кг соли.

    После добавления x кг 20%-го раствора в новом растворе будет содержáться 0,12(1 + x) кг соли. Сложим выражения 0,1 и 0,20x , затем приравняем эту сумму к выражению 0,12(1 + x) . В результате получим уравнение 0,1 + 0,20x = 0,12(1 + x)

    Ответ: чтобы получить 12%-й раствор соли, нужно к 1 кг 10%-го раствора добавить 0,25 кг 20%-го раствора.

    Решение

    Пусть x кг первого раствора нужно взять. Поскольку требуется приготовить 25 кг раствора, то массу второго раствора можно обозначить через выражение 25 − x.

    В первом растворе будет содержáться 0,20x кг соли, а втором — 0,30(25 − x) кг соли. В полученном растворе содержание соли будет 25 × 0,252 = 6,3 кг. Сложим выражения 0,20x и 0,30(25 − x), затем приравняем эту сумму к 6,3. В результате получим уравнение

    Значит первого раствора нужно взять 12 кг, а второго 25 − 12 = 13 кг.

    Ответ: первого раствора нужно взять 12 кг, а второго 13 кг.

    Понравился урок?
    Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

    Возникло желание поддержать проект?
    Используй кнопку ниже

    44 thoughts on “Решение задач с помощью уравнений”

    Вау новый урок. Я рад что вернулись)) После работы обязательно буду учить этот урок.

    не смог решить ни одной задачи из примеров решения…

    источники:
    Квадратное уравнение

    Это уравнение вида ax2+bx+c=0ax^2 + bx + c = 0,

    где aa – коэффициент перед x2x^2,

    bb – коэффициент перед xx,

    cc – свободное число.

    Существуют разные способы нахождения корней квадратного уравнения. Пожалуй, самый основной и распространенный способ – через вычисление дискриминанта. В этом случае он рассчитывается по формуле:

    D=b2–4acD = b^2 – 4ac

    Если второй коэффициент уравнения четный, можно решать уравнение через kk, тогда будет другая формула дискриминанта:

    D1=k2–acD_1 = k^2 – ac

    Если первый коэффициент уравнения равен 1, то можно воспользоваться теоремой Виета, которая имеет 2 условия:

    x1+x2=−bx_1 + x_2 = -b
    x1⋅x2=cx_1 cdot x_2 = c

    Но если мы захотим решить уравнение основным способом, ошибки не будет. Нахождение корней уравнения через дискриминант – универсальный способ, а остальные введены для удобства вычислений.

    Задача 1

    Решим уравнение: 3×2+7x−6=0.3x^2 + 7x — 6 = 0.

    Обозначим коэффициенты:

    a=3a = 3,

    b=7b = 7,

    c=−6c = -6

    Далее находим дискриминант по формуле:

    D=b2–4acD = b^2 – 4ac

    D=72–4∗3∗(−6)=49+72=121=112D = 7^2 – 4 * 3 * (-6) = 49 + 72 = 121 = {11}^2

    D>0D > 0 – значит, уравнение имеет 2 корня.

    Находим корни уравнения по следующим формулам:

    x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
    x2=(−b−√D)/2ax_2 = (-b — √D) / 2a

    Подставляем численные значения:

    x1=(−7+11)/2∗3=4/6=23x_1 = (-7 + 11) / 2*3 = 4 / 6 = frac{2}{3}

    x2=(−7–11)/2∗3=−18/6=−3x_2 = (-7 – 11) / 2*3 = -18 / 6 = -3

    Ответ: x1=23x_1 = frac{2}{3}, x2=−3x_2 = -3.

    Задача 2

    Решим уравнение: −x2+7x+8=0.-x^2 + 7x + 8 = 0.

    Обозначим коэффициенты:

    a=−1a = -1,

    b=7b = 7,

    c=8.c = 8.

    Далее находим дискриминант по формуле:

    D=b2–4acD = b^2 – 4ac

    D=72–4⋅(−1)⋅8=49+32=81=92D = 7^2 – 4 cdot (-1) cdot 8 = 49 + 32 = 81 = 9^2

    D>0D > 0 – значит, уравнение имеет 2 корня.

    Находим корни уравнения по следующим формулам:

    x1=(−b+√D)/2ax_1 = (-b + √D) / 2a
    x2=(−b−√D)/2ax_2 = (-b — √D) / 2a

    Подставляем численные значения:

    x1=(−7+9)/2∗(−1)=2/(−2)=−1x_1 = (-7 + 9) / 2 * (-1) = 2 / (-2) = -1
    x2=(−7–9)/2∗(−1)=−16/(−2)=8x_2 = (-7 – 9) / 2 * (-1) = -16 / (-2) = 8

    Ответ: x1=−1x_1 = -1, x2=8x_2 = 8.

    Задача 3

    Решим уравнение: 4×2+4x+1=0.4x^2 + 4x + 1 = 0.

    Обозначим коэффициенты:
    a=4a = 4,

    b=4b = 4,

    c=1.c = 1.

    Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac

    D=42–4⋅4⋅1=16–16=0D = 4^2 – 4 cdot 4 cdot 1 = 16 – 16 = 0

    D=0D = 0 – значит, уравнение имеет 1 корень.

    Находим корень уравнения по следующей формуле: x=−b/2ax = -b / 2a

    Подставляем численные значения:

    x=−4/2⋅4=−4/8=−1/2=−0,5x = -4 / 2 cdot 4 = -4 / 8 = -1 / 2 = -0,5

    Ответ: x=−0,5.x = -0,5.

    Задача 4

    Решим уравнение: 2×2+x+1=0.2x^2 + x + 1 = 0.

    Обозначим коэффициенты:
    a=2a = 2,

    b=1b = 1,

    c=1.c = 1.

    Далее находим дискриминант по формуле: D=b2–4acD = b^2 – 4ac

    D=12–4∗2∗1=1–8=−7D = 1^2 – 4 * 2 * 1 = 1 – 8 = -7

    D<0D < 0 – значит, уравнение корней не имеет.

    Ответ: корней нет.

    Решение квадратного уравнения через k

    Если у квадратного уравнения коэффициент bb четный, то можно решать уравнение через kk, при этом k=12bk = frac{1}{2} b.

    Задача 5

    Решим уравнение: −x2+2x+8=0.-x^2 + 2x + 8 = 0.

    Обозначим коэффициенты:

    a=−1a = -1,

    b=2b = 2,

    c=8c = 8

    bb – четное.

    k=12b=1k = frac {1}{2} b = 1.

    Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac

    D1=12–(−1)∗8=1+8=9=32D_1 = 1^2 – (-1) * 8 = 1 + 8 = 9 = 3^2

    D1>0D_1 > 0 – значит, уравнение имеет 2 корня.

    Находим корни уравнения по следующим формулам:

    x1=(−k+D1)/ax_1 = (-k + {sqrt D}_1) / a
    x2=(−k−D1)/ax_2 = (-k — {sqrt D}_1) / a

    Подставляем численные значения:

    x1=(−1+3)/(−1)=2/(−1)=−2x_1 = (-1 + 3) / (-1) = 2 / (-1) = -2
    x2=(−1–3)/(−1)=−4/(−1)=4x_2 = (-1 – 3) / (-1) = -4 / (-1) = 4

    Ответ: x_1 = -2, x_2 = 4.

    Задача 6

    Решим уравнение: 9×2–6x+1=0.9x^2 – 6x + 1 = 0.

    Обозначим коэффициенты:
    a=9a = 9,

    b=−6b = -6,

    c=1c = 1

    bb – четное.

    K=12b=−3.K = frac{1}{2} b = -3.

    Далее находим дискриминант по формуле: D1=k2–acD_1 = k^2 – ac

    D1=(−3)2–9∗1=9–9=0D_1 = {(-3)}^2 – 9 * 1 = 9 – 9 = 0

    D1=0D_1 = 0 – значит, уравнение имеет 1 корень.

    Находим корень уравнения по следующей формуле: x=−k/ax = -k / a

    Подставляем численные значения:

    x=3/9=13x = 3 / 9 = frac{1}{3}

    Ответ: x=13.x = frac{1}{3}.

    Нахождение корней уравнения по теореме Виета

    Если в квадратном уравнении a=1a = 1, то можно найти корни уравнения по теореме Виета.

    Задача 7

    Найдем корни уравнения: x2+3x+2=0.x^2 + 3x + 2 = 0.

    Обозначим коэффициенты:
    a=1a = 1,

    b=3b = 3,

    c=2c = 2.

    Запишем 2 условия теоремы Виета:

    x1+x2=−bx_1 + x_2 = -b
    x1∗x2=cx_1 * x_2 = c

    Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа -2 и -1.

    Значит, корни уравнения равны:

    x1=−2x_1 = -2
    x2=−1x_2 = -1

    Ответ: x1=−2x_1 = -2, x2=−1x_2 = -1.

    Задача 8

    Найдем корни уравнения: x2–5x+6=0.x^2 – 5x +6 = 0.

    Обозначим коэффициенты:

    a=1a = 1,

    b=−5b = -5,

    c=6c = 6

    Запишем 2 условия теоремы Виета:

    x1+x2=−bx_1 + x_2 = -b
    x1∗x2=cx_1 * x_2 = c

    Теперь методом подбора найдем 2 числа, которые будут соответствовать этим условиям. Вероятно, это числа 2 и 3.

    Значит, корни уравнения равны:

    x1=2x_1 = 2
    x2=3x_2 = 3

    Ответ: x1=2x_1 = 2, x2=3.x_2 = 3.

    Тест по теме «Примеры решения квадратных уравнений»

    Содержание:

    Квадратные уравнения

    В предыдущих классах вы уже научились составлять и решать уравнения, но лишь простейшие, к которым сводятся относительно несложные задачи. Для решения более сложных задач используют квадратные уравнения. Изучив эту тему, вы сможете решать прикладные задачи из разных отраслей знаний.

    В этой главе вы узнаете, что такое:

    • неполные квадратные уравнения;
    • формула корней квадратного уравнения;
    • теорема Виета;
    • разложение квадратного трёхчлена на множители.

    Неполные квадратные уравнения

    Пример:

    Одно из двух чисел больше другого на 6, а их произведение равно 112. Найдите эти числа.

    Решение:

    Обозначим меньшее искомое число буквой х. Тогда большее число равно х + 6. Их произведение — 112. Следовательно,

    х(х + 6) = 112, или х2 + 6х- 112 = 0.

    Это уравнение второй степени с одной переменной. Такие уравнения называют также квадратными.

    Квадратным называют уравнение вида ах2 + bх + c = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения

    Числа а, b, с — коэффициенты квадратного уравнения: а — первый коэффициент, b — второй, с — свободный член.

    По определению, первый коэффициент квадратного уравнения не может быть равен нулю. Если хотя бы один коэффициент (b или с) равен нулю, то квадратное уравнение называют неполным.

    Неполные квадратные уравнения бывают трёх видов:

    1) ах2 = 0; 2) ах2 + bх = 0; 3) ах2 + с = 0.

    1. Уравнение вида ах2 = О равносильно уравнению х2 = 0, и поэтому всегда имеет только один корень х = О.

    2. Уравнение вида ах2 + bх = 0 равносильно уравнению х(ах + b) = 0 и всегда имеет два корня: х1 = 0, х2 =Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение 2 + 4х = 0.

    Решение:

    Вынесем переменную х за скобки: х(5х + 4) = 0. Следовательно, х = О, или 5х + 4 = 0,отсюда х = -0,8. О т в е т. х1 = 0, х2 = -0,8.

    3. Квадратное уравнение вида ах2 + с = О равносильно уравнению х2 = Квадратные уравнения - определение и вычисление с примерами решения . Если Квадратные уравнения - определение и вычисление с примерами решения > 0 , то оно имеет два решения: если Квадратные уравнения - определение и вычисление с примерами решения<0 — ни одного решения.

    Пример:

    Решите уравнение 2 -3 = 0.

    Решение:

    Преобразуем данное уравнение: 2 = 3, Квадратные уравнения - определение и вычисление с примерами решения, х — число, квадрат которого равен Квадратные уравнения - определение и вычисление с примерами решения, то есть квадратный корень из числа Квадратные уравнения - определение и вычисление с примерами решения . Таких корней два: Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения. Ответ. Квадратные уравнения - определение и вычисление с примерами решения. Если знаки коэффициентов а и с разные, то число Квадратные уравнения - определение и вычисление с примерами решения положительное, и уравнение имеет два корня. Если знаки коэффициентов а и с одинаковы, то число — отрицательное. Следовательно, уравнение ах2 + с = 0 не имеет корней.

    Хотите знать ещё больше?

    Некоторые квадратные уравнения (полные) можно решать приведением их к неполным квадратным уравнениям. Например, по формуле квадрата двучлена, уравнение х2 — 2х + 1 = 0 можно представить в виде (х — 1)2 = 0 и решить так: (х-1)2 равно нулю лишь в том случае, если х — 1 = 0, то есть х = 1.

    Таким способом можно решить любое квадратное уравнение, выразив его левую часть в виде квадрата двучлена.

    Например, Квадратные уравнения - определение и вычисление с примерами решения. Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Решите квадратное уравнение: а) Зх2 — 6х = 0; б) 2у2 -72 = 0.

    Решение:

    а) Зх2 — 6х = 0; Зх(х — 2) = 0; х1 = 0; х-2 = 0; х2 = 2.

    б) 2 -72 = 0; 2(у2 36)-0; у2— 36 — 0; y1 = 6; y2 = -6. Ответ. a) x1 = 0, х2 = 2; б)у1=6, у2 =-6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, Квадратные уравнения - определение и вычисление с примерами решения, отсюда х1 = -20, х2 = 20.

    При этих значениях х знаменатель не равен нулю. Следовательно, х1 = — 20, х2 = 20 — корни уравнения. О т в е т. х1 = — 20, х2 = 20 .

    Формула корней квадратного уравнения

    Решим уравнение х2 + 6х-112=0, которое мы составили по условию задачи.

    Решение:

    Если к выражению х2 + 6х прибавить 9, то получим квадрат двучлена х + 3. Поэтому данное уравнение равносильно уравнению х2 + 6х + 9-9-112=0, или (х + 3)2 = 121. Следовательно, х + 3 = 11, отсюда х = 8; или х + 3 = -11, отсюда х = -14. Ответ. х1 = 8, х2 = -14.

    Такой способ решения квадратного уравнения называют способом выделения квадрата двучлена.

    Решим этим способом уравнение 5х2 — 2х — 3 = 0.

    Чтобы первый его член стал квадратом одночлена с целым коэффициентом, умножим обе части данного уравнения на 5: 25х2 -10х — 15=0, 25х2-2 . 5х + 1 — 1 — 15 = 0, (5х- 1)2 = 16.

    Следовательно, 5х — 1 = 4, отсюда 5х = 5, х = 1; или 5х — 1 = — 4, отсюда 5х = — 3, х = — 0,6. От в е т. х1 = 1, х2 = -0,6.

    Решим таким способом уравнение ах2 + bх + с = 0.

    Умножим обе части уравнения на 4а (помним, что Квадратные уравнения - определение и вычисление с примерами решения):

    2х2 + 4ах.b + 4ас = 0,

    (2ах)2 + 2 . 2ах . b + b2 — b2 + 4ас = 0,

    (2ах + b)2 = b2 — 4ас.

    Выражение b2 — 4ас называют дискриминантом (от латинскогоdiscriminans — различающий) данного квадратного уравнения и обозначают буквой D.

    Если D < 0, то данное уравнение не имеет корней: не существует такого значения х, при котором значение выражения (2ах + b)2 было бы отрицательным.

    Если D = 0, то 2ах + и = 0, отсюда х = Квадратные уравнения - определение и вычисление с примерами решения — единственный корень. Если D > 0, то данное квадратное уравнение равносильно уравнению Квадратные уравнения - определение и вычисление с примерами решения, отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае уравнение имеет два корня, они отличаются только знаками перед Квадратные уравнения - определение и вычисление с примерами решения . Кратко их записывают так: Квадратные уравнения - определение и вычисление с примерами решения , где Квадратные уравнения - определение и вычисление с примерами решения.

    Это формула корней квадратного уравнения ах2 + bх + с = 0. Пользуясь ею, можно решить любое квадратное уравнение.

    Пример:

    Решите уравнение: а) Зх2 — 5х + 2 = 0; б) х2 + 6х + 9 = 0; в) 5х2 — х + 1 = 0.

    Решение:

    a) D = 25 — 24 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    б) D = 36-36 = 0,

    Квадратные уравнения - определение и вычисление с примерами решения;

    в) D =1 — 20 = -19, D < 0. Уравнение корней не имеет.

    Ответ. а)х1 = 1, х2= Квадратные уравнения - определение и вычисление с примерами решения ; б) х = -3: в) уравнение корней не имеет. Формулу корней квадратного уравнения применяют при решении многих уравнений, которые-сводятся к квадратным.

    Пример:

    Решите уравнение: а) 4х4 — 9х2 +5=0; б) (Зх2 — x — 3)(3х2 — х + 5) = 9.

    Решение:

    Такие уравнения удобно решать путём введения вспомогательной переменной.

    a) 4x4 — 9x2 + 5 = 0. Пусть x2 — t, тогда x4 = t2, получим уравнение относительно переменной t: 4x2 — 9x2+ 5 = 0, D = (-9)2 — 4 .4 .5 = 81 — 80 = 1, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения/

    Вернёмся к переменной x: l) x2 = l, xl=-l, x2=l;

    2) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение вида ax4 + bx2 + c=0 называют биквадратным. б) (Зх2 — х — 3)(3х2 — х + 5) = 9. Пусть 2 — х = t, тогда относительно переменной t получим уравнение: (t — 3)(t + 5) = 9, t2 + 2t — 15 = 9, t2 + 2t — 24 = 0, D= 4. 4 (-24) = 4 + 96 — 100, D > 0,

    Квадратные уравнения - определение и вычисление с примерами решения.

    1)3х2-х=-6,Зх2-х + 6-0, D = (-1)2-4. 3. 6=-71, D<0, следовательно, это уравнение корней не имеет. 2 ) Зх2 — х = 4, Зх2 — х — 4 — О, х1 = -1, х2 = Квадратные уравнения - определение и вычисление с примерами решения. Ответ. а) х1 = -1, х2 = 1, х3 = Квадратные уравнения - определение и вычисление с примерами решения, х4 = Квадратные уравнения - определение и вычисление с примерами решения; б) x1 = -1, x2 =Квадратные уравнения - определение и вычисление с примерами решения .

    Хотите знать ещё больше?

    Формулу корней уравнения ах2 + bх + с = 0 можно записать и в таком виде:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если второй коэффициент уравнения — чётное число, то есть уравнение имеет вид ах2 + 2kx + с = 0, то

    Квадратные уравнения - определение и вычисление с примерами решения.

    Если первый коэффициент квадратного уравнения равен 1, то такое уравнение называют приведённым. Приведённое квадрат ное уравнение имеет вид х2 + рх + q = 0, Формула его корней:

    Квадратные уравнения - определение и вычисление с примерами решения.

    Выведите эти формулы из основной формулы корней квадратного уравнения.

    Выполним вместе!

    Пример:

    Приведите уравнение (х — 4)(2х + 1) = Зх(х — 1) к квадратному и найдите его корни.

    Решение:

    (х- 4)(2х 4-1) = Зх(х-1). Раскроем скобки и сведём подобные слагаемые: 2 — 8х + х — 4 = 3х2 — 3х,

    Зх2 — 2х2 — 3х + 8х — х + 4 = 0, х2 +4х +4 = 0.

    Решим полученное уравнение, принимая во внимание, что в его левой части — квадрат двучлена: х2 + 2 . х . 2 + 22 = (х +2)2. Следовательно, (х +2)2 — 0, отсюда х + 2 = 0, х = -2.

    Ответ. х = -2.

    Пример:

    Решите дробное рациональное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Дробь равна нулю, если числитель равен нулю, а знаменатель не равен нулю, х2 — 5х + 6 = 0:

    D=25-4.6=1, Квадратные уравнения - определение и вычисление с примерами решения, х1 =2, х2 =3. Данное уравнение эти значения не удовлетворяют, поскольку при х = 2 знаменатель первой дроби равен 0, а при х = 3 знаменатель второй дроби равен 0. Ответ. Уравнение корней не имеет.

    Теорема Виета

    Квадратное уравнение называют приведённым, если первый его коэффициент равен единице. В таблице — примеры трёх приведённых квадратных уравнений, их корни, а также суммы и произведения корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сравните сумму корней каждого приведённого квадратного уравнения с его вторым коэффициентом, а произведение корней — со свободным членом.

    Теорема Виета: Если приведённое квадратное уравнение имеет два корня, то их сумма равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение — свободному члену.

    Доказательство. Если уравнение х2 + рх + q = 0 имеет корни х1 и х2, то их можно найти по формулам:

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения где D = р2 — 4q — дискриминант уравнения.

    Сложим и перемножим эти корни:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Итак, x1 + х2 =— р, x1 . х2 = q, что и требовалось доказать. Примечание. Если р2 — 4q = 0, то уравнение х2+ рх + q = 0 имеет один корень Квадратные уравнения - определение и вычисление с примерами решения.

    Формулы (*) в этом случае дают Квадратные уравнения - определение и вычисление с примерами решенияи Квадратные уравнения - определение и вычисление с примерами решения Поэтому часто считают, что данное уравнение имеет два равных корня. Теорема Виета верна и для этого случая, поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждое квадратное уравнение вида Квадратные уравнения - определение и вычисление с примерами решения равносильно приведённому квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Если такое уравнение имеет корни х1 и х2,то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема (обратная теореме Виета). Если сумма m и n произведение чисел тип равны соответственно — р и q, то m и n тип — корни уравнения х2 + рх + q =0.

    Доказательство. Пусть m + n =-р и m . n =q. При данных условиях уравнение х2 + рх 4 q = 0 равно сильно уравнению х2 — (m + n)х + m n = 0.

    Подставим в это уравнение вместо переменной х числа m и n:

    m2 — (m +n)m + mn = m2m2nm + mn= 0,

    n2 — (m +n)n+ mn = n2mnn2 +mn = 0.

    Итак, m и n — корни данного уравнения, что и требовалось доказать. Из теоремы Виета следует: если р и q — целые числа, то целые решения уравнения х2 + рх + q= 0 — это делители числа q. Пользуясь обратной теоремой, можно проверить, является та или другая пара чисел корнями приведённого квадратного уравнения. Это даёт возможность устно решать такие уравнения.

    Пример:

    Решите уравнение х2 + 12х + 11 = 0.

    Решение:

    Если уравнение имеет целые корни, то их произведение равно 11. Это могут быть числа 1 и 11 либо — 1 и -11. Второй коэффициент уравнения положительный, поэтому корни отрицательные. Ответ. х1 = -1, х2 = -11.

    Хотите знать ещё?

    Теорема Виета верна не толоко для приведённого квадратного уравнения, но и для уравнений высших степеней Например, если уравнение третьей степени х3+4ах2 +bх + с = 0 имеет корни х1, х2 и х3, то

    x1+x2+x3=-a

    x1x2+x1x3+x2x3=b

    x1x2x3 = — c.

    Если такое уравнение с целыми коэффициентами имеет целые решения, то они являются делителями свободного члена.

    Выполним вместе!

    Пример:

    Найдите сумму и произведение корней уравнения:

    а) х2 + х-6 = 0; б)х2 + 2х + 3 = 0.

    Решение:

    а) D=1 +24 >0. Корни существуют, поэтому x1 + х2 = -1; x1 . х2 = -6;

    б) D= 4-12<0. Корней не существует. Ответ. а)х1 + х2 = -1,х1 -х2 = -6; б) корней не существует.

    Пример:

    При каких значениях m произведение корней уравнения х2 + 8х + m — 7 = 0 равно 3?

    Решение:

    m-7 = 3, m = 10. Ответ. m = 10.

    Пример:

    Не решая уравнение х2 — 4х + 1 = 0, найдите сумму квадратов его корней.

    Решение:

    D = 16 — 4 > 0. Корни существуют. x1 + х2 = 4; х1 .х2 = 1;

    (x1 + x2)2 = 16; x21+2x1x2+x22 =16;

    х12 +2. 1+x22 =16; x21 +x22 =16-2, х2122 =14.

    Ответ. x21+x22=14.

    Квадратный трёхчлен

    Квадратным трёхчленом называют многочлен вида ах2 + bх+ с, где х — не ременная, a, b, c — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения.

    Переменную квадратного трёхчлена можно обозначить любой буквой. Примеры квадратных трёхчленов:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратный трёхчлен приравнять к нулю, то получим квадратное уравнение. Его корни и дискриминант называют соответственно корнями и дискриминантом данного квадратного трёхчлена. Например, дискриминант и корни квадратного трёхчлена 2 — 7х — 6 равны соответственно 169, 2 и Квадратные уравнения - определение и вычисление с примерами решения , поскольку это дискриминант и корни уравне ния 2 — 7х — 6 = 0.

    Из теоремы Виета следует правило разложения квадратных трёхчленов на множители.

    Если m и n — корни уравнения x2+ рх + q = 0, то х2 + рх + q = (х-m)(х — n).

    Поскольку х2 + рх + q = х2 — (m -n)х 4+mn = х2 — mх — nх 4- mn = (y- m )(х — n).

    Пример:

    Разложите на множители трёхчлен: х2+4х- 21.

    Решение:

    а) Корни уравнения х2+4х- 21=0 равны 3 и -7. Поэтому

    х2+ 4х — 21 =(х- 3)(х +7).

    Ответ.(х- 3)(х +7).

    Верна и такая теорема.

    Если корни квадратного трёхчлена ах2 + bх + с равны m и n, то его можно разложить на множители:

    ах2 +bх + с = а(х — m)(х — n).

    Доказательство:

    Квадратные уравнения - определение и вычисление с примерами решения. Следовательно, корни m и n трёхчлена ах2+bx+c также являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения. По теореме Виета,

    Квадратные уравнения - определение и вычисление с примерами решения

    Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Например, если нужно разложить на множители трёхчлен Зх2+5х-2, то решаем уравнение Зх2+5х-2-0. Его дискриминант D = 25+24= 49, поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать и так;

    Зх2+ 5х 2 = (Зх 1 )(х+ 2).

    Разложение квадратных трёхчленов на множители применяется при сокращении дробей, приведении их к общему знаменателю и т. д. Например, чтобы сократить дробь Квадратные уравнения - определение и вычисление с примерами решения сначала следует разложить ее числитель и знаменатель на множители. Поскольку

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Каждый квадратный трёхчлен ах2 + bх + c можно представить в виде а(х-k)2+ р, где k и р некоторые числа. Такое преобразование называют выделением квадрата двучлена. Как выполнить подобное преобразование, покажем на примере. Чтобы выделить из квадратного трёхчлена 2х2 — 12х + 25 квадрат двучлена, сначала вынесем за скобки множитель 2:

    Квадратные уравнения - определение и вычисление с примерами решения Одночлен представим в виде произведения 2 . Зх, прибавим к нему 9 и отнимем 9: Квадратные уравнения - определение и вычисление с примерами решения

    В результате имеем: 2х2 — 12х + 25 = 2 (х — 3)2 + 7.

    Выделение квадрата двучлена даёт возможность решать задачи на нахождение наибольшего или наименьшего значения квадратного трёхчлена. Например, чтобы найти, при каком значении х значение выражения 2х2 -12х + 25 наименьшее, выделим из него квадрат двучлена:

    2— 12x+25 =2(х-3)2 + 7.

    Второе слагаемое полученной суммы — число 7, а первое имеет наименьшее значение, если равно 0, то есть х=3. Следовательно, трёхчлен 2— 12x+25 имеет наименьшее значение 7. если х = 3.

    Хотите знать ещё больше?

    Если квадратный трёхчлен имеет дробные корни, го при разложении его на линейные множители желательно первый коэффициент этого трёхчлена «внести в скобки» Например:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите значение функцииКвадратные уравнения - определение и вычисление с примерами решения при х = 2008.

    Решение:

    Числитель формулы разложим на множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 2008, то у = 2008 — 1 = 2007. О т в е т. у = 2007.

    Решение задач составлением квадратных уравнений

    С помощью квадратных уравнений можно упростить решение многих задач.

    Пример:

    Найдите два числа, произведение и среднее арифметическое которых равны соответственно 108 и 10,5.

    Решение:

    Если среднее арифметическое двух чисел равно 10,5, то их сумма в 2 раза больше, то есть 21. Пусть одно из искомых чисел х, тогда другое равно 21-х.

    Имеем уравнение:

    х(21 — х) = 108, или х2 — 21х + 108 = 0.

    Решим это уравнение: D = 212 — 4. 108 = 9,

    Квадратные уравнения - определение и вычисление с примерами решения

    Если х = 9, то 21 — х = 12; если х = 12, то 21 — х = 9.

    Ответ. 9 и 12.

    Пример:

    Собственная скорость моторной лодки — 18 км/ч. Расстояние 12 км по течению реки она проходит на 9 мин быстрее, чем против течения. Найдите скорость течения реки.

    Решение:

    9 мин = 0,15 ч. Если скорость течения реки равна х км/ч, то скорость лодки по течению составляет (18 + х) км/ч, а против течения — (18 — х) км/ч. Расстояние 12 км по течению она проходит за Квадратные уравнения - определение и вычисление с примерами решенияч, а против течения — за Квадратные уравнения - определение и вычисление с примерами решенияч. Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    отсюда 4(18 + х) — 4(18 — х) — 0,05(18 — х)(18 + х) = 0,

    х2 + 160х — 324 = 0, D = 1602 + 4.324 = 26 896.

    Квадратные уравнения - определение и вычисление с примерами решения

    Задачу удовлетворяет только положительный корень. Ответ. 2 км/ч.

    Пример:

    На плоскости n точек расположены таким образом, что никакие три из них не лежат на одной прямей. Если любую из этих точек соединить отрезком со всеми другими, то получим 351 отрезок. Найдите число n.

    Решение:

    Из одной точки выходит n — 1 отрезков, из всех n данных точек — n(n — 1) отрезков. При этом каждый отрезок повторяется дважды, поскольку имеет два конца. Следовательно, всего отрезков Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение: D = 1 + 4 .702 = 2809, Квадратные уравнения - определение и вычисление с примерами решения отсюда n1= 27, n2 = -26. Отрицательный корень задачу не удовлетворяет.

    Ответ. n = 27

    Хотите знать ещё больше?

    В задачах кроме числовых данных иногда бывают и параметры. В этом случае решение желательно дополнить соответствующими исследованиями — указать, какие значения могут принимать параметры. Например, решим такую задачу.

    Пример:

    Найдите стороны равнобедренного треугольника, если известно, что две его неравные высоты равны а и b.

    Решение:

    Обозначим стороны треугольника буквами: АС = АВ = х, СВ = у (рис. 62).

    Квадратные уравнения - определение и вычисление с примерами решенияРис. 62

    Воспользуемся теоремой Пифагора и формулой для вычисления площади треугольника и составим систему

    Квадратные уравнения - определение и вычисление с примерами решения

    Вычислим из второго уравнения с, подставим его в первое и получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения.

    Следовательно,

    Квадратные уравнения - определение и вычисление с примерами решения

    Исследование. В полученных значениях x и у под знаком корня имеем разность 2 — b2, которая должна быть положительной, что возможно только при b < 2а.

    Следовательно, данное решение задачи верно не при любых положительных а и b, а лишь при b < 2а.

    Далее. Мы рассмотрели случай, когда на основание y и опущена высота а. Но для этих же значений а и b возможен иной вариант (рис. 63). Имеем:

    Квадратные уравнения - определение и вычисление с примерами решенияотсюда Квадратные уравнения - определение и вычисление с примерами решения

    В этом случае а < 2b. Ответ. Если a < 2b < 4а, то задача имеет два решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения, тo задача имеет также одно решение

    Квадратные уравнения - определение и вычисление с примерами решения

    Выполним вместе!

    Пример:

    Найдите три последовательных целых числа, сумма квадратов которых равна 509.

    Решение:

    Пусть искомые числа: х -1, х, х + 1. Тогда имеем уравнение: (х — 1)2 + х2 + (х + 1)2 =509. Решим его.

    Раскроем скобки и сведём подобные слагаемые: х2 -2х + 1+ х2+ х2+2х+1- 509=0,.

    2-507=0, отсюда х2 =169, х1= 13, х2=- 13

    = 0, отсюда х2 — 169, х, 13, х . = 13. Следовательно, два других числа: 12, 14 или -12, 14. Ответ. 12, 13, 14 или 12. -13, II.

    Следовательно, два других числа: 12,14 или -12, -14.

    Ответ. 12,13,14 или -12, 13, 14.

    ИСТОРИЧЕСКИЕ СВЕДЕНИЯ

    Квадратные уравнения простейших видов вавилонские математики умели решать ещё 4 тыс. лет тому назад. Со временем их решали также в Китае и Греции. Особое внимание квадратным уравнениям уделил Мухаммед аль-Хо-резми (IX в.). Он показал, как решать (при положительных а и b) уравнения видов х2 + ах = b, х2 + а = bх, ах + b = х2, не используя каких-либо выражений, даже числа записывал словами. Например, уравнение х2 + 21 = 10х учил решать так: «Раздели пополам корни, получится пять, и умножь это на равное ему — будет двадцать пять, и отними от этого двадцать один, то останется четыре, добудь из этого корень, будет два, и отними это от половины корней, то есть от пяти, — останется три; это и будет корень, который ты ищешь». Отрицательных корней тогда не вычисляли. Индийские учёные в решении этого вопроса пошли дальше. Они находили также отрицательные корни квадратных уравнений. Например, Бхаскара (1114 -1178), решая уравнение х2 — 45х = 250, находит два корня: 50 и 5. И только после этого делает замечание: «Второе значение в данном случае не следует брать, люди ведь не воспринимают отрицательных абстрактных чисел». Алгебраические задачи на составление уравнений индийские учёные записывали в стихотворной форме и рассматривали их как особый вид искусства. Они объясняли: «Как солнце затмевает звёзды своим светом, так и человек учёный способен затмить славу других на народных собраниях, предлагая алгебраические задачи и, тем более, решая их». Формулы корней квадратного уравнения вывел Франсуа Виет (1540—1603). Теорему, впоследствии названную его именем, учёный сформулировал так: «Если (В + В) А -А2 равно BD, то А равно В и равно В». Отрицательных корней он не рассматривал. Современные способы решения квадратных уравнений появились благодаря научным трудам Рене Декарта (1596— 1650) и Исаака Ньютона (1643—1727).

    ОСНОВНОЕ В ГЛАВЕ

    Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами. Числа, удовлетворяющие уравнению, — его решения (или корни). Решить уравнение означает найти все его решения либо показать, что их не существует. Два уравнения называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считают равносильными друг другу. Квадратным называют уравнения вида ах2 + bх + с = 0, где х — переменная, а, b, с — данные числа, причём Квадратные уравнения - определение и вычисление с примерами решения. Выражение D = b2 — 4ас — его дискриминант. Если Квадратные уравнения - определение и вычисление с примерами решения, то данное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Если D — 0, то эти корни равны. Если D < 0, то такое квадратное уравнение не имеет действительных корней. Если необходимо, например, решить квадратное уравнение 2 + 9х — 5 = 0, то находим его дискриминант: D = 92 — 4.2 .(-5) =121. Поэтому корни уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения Квадратное уравнение называют неполным, если хотя бы один его коэффициент, кроме первого, равен нулю. Уравнение: ах2 = 0 имеет единственный корень: х = 0;

    ax2 = 0 имеет единственный корень: х = 0; ах2 +bх = 0 имеет два корня: х1 = 0, х2=Квадратные уравнения - определение и вычисление с примерами решения; ах2 + с = 0 имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения , если с : а < 0, и ни одного, если с • а > 0.

    Квадратное уравнение называют приведенным, если его первый коэффициент равен единице. Если уравнение х2 + рх + q = 0 имеет два корня, то

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета Если приведённое квадратное уравнение х2 +рх + q = 0 имеет два корня, то их сумма равна р, а произведение — q.

    Квадратные уравнения

    • Изучив материал этого параграфа, вы научитесь решать уравнения вида Квадратные уравнения - определение и вычисление с примерами решения
    • Ознакомитесь с теоремой Виета для квадратного уравнения.
    • Овладеете приемами решения уравнений, сводящихся к квадратным.

    Вы умеете решать линейные уравнения, то есть уравнения вида Квадратные уравнения - определение и вычисление с примерами решения, где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа.

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Например, каждое из линейных уравнений Квадратные уравнения - определение и вычисление с примерами решения

    является уравнением первой степени. А вот линейные уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются уравнениями первой степени.

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения.

    То, что множество уравнений первой степени является подмножеством множества линейных уравнений, иллюстрирует схема на рисунке 34.

    Вы также умеете решать некоторые уравнения, содержащие переменную во второй степени. Например, готовясь к изучению новой темы, вы решили уравнения Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (упражнение 589). Каждое из этих уравнений имеет вид Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения. Число Квадратные уравнения - определение и вычисление с примерами решения называют первым или старшим коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    Например, квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет следующие коэффициенты: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Например, Квадратные уравнения - определение и вычисление с примерами решения — это приведенные квадратные уравнения.

    Поскольку в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения старший коэффициент не равен нулю, то неприведенное квадратное уравнение всегда можно преобразовать в приведенное, равносильное данному. Разделив обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения получим приведенное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Существует три вида неполных квадратных уравнений.

    1. При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    2. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения
    3. При Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Решим неполные квадратные уравнения каждого вида.

    1. Поскольку Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень Квадратные уравнения - определение и вычисление с примерами решения
    2. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Это уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения один из которых равен нулю, а другой является корнем уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения
    3. Уравнение Квадратные уравнения - определение и вычисление с примерами решения представим в виде Квадратные уравнения - определение и вычисление с примерами решения Поскольку Квадратные уравнения - определение и вычисление с примерами решения то возможны два случая: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что в первом случае уравнение корней не имеет. Во втором случае уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения

    Обобщим полученные результаты:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    или Квадратные уравнения - определение и вычисление с примерами решения Но корень Квадратные уравнения - определение и вычисление с примерами решения не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения имеем: Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения Последнее уравнение не имеет корней.

    Ответ: 2.

    Формула корней квадратного уравнения

    Зная коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения первой степени Квадратные уравнения - определение и вычисление с примерами решения можно найти его корень по формуле Квадратные уравнения - определение и вычисление с примерами решения

    Выведем формулу, позволяющую по коэффициентам Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения находить его корни.

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения (1)

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то, умножив обе части этого уравнения на 4а, получим уравнение, равносильное данному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выделим в левой части этого уравнения квадрат двучлена: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения (2)

    Существование корней уравнения (2) и их количество зависят от знака значения выражения Квадратные уравнения - определение и вычисление с примерами решения Это значение называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения и обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Термин «дискриминант» происходит от латинского слова discriminare, что означает «различать», «разделять».

    Теперь уравнение (2) можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения (3)

    Возможны три случая: Квадратные уравнения - определение и вычисление с примерами решения

    1. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3), а следовательно, и уравнение (1) корней не имеет. Действительно, при любом значении Квадратные уравнения - определение и вычисление с примерами решения выражение Квадратные уравнения - определение и вычисление с примерами решения принимает только неотрицательные значения.

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    2. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) принимает вид

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    3. Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение (3) можно записать в виде

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Вывод: если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Применяют также краткую форму записи:

    Квадратные уравнения - определение и вычисление с примерами решения

    Эту запись называют формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Полученную формулу можно применять и в случае, когда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    При решении квадратных уравнений удобно руководствоваться следующим алгоритмом:

    Если второй коэффициент квадратного уравнения представить в виде Квадратные уравнения - определение и вычисление с примерами решения то можно пользоваться другой формулой, которая во многих случаях облегчает вычисления.

    Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Найдем его дискриминант: Квадратные уравнения - определение и вычисление с примерами решения Обозначим выражение Квадратные уравнения - определение и вычисление с примерами решения через Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то по формуле корней квадратного уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    то есть

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Для данного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    2) Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение имеет один корень:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что данное уравнение можно решить другим способом. Умножив обе части уравнения на —2, получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 2.

    3) Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать одним из двух способов: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    4) Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение не имеет корней.

    Ответ: корней нет.

    5) Представим данное уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения и применим формулу корней для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет

    корни —8 и 2, однако корень —8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения которое имеет корни —2 и 8, однако корень 8 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —2; 2.

    2) Поскольку Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения то искомые корни должны удовлетворять двум условиям одновременно: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения В таком случае говорят, что данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет корни —2 и 12, но корень —2 не удовлетворяет условию Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 12.

    3) Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения имеет единственный корень уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю. Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    2) При Квадратные уравнения - определение и вычисление с примерами решения получаем линейное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеющее один корень.

    При Квадратные уравнения - определение и вычисление с примерами решения данное уравнение является квадратным. Оно имеет единственный корень, если его дискриминант равен нулю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения отсюда Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Несколько поколений учителей математики приобретали педагогический опыт, а их учащиеся углубляли свои знания, пользуясь чудесной книгой «Квадратные уравнения» блестящего украинского педагога и математика Николая Андреевича Чайковского. Н. А. Чайковский оставил значительное научное и педагогическое наследие. Его труды известны далеко за пределами Украины.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Готовясь к изучению этого пункта, вы выполнили упражнения 677, 678. Возможно, эти упражнения подсказали вам, каким образом сумма и произведение корней квадратного уравнения связаны с его коэффициентами.

    Теорема: (теорема Виета). Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Условием теоремы предусмотрено, что данное квадратное уравнение имеет корни. Поэтому его дискриминант Квадратные уравнения - определение и вычисление с примерами решения не может быть отрицательным.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Применив формулу корней квадратного уравнения, запишем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения В этом случае считают, что Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Иными словами, сумма корней приведенного квадратного уривнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

    Теорема: (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Рассмотрим квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Преобразуем его в приведенное:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Французский математик, по профессии юрист. В 1591 г. ввел буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений, благодаря чему стало возможным выражать свойства уравнений и их корни общими формулами. Среди своих открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

    Согласно условию теоремы это уравнение можно записать так: Квадратные уравнения - определение и вычисление с примерами решения (*)

    Подставим в левую часть этого уравнения вместо Квадратные уравнения - определение и вычисление с примерами решения сначала число Квадратные уравнения - определение и вычисление с примерами решения а затем число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения (*), а следовательно, и корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Следствие. Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Это следствие позволяет решать некоторые квадратные уравнения устно, не используя формулу корней квадратного уравнения.

    Пример:

    Найдите сумму и произведение корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выясним, имеет ли данное уравнение корни. Имеем: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Найдите коэффициенты Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения уравнения Квадратные уравнения - определение и вычисление с примерами решения если его корнями являются числа —7 и 4.

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение с целыми коэффициентами, корни которого равны: 1) 4 и Квадратные уравнения - определение и вычисление с примерами решения; 2) Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения.

    Решение:

    1) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета, числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Умножив обе части этого уравнения на 7, получаем квадратное уравнение с целыми коэффициентами:

    Квадратные уравнения - определение и вычисление с примерами решения

    2) Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Известно, что Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Число 4 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения Найдите второй корень уравнения и значение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, причем Квадратные уравнения - определение и вычисление с примерами решения По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Составьте квадратное уравнение, корни которого на 4 больше соответствующих корней уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни искомого уравнения.

    По условию Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, по теореме, обратной теореме Виета, искомым является уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Определение: Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решениягде Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Приведем примеры многочленов, являющихся квадратными трехчленами:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что левая часть квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом.

    Определение: Корнем квадратного трехчлена называют значение переменной, при котором значение квадратного трехчлена равно нулю.

    Например, число 2 является корнем квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения надо решить соответствующее квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Значение выражения Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен корней не имеет. Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень, если Квадратные уравнения - определение и вычисление с примерами решения — то два корня.

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Разложим его на множители методом группировки (подобное упражнение, 724, вы выполняли при подготовке к изучению этого пункта).

    Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    О таком тождественном преобразовании говорят, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения разложили на линейные множители Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения

    Связь между корнями квадратного трехчлена и линейными множителями, на которые он раскладывается, устанавливает следующая теорема.

    Теорема: Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители:

    Квадратные уравнения - определение и вычисление с примерами решения

    где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Доказательство: Поскольку числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то по теореме Виета

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда

    Квадратные уравнения - определение и вычисление с примерами решения

    Замечание. Если дискриминант квадратного трехчлена равен нулю, то считают, что квадратный трехчлен имеет два равных корня, то есть Квадратные уравнения - определение и вычисление с примерами решения В этом случае разложение квадратного трехчлена на линейные множители имеет следующий вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема:. Если дискриминант квадратного трехчлена отрицательный, то данный трехчлен нельзя разложить на линейные множители.

    Доказательство: Предположим, что квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения можно разложить на линейные множители. Тогда существуют такие числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения при которых выполняется равенство Квадратные уравнения - определение и вычисление с примерами решения Отсюда получаем, что тип — корни данного квадратного трехчлена. Следовательно, его дискриминант неотрицательный, что противоречит условию.

    Пример:

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Найдем корни данного трехчлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    2) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения

    3) Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Разложим на множители квадратный трехчлен, являющийся числителем данной дроби. Решив уравнение Квадратные уравнения - определение и вычисление с примерами решения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теперь можно записать:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда получаем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    При каком значении Квадратные уравнения - определение и вычисление с примерами решения разложение на множители трехчленаКвадратные уравнения - определение и вычисление с примерами решения содержит множитель Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Поскольку разложение данного трехчлена на множители должно содержать множитель Квадратные уравнения - определение и вычисление с примерами решения то один из корней этого трехчлена равен —5. Тогда имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, приводимых к квадратным уравнениям

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение.

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Подставив в исходное уравнение вместо Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения соответственно Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения, получим квадратное уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решая это уравнение, находим: Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то решение исходного уравнения сводится к решению двух уравнений:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ можно записать двумя способами: Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Определение: Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    Заменой Квадратные уравнения - определение и вычисление с примерами решения биквадратное уравнение сводится к квадратному уравнению Квадратные уравнения - определение и вычисление с примерами решения Такой способ решения уравнений называют методом замены переменной.

    Метод замены переменной можно использовать не только при решении биквадратных уравнений.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Выполним замену Квадратные уравнения - определение и вычисление с примерами решения Тогда исходное уравнение сводится к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь надо решить следующие два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения Первое из них корней не имеет. Из второго уравнения получаем:

    Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 0; 1.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем: Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Поскольку Квадратные уравнения - определение и вычисление с примерами решения то эти уравнения корней не имеют, а следовательно, и исходное уравнение корней не имеет.

    Ответ: корней нет.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Данное уравнение равносильно системе Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: —3.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, данное уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: 7.

    Решение уравнений методом замены переменной

    В п. 22 вы ознакомились с решением уравнений методом замены переменной. Рассмотрим еще несколько примеров, иллюстрирующих эффективность этого метода.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения Это уравнение равносильно системе

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Теперь решение исходного уравнения сводится к решению двух уравнений

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: —3; —1; 2; 6.

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Преобразуем это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решив эти два квадратных уравнения, получаем ответ.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки легко убедиться, что число 0 не является корнем данного уравнения. Тогда, разделив обе части данного уравнения на Квадратные уравнения - определение и вычисление с примерами решенияперейдем к равносильному уравнению:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Произведем замену: Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    С учетом замены получаем два уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Такая замена позволяет переписать исходное уравнение следующим образом:

    Квадратные уравнения - определение и вычисление с примерами решения

    Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Решите эти уравнения самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    С помощью проверки можно убедиться, что число 0 не является корнем данного уравнения. Следовательно, можно разделить обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение, равносильное исходному:

    Квадратные уравнения - определение и вычисление с примерами решения

    Замена Квадратные уравнения - определение и вычисление с примерами решения приводит к квадратному уравнению

    Квадратные уравнения - определение и вычисление с примерами решения

    Завершите решение самостоятельно.

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Может возникнуть вопрос: почему при решении примеров 1—5 мы не пытались упростить уравнения с помощью тождественных преобразований?

    Дело в том, что после тождественных преобразований нам пришлось бы решать уравнение вида Квадратные уравнения - определение и вычисление с примерами решения (вы можете убедиться в этом самостоятельно). При Квадратные уравнения - определение и вычисление с примерами решения такое уравнение называют уравнением четвертой степени, при Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияуравнением третьей степени. Частным случаем этого уравнения, когда Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения является биквадратное уравнение. Его вы решать умеете.

    В общем случае для решения уравнений третьей и четвертой степеней необходимо знать формулы нахождения их корней. С историей открытия этих формул вы можете ознакомиться в следующем рассказе.

    Секретное оружие Сципиона дель Ферро

    Вы легко решите каждое из следующих уравнений третьей степени:

    Квадратные уравнения - определение и вычисление с примерами решения

    Все они являются частными случаями уравнения вида Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения Вывести формулу его корней — задача сложная. Недаром появление этой формулы считают выдающимся математическим открытием XVI века.

    Первым изобрел способ решения уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — положительные числа, итальянский математик Сципион дель Ферро (1465-1526). Найденную формулу он хранил в секрете. Это было обусловлено тем, что карьера ученого того времени во многом зависела от его выступлений в публичных математических турнирах. Поэтому было выгодно хранить открытия в тайне, рассчитывая использовать их в математических соревнованиях как секретное оружие.

    После смерти дель Ферро его ученик Фиоре, владея секретной формулой, вызвал на математический поединок талантливого математика-самоучку Никколо Тарталья. За несколько дней до турнира Тарталья сам вывел формулу корней уравнения третьей степени. Диспут, на котором Тарталья одержал убедительную победу, состоялся 20 февраля 1535 года.

    Впервые секретная формула была опубликована в книге известного итальянского ученого Джероламо Кардан о «Великое искусство». В этой работе также описан метод решения уравнения четвертой степени, открытый Людовико Феррари (1522—1565).

    В XVTI-XVIII вв. усилия многих ведущих математиков были сосредоточены на поиске формулы для решения уравнений пятой степени. Получению результата способствовали работы итальянского математика Паоло Руффини (1765-1822) и норвежского математика Нильса Хенрика Абеля. Сам результат оказался абсолютно неожиданным: было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения пятой и более высоких степеней через коэффициенты уравнения, используя лишь четыре арифметических действия и действие извлечения корня.

    Квадратные уравнения - определение и вычисление с примерами решения

    Рациональные уравнения как математические модели реальных ситуаций

    В п. 7 вы уже ознакомились с задачами, в которых рациональные уравнения служили математическими моделями реальных ситуаций. Теперь, когда вы научились решать квадратные уравнения, можно существенно расширить круг рассматриваемых задач.

    Пример:

    Из пункта Квадратные уравнения - определение и вычисление с примерами решения выехал велосипедист, а через 45 мин после этого в том же направлении выехал грузовик, догнавший велосипедиста на расстоянии 15 км от пункта Квадратные уравнения - определение и вычисление с примерами решения. Найдите скорость велосипедиста и скорость грузовика, если скорость грузовика на 18 км/ч больше скорости велосипедиста.

    Решение:

    Пусть скорость велосипедиста равна Квадратные уравнения - определение и вычисление с примерами решения км/ч, тогда скорость грузовика составляет Квадратные уравнения - определение и вычисление с примерами решения км/ч. Велосипедист проезжает 15 км за Квадратные уравнения - определение и вычисление с примерами решения ч, а грузовик — за Квадратные уравнения - определение и вычисление с примерами решения ч. Разность Квадратные уравнения - определение и вычисление с примерами решения показывает, на сколько часов грузовик проезжает 15 км быстрее, чем велосипедист. Поскольку грузовик проехал 15 км на 45 мин,

    то есть на Квадратные уравнения - определение и вычисление с примерами решения ч, быстрее, чем велосипедист, то получаем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решим это уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решив квадратное уравнение системы, получим Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения

    Корень —30 не удовлетворяет условию задачи. Следовательно, скорость велосипедиста равна 12 км/ч, а скорость грузовика составляет: 12 + 18 = 30 (км/ч).

    Ответ: 12 км/ч, 30 км/ч.

    Пример:

    Одна бригада работала на ремонте дороги 7 ч, после чего к ней присоединилась вторая бригада. Через 2 ч их совместной работы ремонт был завершен. За сколько часов может отремонтировать дорогу каждая бригада, работая самостоятельно, если первой для этого требуется на 4 ч больше, чем второй?

    Решение:

    Пусть первая бригада может самостоятельно отремонтировать дорогу за Квадратные уравнения - определение и вычисление с примерами решения ч, тогда второй для этого нужно Квадратные уравнения - определение и вычисление с примерами решения ч. За 1 ч первая бригада ремонтирует Квадратные уравнения - определение и вычисление с примерами решения часть дороги, а вторая Квадратные уравнения - определение и вычисление с примерами решения часть дороги. Первая бригада работала 9 ч и отремонтировала Квадратные уравнения - определение и вычисление с примерами решения дороги, а вторая бригада работала 2 ч и отремонтировала соответственно Квадратные уравнения - определение и вычисление с примерами решения дороги. Поскольку в результате была отремонтирована вся дорога, то можно составить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно). Второй корень не удовлетворяет условию задачи, поскольку тогда вторая бригада могла бы отремонтировать дорогу за 3 — 4 = —1 (ч), что не имеет смысла.

    Следовательно, первая бригада может отремонтировать дорогу за 12 ч, а вторая — за 8 ч.

    Ответ: 12 ч, 8 ч.

    Пример:

    Водный раствор соли содержал 120 г воды. После того как в раствор добавили 10 г соли, его концентрация увеличилась на 5 %. Сколько граммов соли содержал раствор первоначально?

    Решение:

    Пусть исходный раствор содержал Квадратные уравнения - определение и вычисление с примерами решения г соли. Тогда его масса была равна Квадратные уравнения - определение и вычисление с примерами решения г, а концентрация соли составляла Квадратные уравнения - определение и вычисление с примерами решения

    После того как к раствору добавили 10 г соли, ее масса Квадратные уравнения - определение и вычисление с примерами решения

    в растворе составила Квадратные уравнения - определение и вычисление с примерами решения г, а масса раствора Квадратные уравнения - определение и вычисление с примерами решения г. Теперь концентрация соли составляет Квадратные уравнения - определение и вычисление с примерами решения что на 5 %, то есть на Квадратные уравнения - определение и вычисление с примерами решения больше, чем Квадратные уравнения - определение и вычисление с примерами решения Отсюда можно записать: Квадратные уравнения - определение и вычисление с примерами решения

    Полученное уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения (убедитесь в этом самостоятельно), из которых второй корень не удовлетворяет условию задачи.

    Следовательно, раствор содержал первоначально 30 г соли.

    Ответ: 30 г.

    ГЛАВНОЕ В ПАРАГРАФЕ 3

    Уравнение первой степени

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют уравнением первой степени.

    Квадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным уравнением.

    Приведенное квадратное уравнение

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

    Неполное квадратное уравнение

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Решение неполного квадратного уравнения

    Квадратные уравнения - определение и вычисление с примерами решения

    Дискриминант квадратного уравнения

    Для уравнения вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения его дискриминант Квадратные уравнения - определение и вычисление с примерами решения — это значение выражения Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение корней не имеет.

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет один корень Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратное уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    то Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения иКвадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен

    Многочлен вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения— некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют квадратным трехчленом.

    Разложение квадратного трехчлена на множители

    Если дискриминант квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения положительный, то данный трехчлен можно разложить на линейные множители: Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного трехчлена.

    Биквадратное уравнение

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения — переменная, Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением.

    ——

    Квадратные уравнения

    В этом разделе вы научитесь:

    • решать квадратные уравнения различными способами;
    • применять квадратные уравнения для решения задач;
    • по каким формулам находят площади треугольников и четырёхугольников;
    • применять формулы площадей при решении задач;
    • находить площадь сложных фигур, разделяя их на простые геометрические фигуры.

    Квадратные уравнения широко применяются в строительстве, финансах и дизайне.

    На практике также, широко применяются формулы для вычисления площадей.

    Это интересно!

    Великий учёный Востока аль — Хорезми в своём труде «Китаб мухтасаб ал-джабр и ва-л-мукабала», что в переводе означает «Книга о восполнении и противопоставлении» показал различные способы решения квадратных уравнений. Одним из них является метод подбора. Хорезми выбирал число и подставлял его в уравнение вместо неизвестного. После чего, становилось понятно, является ли данное число корнем уравнения.

    Например,

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения называется квадратным уравнением. Здесь Квадратные уравнения - определение и вычисление с примерами решения — постоянные, Квадратные уравнения - определение и вычисление с примерами решения — неизвестная. Квадратные уравнения - определение и вычисление с примерами решения — первый коэффициент, Квадратные уравнения - определение и вычисление с примерами решения — второй коэффициент, Квадратные уравнения - определение и вычисление с примерами решения — свободный член.

    Например, в уравнении Квадратные уравнения - определение и вычисление с примерами решения

    Если квадратное уравнение с обеих сторон разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим уравнение Квадратные уравнения - определение и вычисление с примерами решения Здесь, обозначив Квадратные уравнения - определение и вычисление с примерами решения можно записать

    Квадратные уравнения - определение и вычисление с примерами решения Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения называется приведённым квадратным уравнением. Например, разделив уравнение Квадратные уравнения - определение и вычисление с примерами решения на 2, получим равносильное ему приведённое квадратное уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решенияили Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называется неполным квадратным уравнением.

    Уравнения, Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения являются неполными квадратными уравнениями.

    1) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Разделив обе части уравнения на число Квадратные уравнения - определение и вычисление с примерами решенияполучим уравнение Квадратные уравнения - определение и вычисление с примерами решения Его корнями является Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Разделим обе части уравнения Квадратные уравнения - определение и вычисление с примерами решения

    2) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения Для решения таких уравнений применяют вынесение общего множителя за скобку: Квадратные уравнения - определение и вычисление с примерами решенияПроизведение равно нулю, если хотя бы один из множителей равен нулю, т.е. Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения Отсюда следует, что уравнение Квадратные уравнения - определение и вычисление с примерами решенияимеет два корня, один из которых всегда равен Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнении Квадратные уравнения - определение и вычисление с примерами решения надо левую часть уравнения разложить на множители: Квадратные уравнения - определение и вычисление с примерами решения

    3) Решение уравнений вида Квадратные уравнения - определение и вычисление с примерами решения

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения имеют одинаковые знаки, то действительных корней нет (почему?). Если Квадратные уравнения - определение и вычисление с примерами решения имеют разные знаки, то уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения методом разложения на множители

    Решение уравнения Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители надо найти два числа тип (если это возможно), чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения. Если Квадратные уравнения - определение и вычисление с примерами решения являются целыми числами, то Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — также целые числа. В этом случае, если Квадратные уравнения - определение и вычисление с примерами решения то заданной уравнение можно записать в виде : Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решенияположительные числа, то надо найти два положительных числа, чтобы их произведение было равно 8, а сумма — равна 6. Это числа 2 и 4. Зная, что Квадратные уравнения - определение и вычисление с примерами решения то уравнение можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияОтсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Квадратные уравнения - определение и вычисление с примерами решения Так как в уравнении Квадратные уравнения - определение и вычисление с примерами решения отрицательное число, а Квадратные уравнения - определение и вычисление с примерами решения положительное, то надо найти два отрицательных числа, чтобы их произведение было равно 18, а сумма была равна -9. Зная, что Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решениято уравнение можно записать так Квадратные уравнения - определение и вычисление с примерами решения Отсюда находим Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 4. Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнения вида Квадратные уравнения - определение и вычисление с примерами решения методом разложения на множители

    Для разложения левой части уравнения Квадратные уравнения - определение и вычисление с примерами решения на множители, надо найти два числа, чтобы их произведение было равно Квадратные уравнения - определение и вычисление с примерами решения а сумма Квадратные уравнения - определение и вычисление с примерами решения Тогда за-данное уравнение можно решить записав его в виде Квадратные уравнения - определение и вычисление с примерами решения

    Пример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения

    Числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения такие , что Квадратные уравнения - определение и вычисление с примерами решения

    Тогда Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения В нём Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения а значит оба числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения отрицательные. Найдём два целых отрицательных, числа, произведение которых равно 40, а сумма равна -13. Это числа -5 и -8.

    Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример 3. В трёхчлене Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Составим список целых отрицательных множителей числа 16. Как видно целых чисел, которые удовлетворяют условию Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения не существует. Это говорит о том, что данный трёхчлен невозможно разложить на множители.

    Квадратные уравнения - определение и вычисление с примерами решения

    Метод выделения полного квадрата

    Для выделения полного квадрата из двухчленах Квадратные уравнения - определение и вычисление с примерами решения его надо дополнить членом Квадратные уравнения - определение и вычисление с примерами решения

    Это правило одинаково как для положительных, так и для отрицательных Квадратные уравнения - определение и вычисление с примерами решенияПример 1. Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения С обеих сторон дополним данное уравнение Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Пример 2. Для решения уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата, сначала запишем его в виде Квадратные уравнения - определение и вычисление с примерами решения Для того, чтобы выражение слева соответствовало модели площади квадрата, не хватает всего одной единичной алгебраической карты. Значит, с каждой стороны следует добавить 1. Тогда выражение слева можно представить в виде квадрата двухчлена так

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение квадратного уравнения графическим методом

    Графический метод

    Запишем уравнение Квадратные уравнения - определение и вычисление с примерами решения в виде Квадратные уравнения - определение и вычисление с примерами решения Тогда решением уравнения будут абсциссы точек пересечения параболы Квадратные уравнения - определение и вычисление с примерами решения и прямой Квадратные уравнения - определение и вычисление с примерами решения При этом прямая может пересекаться с параболой (тогда уравнение имеет два различных корня), может касаться параболы (в этом случае уравнение удовлетворяется при единственном значении неизвестного) или может вообще не иметь общих точек с параболой (тогда уравнение не имеет действительных-корней).

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики пересекаются в двух точках. Абсциссы точек пересечения равны — 3 и 1. При проверке убеждаемся, что обе точки являются корнями уравнения.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Для построения прямой Квадратные уравнения - определение и вычисление с примерами решения составим таблицу

    Квадратные уравнения - определение и вычисление с примерами решения

    Абсцисса точки касания прямой и параболы равна 1. Уравнение удовлетворяется при единственном значении неизвестного: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Графики не имеют точек пересечения. Это говорит о том, что данное уравнение не имеет действительных корней.

    Обе части квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения можно преобразовать в приведённое квадратное уравнение, разделив его на Квадратные уравнения - определение и вычисление с примерами решения которое затем удобно решить по способу, представленному выше. Обычно графическим способом находятся приближенные значения корней.

    Калькулятор для построения графиков

    Используя онлайн калькуляторы для построения графиков можно построить различные графики. На рисунке представлены графики функций Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения построенные при помощи графического калькулятора www.meta-calculator.com/online.

    Квадратные уравнения - определение и вычисление с примерами решения

    Решить квадратное уравнение также можно при помощи графического калькулятора, построив в одной системе координат параболу и прямую

    На рисунке корни уравнение Квадратные уравнения - определение и вычисление с примерами решения записанного в виде Квадратные уравнения - определение и вычисление с примерами решениянайдены графически при помощи графического калькулятора www.my.hrw.com/malh06_07/nsmedia/tools/Graph_Calcula-tor/graphCa lc.html

    Квадратные уравнения - определение и вычисление с примерами решения

    Формула для нахождения корней квадратного уравнения

    Мы уже научились находить корни квадратного уравнения методом разложения на множители и методом выделения полного квадрата. Для нахождения корней любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом выделения полного квадрата можно записать обобщённую формулу.

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    При Квадратные уравнения - определение и вычисление с примерами решения эта формула является формулой корней квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Если в формуле для нахождения корней квадратного уравнения принять Квадратные уравнения - определение и вычисление с примерами решения то ее можно записать как Квадратные уравнения - определение и вычисление с примерами решения

    Наличие корней квадратного уравнения зависит от знака Квадратные уравнения - определение и вычисление с примерами решения называется дискриминантом (определителем) квадратного уравнения.

    1) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение не имеет действительных корней.

    2) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два равных корня. Квадратные уравнения - определение и вычисление с примерами решения

    3) Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два различных корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а это значит, что уравнение имеет два различных действительных корня. Квадратные уравнения - определение и вычисление с примерами решения

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения дискриминант находится по формуле для приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения При Квадратные уравнения - определение и вычисление с примерами решения для корней приведённого квадратного уравнения, верны следующие формулы Квадратные уравнения - определение и вычисление с примерами решения

    Если второй коэффициент квадратного уравнения является четным числом (т.е. Квадратные уравнения - определение и вычисление с примерами решения), то уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде Квадратные уравнения - определение и вычисление с примерами решенияТогда Квадратные уравнения - определение и вычисление с примерами решения Обозначим Квадратные уравнения - определение и вычисление с примерами решениятогда Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета

    Решим приведённое квадратное уравнение: Квадратные уравнения - определение и вычисление с примерами решения По формуле нахождения корней приведённого квадратного уравнения имеем Квадратные уравнения - определение и вычисление с примерами решения т.е. Квадратные уравнения - определение и вычисление с примерами решения

    Внимание! Если сложить найденные корни, то получим число противоположное коэффициенту при Квадратные уравнения - определение и вычисление с примерами решения На самом деле, из уравнения Квадратные уравнения - определение и вычисление с примерами решения с другой стороны Квадратные уравнения - определение и вычисление с примерами решения Если умножить полученные корни, получим число равное свободному члену уравнения: 3 • 4 = 12. Это свойство верно для любого приведённого квадратного уравнения.

    Теорема: В приведённом квадратном уравнении сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение, равно свободному члену Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Известно, что Квадратные уравнения - определение и вычисление с примерами решения корни приведённого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения Отсюда получим: Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, для уравнения Квадратные уравнения - определение и вычисление с примерами решения Если обе части любого квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения разделить на Квадратные уравнения - определение и вычисление с примерами решения, то получим равносильное приведённое квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения Тогда к нему можно будет применить теорему Виета. Сумма корней Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения Теорема Виета остаётся в силе, если Квадратные уравнения - определение и вычисление с примерами решения (когда квадратное уравнение имеет два равных корня).

    Найдём корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения методом подбора. По теореме Виета Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом корнями уравнения являются числа 4 и 5.

    Квадратные уравнения - определение и вычисление с примерами решения

    Теорема, обратная теореме Виета

    Обратная теорема. Если сумма чисел Квадратные уравнения - определение и вычисление с примерами решения равна Квадратные уравнения - определение и вычисление с примерами решения а произведение равно Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Эту теорему можно записать так: любые числа Квадратные уравнения - определение и вычисление с примерами решения являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство. На самом деле, если принять, что Квадратные уравнения - определение и вычисление с примерами решения то получим: Квадратные уравнения - определение и вычисление с примерами решения т.е. число Квадратные уравнения - определение и вычисление с примерами решения действительно удовлетворяет уравнению. Таким же образом можно показать, что число Квадратные уравнения - определение и вычисление с примерами решениятакже является корнем уравнения.

    Пример:

    Составим квадратное уравнение, если известно, что числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения являются его корнями. Так как Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения то уравнение будет выглядеть как Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач при помощи квадратных уравнений

    Задача. Один из катетов прямоугольного треугольника на 2 см больше другого и на 2 см меньше гипотенузы. Найдите периметр треугольника.

    1 этап — составление уравнения

    Обозначим длину одного из катетов через Квадратные уравнения - определение и вычисление с примерами решения тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а гипотенуза будет равна Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    2 этап — решение уравнения. Согласно теореме Пифагора получим уравнение Квадратные уравнения - определение и вычисление с примерами решения

    3 этап — решение уравнения. Преобразуем уравнение Квадратные уравнения - определение и вычисление с примерами решения Отсюда Квадратные уравнения - определение и вычисление с примерами решения

    4 этап — анализ результата.

    Решению задачи соответствует корень Квадратные уравнения - определение и вычисление с примерами решения т.к. длины сторон выражаются положительными числами. Тогда длина другого катета будет Квадратные уравнения - определение и вычисление с примерами решения а длина гипотенузы Квадратные уравнения - определение и вычисление с примерами решения Периметр: Квадратные уравнения - определение и вычисление с примерами решения Ответ: периметр треугольника равен 24 см.

    • Заказать решение задач по высшей математике

    Квадратные уравнения

    Квадратные уравнения. Неполные квадратные уравнения

    В математике, физике, экономике, практической деятельности человека встречаются задачи, математическими моделями которых являются уравнения, содержащие переменную во второй степени.

    Пример №256

    Длина земельного участка на 15 м больше ширины, а площадь равна Квадратные уравнения - определение и вычисление с примерами решения Найдите ширину участка.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения м- ширина участка, тогда ее длина — Квадратные уравнения - определение и вычисление с примерами решения м. По условию задачи площадь участка равна Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения Получаем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Такое уравнение называют квадратным.

    Квадратным уравнением называют уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения —переменная, Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, уравнения Квадратные уравнения - определение и вычисление с примерами решения также являются квадратными.

    Числа Квадратные уравнения - определение и вычисление с примерами решения называют коэффициентами квадратного уравнения, число Квадратные уравнения - определение и вычисление с примерами решенияпервым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениявторым коэффициентом, число Квадратные уравнения - определение и вычисление с примерами решениясвободным членом.

    В уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициенты следующие: Квадратные уравнения - определение и вычисление с примерами решения В уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения а в уравнении Квадратные уравнения - определение и вычисление с примерами решения следующие: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным. Уравнение Квадратные уравнения - определение и вычисление с примерами решения — приведенное, а уравнение Квадратные уравнения - определение и вычисление с примерами решения — не является приведенным.

    Если в квадратном уравнении Квадратные уравнения - определение и вычисление с примерами решения хотя бы один из коэффициентов Квадратные уравнения - определение и вычисление с примерами решения или Квадратные уравнения - определение и вычисление с примерами решения равен нулю, то такое уравнение называют неполным квадратным уравнением.

    Например, неполным квадратным уравнением, в котором Квадратные уравнения - определение и вычисление с примерами решения является уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения -уравнение Квадратные уравнения - определение и вычисление с примерами решения в котором Квадратные уравнения - определение и вычисление с примерами решения — уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, неполные квадратные уравнения бывают трех видов: Квадратные уравнения - определение и вычисление с примерами решения

    Рассмотрим решение каждого из них.

    1.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения корнем которого является число 0.

    Следовательно, уравнение имеет единственный корень: Квадратные уравнения - определение и вычисление с примерами решения

    2.Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Имеем Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения Так как Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение корней не имеет.

    Пример №257

    Решите уравнение:

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения 2) корней нет.

    3. Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения

    Разложим левую часть уравнения на множители и решим полученное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Значит, уравнение имеет два корня: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №258

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Имеем: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Систематизируем данные о решениях неполного квадратного уравнения в виде схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Формула корней квадратного уравнения

    Рассмотрим полное квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения и найдем его решения в общем виде.

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения (так как Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Далее прибавим к обеим частям уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения называют дискриминантом квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Слово дискриминант происходит от латинского различающий. Дискриминант обозначают буквой Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения запишем уравнение в виде:

    Квадратные уравнения - определение и вычисление с примерами решения и продолжим его решать.

    Рассмотрим все возможные случаи в зависимости от значения Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    (при делении на Квадратные уравнения - определение и вычисление с примерами решения учли, что Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два различных корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Коротко это можно записать так:

    Квадратные уравнения - определение и вычисление с примерами решения

    Получили формулу корней квадратного уравнения.

    2) Квадратные уравнения - определение и вычисление с примерами решенияТогда имеем уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет один корень: Квадратные уравнения - определение и вычисление с примерами решенияЭтот корень можно было бы найти и по формуле корней квадратного уравнения, учитывая, что Квадратные уравнения - определение и вычисление с примерами решения Поэтому можно считать, что уравнение Квадратные уравнения - определение и вычисление с примерами решения при Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения

    3) Квадратные уравнения - определение и вычисление с примерами решения В этом случае уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней, так как не существует такого значения Квадратные уравнения - определение и вычисление с примерами решения при котором значение выражения Квадратные уравнения - определение и вычисление с примерами решения было бы отрицательным.

    Систематизируем данные о решениях квадратного уравнения с помощью схемы: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №259

    Решите уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ: Квадратные уравнения - определение и вычисление с примерами решения

    Пример №260

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Умножим левую и правую части уравнения на Квадратные уравнения - определение и вычисление с примерами решения чтобы его коэффициенты стали целыми числами, получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения тогда Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Неполные квадратные уравнения и некоторые виды полных квадратных уравнений (например, вида Квадратные уравнения - определение и вычисление с примерами решения вавилонские математики умели решать еще 4 тыс. лет назад. В более поздние времена некоторые квадратные уравнения в Древней Греции и Индии математики решали геометрически. Приемы решения некоторых квадратных уравнений без применения геометрии изложил древнегреческий математик Диофант (III в.).

    Много внимания квадратным уравнениям уделял арабский математик Мухаммед ал-Хорезми (IX в.). Он нашел, как решить уравнения вида Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения (для положительных Квадратные уравнения - определение и вычисление с примерами решения и получить их положительные корни.

    Формулы, связывающие между собой корни квадратного уравнения и его коэффициенты, были найдены французским математиком Франсуа Виетом в 1591 году. Он пришел к следующему выводу (в современных обозначениях): «Корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    После публикации трудов нидерландского математика А. Жирара (1595-1632), а также француза Р. Декарта (1596-1650) и англичанина И. Ньютона (1643-1727) формула корней квадратного уравнения приобрела современный вид.

    Теорема Виета

    Рассмотрим несколько приведенных квадратных уравнений, имеющих два различных корня. Внесем в таблицу следующие данные о них: само уравнение, его корни Квадратные уравнения - определение и вычисление с примерами решения сумму его корней Квадратные уравнения - определение и вычисление с примерами решения произведение его корней Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Обратим внимание, что сумма корней каждого из уравнений таблицы равна второму коэффициенту уравнения, взятому с противоположным знаком, а произведение корней равно свободному члену. Это свойство выполняется для любого приведенного квадратного уравнения, имеющего корни.

    Приведенное квадратное уравнение в общем виде обычно записывают так: Квадратные уравнения - определение и вычисление с примерами решения

    Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней — свободному члену.

    Доказательство: Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения дискриминант которого Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение имеет два корня:

    Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня: Квадратные уравнения - определение и вычисление с примерами решения

    Найдем сумму и произведение корней:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения Теорема доказана.

    Эту теорему называют теоремой Виета — в честь выдающегося французского математика Франсуа Виета, который открыл это свойство. Его можно сформулировать следующим образом:

    Если Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения — корни приведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Два последних равенства, показывающих связь между корнями и коэффициентами приведенного квадратного уравнения, называют формулами Виста.

    Используя теорему Виета, можно записать соответствующие формулы и для корней любого неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Так как Квадратные уравнения - определение и вычисление с примерами решения разделим обе части уравнения на Квадратные уравнения - определение и вычисление с примерами решения Получим приведенное квадратное уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда по теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения — корни неприведенного квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения то

    Квадратные уравнения - определение и вычисление с примерами решения

    Пример №261

    Не решая уравнения Квадратные уравнения - определение и вычисление с примерами решения найдите сумму и произведение его корней.

    Решение:

    Найдем дискриминант уравнения, чтобы убедиться, что корни существуют: Квадратные уравнения - определение и вычисление с примерами решения Очевидно, что Квадратные уравнения - определение и вычисление с примерами решения следовательно, уравнение имеет два корня Квадратные уравнения - определение и вычисление с примерами решения

    По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Если в уравнении Квадратные уравнения - определение и вычисление с примерами решения коэффициент Квадратные уравнения - определение и вычисление с примерами решения является целым числом, то из равенства Квадратные уравнения - определение и вычисление с примерами решения следует, что целыми корнями этого уравнения могут быть только делители числа Квадратные уравнения - определение и вычисление с примерами решения

    Пример №262

    Найдите подбором корни уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни данного уравнения. Тогда Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения — целые числа, то они являются делителями числа -4. Ищем среди этих делителей два таких, сумма которых равна -3. Нетрудно догадаться, что это числа 1 и -4. Таким образом, Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 1; -4.

    Пример №263

    Один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения равен 3. Найдите коэффициент Квадратные уравнения - определение и вычисление с примерами решения и второй корень уравнения.

    Решение:

    Пусть Квадратные уравнения - определение и вычисление с примерами решения— один из корней уравнения Квадратные уравнения - определение и вычисление с примерами решения — второй его корень. По теореме Виета: Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №264

    Пусть Квадратные уравнения - определение и вычисление с примерами решения — корни уравнения Квадратные уравнения - определение и вычисление с примерами решения Не решая уравнения, найдите значение выражения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    По теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Тогда: 1) Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Справедливо и утверждение, обратное теореме Виета.

    Теорема (обратная теореме Виета). Если числа Квадратные уравнения - определение и вычисление с примерами решения и Квадратные уравнения - определение и вычисление с примерами решения таковы, что Квадратные уравнения - определение и вычисление с примерами решения то эти числа являются корнями уравнения Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: По условию Квадратные уравнения - определение и вычисление с примерами решения Поэтому уравнение Квадратные уравнения - определение и вычисление с примерами решения можно записать так: Квадратные уравнения - определение и вычисление с примерами решения

    Проверим, является ли число Квадратные уравнения - определение и вычисление с примерами решения корнем этого уравнения, для чего подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, Квадратные уравнения - определение и вычисление с примерами решения — корень этого уравнения.

    Аналогично подставим в левую часть уравнения вместо переменной Квадратные уравнения - определение и вычисление с примерами решения число Квадратные уравнения - определение и вычисление с примерами решения Получим:

    Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения — также корень этого уравнения.

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения корни уравнения Квадратные уравнения - определение и вычисление с примерами решения что и требовалось доказать.

    Пример №265

    Составьте приведенное квадратное уравнение, корнями которого являются числа -5 и 2.

    Решение:

    Искомое квадратное уравнение имеет вид Квадратные уравнения - определение и вычисление с примерами решения По теореме, обратной теореме Виета:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения — искомое уравнение.

    Ответ, Квадратные уравнения - определение и вычисление с примерами решения

    Квадратное уравнение как математическая модель текстовых и прикладных задач

    В 7 классе мы уже знакомились с задачами, которые можно решить с помощью линейных уравнений или систем линейных уравнений. Для решения прикладной задачи сначала создают ее математическую модель, то есть записывают зависимость между известными и неизвестными величинами с помощью математических понятий, отношений, формул, уравнений и т. п. Математической моделью многих задач в математике, физике, технике, практической деятельности человека может быть не только линейное уравнение или система линейных уравнений, но и квадратное уравнение.

    Рассмотрим несколько примеров.

    Пример №266

    Разность кубов двух натуральных чисел равна 279. Найдите эти числа, если одно из них на 3 больше другого.

    Решение:

    Пусть меньшее из этих чисел равно Квадратные уравнения - определение и вычисление с примерами решения тогда большее равно Квадратные уравнения - определение и вычисление с примерами решения По условию задачи имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    Упростим левую часть уравнения.

    Получим: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения По условию задачи Квадратные уравнения - определение и вычисление с примерами решения Поэтому условию удовлетворяет только число 4. Следовательно, первое искомое число 4, а второе Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 4; 7.

    Пример №267

    В кинотеатре количество мест в ряду на 6 больше количества рядов. Сколько рядов в кинотеатре, если мест в нем 432?

    Решение:

    Пусть в кинотеатре Квадратные уравнения - определение и вычисление с примерами решения рядов, тогда мест в каждом ряду Квадратные уравнения - определение и вычисление с примерами решения Всего мест в зале Квадратные уравнения - определение и вычисление с примерами решения

    Имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Перепишем уравнение в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    По смыслу задачи значение Квадратные уравнения - определение и вычисление с примерами решения должно быть положительным. Этому условию удовлетворяет только Квадратные уравнения - определение и вычисление с примерами решения Следовательно, в кинотеатре 18 рядов.

    Ответ. 18 рядов.

    Пример №268

    У выпуклого многоугольника 54 диагонали. Найдите, сколько у него вершин.

    Решение:

    Пусть у многоугольника Квадратные уравнения - определение и вычисление с примерами решения вершин. Из каждой его вершины выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Тогда из всех Квадратные уравнения - определение и вычисление с примерами решения его вершин выходит Квадратные уравнения - определение и вычисление с примерами решения диагонали. Но при этом каждую из его диагоналей посчитали дважды. Следовательно, всего диагоналей будет Квадратные уравнения - определение и вычисление с примерами решения

    Получим уравнение: Квадратные уравнения - определение и вычисление с примерами решения то есть Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решенияОтрицательный корень уравнения не может быть решением задачи.

    Ответ. 12.

    Пример №269

    Тело подбросили вертикально вверх со скоростью Квадратные уравнения - определение и вычисление с примерами решения Высота Квадратные уравнения - определение и вычисление с примерами решения (в м), на которой через Квадратные уравнения - определение и вычисление с примерами решения с будет тело, вычисляется по формуле Квадратные уравнения - определение и вычисление с примерами решения В какой момент времени тело окажется на высоте 15 м?

    Решение:

    По условию: Квадратные уравнения - определение и вычисление с примерами решения, следовательно, после упрощения имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения решив которое, найдем корни: Квадратные уравнения - определение и вычисление с примерами решения

    Оба корня являются решением задачи, так как на высоте 15 м тело окажется дважды: сначала при движении вверх (это произойдет через 1 с), а во второй раз — при падении (это произойдет через 3 с).

    Ответ. 1 с, 3 с.

    Пример №270

    В 9 часов утра из базового лагеря в восточном направлении отправилась группа туристов со скоростью Квадратные уравнения - определение и вычисление с примерами решения Через час из того же лагеря со скоростью Квадратные уравнения - определение и вычисление с примерами решения отправилась другая группа туристов, но в северном направлении. В котором часу расстояние между группами туристов будет 17 км? Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    За первый час первая группа туристов преодолеет 5 км: Квадратные уравнения - определение и вычисление с примерами решения (рис. 19). Дальше будут двигаться обе группы.

    Пусть расстояние в 17 км между группами будет через Квадратные уравнения - определение и вычисление с примерами решения часов после начала движения второй группы. Тогда за это время первая группа преодолеет Квадратные уравнения - определение и вычисление с примерами решения км, а вторая — Квадратные уравнения - определение и вычисление с примерами решения км, Квадратные уравнения - определение и вычисление с примерами решения Всего первая группа преодолеет расстояние Квадратные уравнения - определение и вычисление с примерами решения

    Из Квадратные уравнения - определение и вычисление с примерами решения по теореме Пифагора Квадратные уравнения - определение и вычисление с примерами решения тогда имеем уравнение: Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Учитывая, что Квадратные уравнения - определение и вычисление с примерами решения получим Квадратные уравнения - определение и вычисление с примерами решения

    Следовательно, расстояние 17 км между группами туристов будет в 12 часов.

    Ответ. В 12 часов.

    В результате хозяйственной деятельности человека возникли прикладные задачи, решением которых люди занимаются уже на протяжении нескольких тысячелетий. Самые древние из известных нам письменных памятников, содержащих правила нахождения площадей и объемов, были составлены в Египте и Вавилоне приблизительно 4 тыс. лет назад. Около 2,5 тыс. лет назад греки переняли геометрические знания египтян и вавилонян и стали развивать теоретическую (чистую) математику.

    Также в древние времена математики использовали математические модели, в частности и для геометрических построений (метод подобия фигур).

    Современное понятие математической модели в качестве описания некоторого реального процесса языком математики стали использовать в середине XX в. в связи с развитием кибернетики — науки об общих законах получения, хранения, передачи и обработки информации. А раздел современной математики, изучающий математическое моделирование реальных процессов, даже выделили в отдельную науку — прикладную математику.

    Существенный вклад в развитие прикладной математики был сделан нашими выдающимися земляками — математиками М.П. Кравчуком и М.В. Остроградским.

    Развитие кибернетики связывают с именем академика Виктора Михайловича Глушкова — выдающегося математика, доктора физико-математических наук, профессора. В 1953 г. он возглавил лабораторию вычислительной техники Института математики, стал ее мозговым и энергетическим центром. На базе этой лаборатории в 1957 г. был создан Вычислительный центр, а в 1962 г. -Институт кибернетики который и возглавил В.М. Глушков. Лаборатория известна тем, что в 1951 г. в ней создали первую в Евразии Малую электронную счетную машину, а уже в Вычислительном центре завершили работу по созданию первой большой электронно-вычислительной машины. Сегодня Институт кибернетики носит имя В.М. Глушкова и является, в частности, разработчиком прикладных информационных технологий для решения неотложных практических задач, возникающих при моделировании экономических процессов, проектировании объектов теплоэнергетики, решении проблем экологии и защиты окружающей среды.

    Квадратный трехчлен. Разложение квадратного трехчлена на линейные множители

    Выражения Квадратные уравнения - определение и вычисление с примерами решения являются многочленами второй степени с одной переменной стандартного вида. Такие многочлены называют квадратными трехчленами.

    Квадратным трехчленом называют многочлен вида Квадратные уравнения - определение и вычисление с примерами решения переменная, Квадратные уравнения - определение и вычисление с примерами решения — числа, причем Квадратные уравнения - определение и вычисление с примерами решения

    Например, выражение Квадратные уравнения - определение и вычисление с примерами решения является квадратным трехчленом, у которого Квадратные уравнения - определение и вычисление с примерами решения

    Пример №271

    Рассмотрим квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения Если Квадратные уравнения - определение и вычисление с примерами решения то его значение равно нулю. Действительно, Квадратные уравнения - определение и вычисление с примерами решения В таком случае число -1 называют корнем этого квадратного трехчлена.

    Корнем квадратного трехчлена называют значение переменной, при котором значение трехчлена обращается в нуль.

    Чтобы найти корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения нужно решить уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Пример №272

    Найдите корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Решим уравнение Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения Следовательно, Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратный трехчлен, как и квадратное уравнение, может иметь два различных корня, один корень (то есть два равных корня) или не иметь корней. Это зависит от знака дискриминанта квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения который также называют и дискриминантом квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения

    Если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет два различных корня, если Квадратные уравнения - определение и вычисление с примерами решения то квадратный трехчлен имеет один корень (то есть два равных корня), если Квадратные уравнения - определение и вычисление с примерами решениято квадратный трехчлен не имеет корней.

    Если корни квадратного трехчлена известны, то его можно разложить на линейные множители, то есть на множители, являющиеся многочленами первой степени.

    Теорема (о разложении квадратного трехчлена на множители). Если Квадратные уравнения - определение и вычисление с примерами решения корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения то справедливо равенство

    Квадратные уравнения - определение и вычисление с примерами решения

    Доказательство: Если Квадратные уравнения - определение и вычисление с примерами решения — корни квадратного уравнения Квадратные уравнения - определение и вычисление с примерами решения (по теореме Виета).

    Для доказательства теоремы раскроем скобки в правой части равенства:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, Квадратные уравнения - определение и вычисление с примерами решения что и требовалость доказать.

    Если же квадратный трехчлен не имеет корней, то на линейные множители его разложить нельзя.

    Пример №273

    Разложите на множители квадратный трехчлен:

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    1) Корни трехчлена Квадратные уравнения - определение и вычисление с примерами решения — числа -1 и 2,5. Поэтому Квадратные уравнения - определение и вычисление с примерами решения Это можно записать иначе, умножив первый в разложении множитель -2 на двучлен Квадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    2) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения не имеет корней. Поэтому квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения на множители не разлагается.

    3) Квадратное уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет два одинаковых корня Квадратные уравнения - определение и вычисление с примерами решения Поэтому

    Квадратные уравнения - определение и вычисление с примерами решения

    Нетрудно заметить, что если квадратный трехчлен имеет два равных корня, то он представляет собой квадрат двучлена или произведение некоторого числа на квадрат двучлена.

    Пример №274

    Сократите дробь Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Числа 1 и -0,5 — корни квадратного трехчлена Квадратные уравнения - определение и вычисление с примерами решения Поэтому Квадратные уравнения - определение и вычисление с примерами решения Имеем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    При решении некоторых задач, связанных с квадратным трехчленом Квадратные уравнения - определение и вычисление с примерами решения бывает удобно представить его в виде Квадратные уравнения - определение и вычисление с примерами решения — некоторые числа. Такое преобразование называют выделением квадрата двучлена из квадратного трехчлена.

    Пример №275

    Выделите из трехчлена Квадратные уравнения - определение и вычисление с примерами решения квадрат двучлена.

    Решение:

    Вынесем за скобки множитель 2: Квадратные уравнения - определение и вычисление с примерами решения

    Воспользовавшись формулой квадрата суммы двух чисел Квадратные уравнения - определение и вычисление с примерами решенияпреобразуем выражение в скобках, считая, что Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения откуда определяем, что число 4 является вторым слагаемым квадрата суммы, то есть Квадратные уравнения - определение и вычисление с примерами решения поэтому добавим и вычтем Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №276

    Дан квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения При каком значении Квадратные уравнения - определение и вычисление с примерами решения он принимает наибольшее значение? Найдите это значение.

    Решение:

    Выделим из трехчлена квадрат двучлена:

    Квадратные уравнения - определение и вычисление с примерами решения

    Выражение Квадратные уравнения - определение и вычисление с примерами решения при любом значении Квадратные уравнения - определение и вычисление с примерами решения принимает не положительное значение, то есть Квадратные уравнения - определение и вычисление с примерами решения причем это выражение равно нулю только при Квадратные уравнения - определение и вычисление с примерами решения Поэтому при Квадратные уравнения - определение и вычисление с примерами решения значение данного в условии трехчлена равно 16 и является для него наибольшим.

    Таким образом, квадратный трехчлен Квадратные уравнения - определение и вычисление с примерами решения принимает наибольшее значение, равное 16, при Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 16 при Квадратные уравнения - определение и вычисление с примерами решения

    Решение уравнений, сводящихся к квадратным

    Дробные рациональные уравнения

    Решение дробных рациональных уравнений часто сводится к решению квадратных уравнений. Вспомним один из методов решения дробного рационального уравнения

    Пример №277

    Решите уравнение

    Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Чтобы найти область допустимых значений переменной и общий знаменатель, разложим на множители знаменатели дробей в уравнении:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на общий знаменатель дробей — выражение Квадратные уравнения - определение и вычисление с примерами решения учитывая ОДЗ: Квадратные уравнения - определение и вычисление с примерами решенияКвадратные уравнения - определение и вычисление с примерами решения Получим: Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 3.

    Метод разложения многочлена на множители

    Некоторые уравнения, правая часть которых равна нулю, можно решить с помощью разложения левой части на множители.

    Пример №278

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Вынесем в левой части уравнения общий множитель Квадратные уравнения - определение и вычисление с примерами решения за скобки. Получим:

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, уравнение Квадратные уравнения - определение и вычисление с примерами решения имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 0; 3; -5.

    Биквадратные уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения называют биквадратным уравнением. Его можно решить с помощью введения новой переменной, то есть обозначив Квадратные уравнения - определение и вычисление с примерами решения Тогда Квадратные уравнения - определение и вычисление с примерами решения а исходное уравнение принимает вид:

    Квадратные уравнения - определение и вычисление с примерами решения

    Такой метод решения называют методом введения новой переменной или методом замены переменной.

    Пример №279

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Сделаем замену Квадратные уравнения - определение и вычисление с примерами решения получим уравнение Квадратные уравнения - определение и вычисление с примерами решения корнями которого являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корни исходного уравнения — числа 2 и -2.

    Ответ. 2; -2.

    Метод замены переменной

    Не только биквадратные, но и некоторые другие виды уравнений можно решить, используя замену переменной.

    Пример №280

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Если мы раскроем скобки в левой части уравнения, получим уравнение четвертой степени, которое не всегда возможно решить методами школьной математики. Поэтому скобки раскрывать не будем. Заметим, что в обеих скобках выражения, содержащие Квадратные уравнения - определение и вычисление с примерами решения одинаковы, поэтому можно воспользоваться заменой Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение Квадратные уравнения - определение и вычисление с примерами решения которое является квадратным относительно переменной Квадратные уравнения - определение и вычисление с примерами решения Перепишем его в виде Квадратные уравнения - определение и вычисление с примерами решения откуда Квадратные уравнения - определение и вычисление с примерами решения

    Возвращаемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, корнями исходного уравнения являются числа Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №281

    Решите уравнение Квадратные уравнения - определение и вычисление с примерами решения

    Решение:

    Раскроем скобки в каждой части уравнения:

    Квадратные уравнения - определение и вычисление с примерами решения

    Заметим, что выражения, содержащие переменную Квадратные уравнения - определение и вычисление с примерами решения в обеих частях уравнения одинаковы, поэтому сделаем замену Квадратные уравнения - определение и вычисление с примерами решения Получим уравнение с переменной Квадратные уравнения - определение и вычисление с примерами решения

    Найдем его корни: Квадратные уравнения - определение и вычисление с примерами решения

    Вернемся к переменной Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Таким образом, исходное уравнение имеет три корня: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Решение задач с помощью дробных рациональных уравнений

    Дробные рациональные уравнения также могут служить математическими моделями текстовых задач.

    Пример №282

    Из одного города в другой, расстояние между которыми 560 км, одновременно выехали легковой и грузовой автомобили. Скорость легкового была на Квадратные уравнения - определение и вычисление с примерами решения больше скорости грузового, поэтому он прибыл в пункт назначения на 1 ч раньше грузового. Найдите скорость каждого автомобиля.

    Решение:

    Пусть скорость грузового автомобиля Квадратные уравнения - определение и вычисление с примерами решения Систематизируем условие задачи в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Так как значение величины Квадратные уравнения - определение и вычисление с примерами решения на 1 ч меньше значения величины Квадратные уравнения - определение и вычисление с примерами решения то можем составить уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    У него два корня: Квадратные уравнения - определение и вычисление с примерами решения Отрицательный корень не соответствует смыслу задачи, поэтому скорость грузового автомобиля 70 Квадратные уравнения - определение и вычисление с примерами решения Тогда скорость легкового автомобиля: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Пример №283

    Мастер и его ученик, работая вместе, могут выполнить задание за 8 ч. За сколько часов может выполнить это задание самостоятельно каждый из них, если мастеру на это нужно на 12 ч меньше, чем его ученику?

    Решение:

    Пусть мастеру для самостоятельного выполнения задания нужно Квадратные уравнения - определение и вычисление с примерами решения ч, тогда ученику Квадратные уравнения - определение и вычисление с примерами решения ч. Если вид и объем работ в задачах на работу не конкретизирован (как в данном случае), его принято обозначать единицей. Напомним, что производительность труда — это объем работы, выполняемый за единицу времени. Тогда за 1 ч мастер выполнит Квадратные уравнения - определение и вычисление с примерами решения — часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения часть, это и есть их производительности труда. По условию задачи мастер и ученик проработали 8 ч, поэтому мастер выполнил Квадратные уравнения - определение и вычисление с примерами решения часть задания, а ученик Квадратные уравнения - определение и вычисление с примерами решения Учитывая, что они выполнили все задание, имеем уравнение:

    Квадратные уравнения - определение и вычисление с примерами решения

    откуда Квадратные уравнения - определение и вычисление с примерами решения

    Второй корень не соответствует смыслу задачи, так как является отрицательным.

    Таким образом, мастер, работая отдельно, может выполнить задание за 12 ч, а его ученик — за Квадратные уравнения - определение и вычисление с примерами решения

    Условие этой задачи, как и предыдущей, можно также систематизировать в виде таблицы: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. 12 ч и 24 ч.

    Обратите внимание, что условия большинства задач на движение или работу можно систематизировать в виде таблицы, что поможет избежать громоздких текстовых записей.

    «Желаю тебе стать вторым Остроградским…»

    Михаил Васильевич Остроградский родился 12 сентября 1801 года в д. Пашенная Полтавской губернии (в настоящее время деревня Пашеновка). Предки Михаила Васильевича служили в казацком войске, участвовали во многих боях, не раз проявляли военную доблесть и героизм. По-видимому, именно поэтому в детстве Михаил Васильевич так мечтал стать военным. Но ему суждено было стать всемирно известным ученым.

    В детстве Михаил обладал исключительной наблюдательностью и увлекался измерениями. Учился он в пансионе при Полтавской гимназии, потом в этой гимназии. Закончив ее, стал свободным слушателем Харьковского университета, а в дальнейшем и его студентом. После окончания университета с отличием в августе 1820 года, менее чем через год (в апреле 1821 года) получил степень кандидата наук за исследования в прикладной математике. В 1822 году Остроградский уезжает в Париж, чтобы усовершенствовать М.В. Остроградский свое математическое образование, и становится слушателем университета в Сорбонне.

    Именно там он публикует свои первые научные труды, становится известным ученым и заслуживает уважение французских математиков. За неимением средств Михаил Васильевич вынужден был покинуть Париж, преодолев пешком зимой 1828 года путь от Парижа до Петербурга.

    Научные круги Петербурга встретили молодого ученого с радостью и надеждой. Его авторитет среди петербургских деятелей науки был высоким и незыблемым. В том же 1828 году Остроградский начинает преподавательскую деятельность в Морском кадетском корпусе Петербурга, его избирают адъюнктом Петербургской академии наук. А с 1830 года преподает еще в четырех высших учебных заведениях Петербурга. В 1834 году Остроградский был избран членом Американской академии наук, в 1841 году — членом Туринской академии, в 1853 — членом Римской академии Линчей и в 1856 году -членом-корреспондентом Парижской академии наук.

    Лекции Остроградского посещали не только студенты, но и преподаватели, профессура, известные математики. Всем нравилась его система преподавания предмета — широта темы, но при этом выразительность и сжатость изложения, а также его остроумие. На лекциях он украшал свою речь словами, пословицами и поговорками. Поэтому студенты вспоминали его лекции с восторгом.

    Любимым писателем Остроградского был Т.Г. Шевченко, с которым он был лично знаком и значительную часть произведений которого, зная наизусть, охотно декламировал. В 1858 году, когда Тарас Григорьевич возвращался из ссылки на родину через Петербург, Михаил Васильевич предложил Кобзарю остановится в его петербургской квартире.

    Вернувшись из ссылки, Шевченко писал в «Дневнике»: «Великий математик принял меня с распростертыми объятиями, как земляка и как надолго выехавшего члена семьи».

    Михаил Васильевич был выдающимся, оригинальным, всесторонне одаренным человеком. Его ценили не только за ум, но и за независимость, демократизм, скромность, искренность и простоту, за уважение к людям труда. Находясь на вершине славы, отмеченный за свои научные труды во всей Европе, Остроградский был прост в общении и не любил говорить о своих заслугах.

    И какие бы проблемы не решал ученый (занимался он алгеброй, прикладной математикой, теорией чисел, теорией вероятностей, механикой и т. п.), все его научные труды отличаются глубиной мысли и оригинальностью, в них неизменно присутствует широта его взглядов, умение углубиться в суть проблемы, систематизировать и обобщить.

    На всю жизнь Михаил Васильевич сохранил любовь к родной Земле и родному языку. Почти ежегодно летом он выезжал с целью погрузиться в полное спокойствие и полюбоваться замечательными пейзажами. Летом 1861 года Остроградский, пребывая на родине, заболел и 1 января 1862 года умер.

    За свою почти 40-летнюю научную деятельность Михаил Васильевич написал свыше 50 трудов из разных отраслей математики: математического анализа, аналитической и небесной механики, математической физики, теории вероятностей. Свои педагогические взгляды М.В. Остроградский изложил в учебниках по элементарной и высшей математике.

    Именем М.В. Остроградского назван Кременчугский национальный университет.

    И хотя почти всю свою жизнь Михаил Остроградский занимался наукой, он был широко известен своим соотечественникам. Авторитет и популярность М.В. Остроградского были настолько значимыми, что родители, отдавая ребенка на учебу, желали ему «стать вторым Остроградским».

    Сведения из курса математики 5-6 классов и алгебры 7 класса

    Десятичные дроби

    Сложение и вычитание десятичных дробей выполняют поразрядно, записывая их одна под другой так, чтобы запятая размещалась под запятой.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы перемножить две десятичные дроби, надо выполнить умножение, не обращая внимания на запятые, а потом в произведении отделить занятой справа налево столько цифр, сколько их после занятой в обоих множителях вместе.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на натуральное число, надо выполнить деление, не обращая внимания на запятую, но после окончания деления целой части делимого нужно в частном поставить занятую.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить десятичную дробь на десятичную, нужно в делимом и делителе перенести запятую на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Обычные дроби

    Частное от деления числа Квадратные уравнения - определение и вычисление с примерами решения на число Квадратные уравнения - определение и вычисление с примерами решения можно записать в виде обычной дроби Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числитель дроби, Квадратные уравнения - определение и вычисление с примерами решения — ее знаменатель.

    Основное свойство дроби: значение дроби не изменится, если ее числитель и знаменатель умножить или разделить на одно и то же натуральное число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения (сократили дробь Квадратные уравнения - определение и вычисление с примерами решения на 5);

    Квадратные уравнения - определение и вычисление с примерами решения (привели дробь Квадратные уравнения - определение и вычисление с примерами решения к знаменателю 14).

    Дроби с одинаковыми знаменателями складывают и вычитают по формулам:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить или вычесть дроби с разными знаменателями, их сначала приводят к общему знаменателю, а затем выполняют действие по правилу сложения или вычитания дробей с одинаковыми знаменателями.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    На следующих примерах показано, как выполнить сложение и вычитание смешанных чисел.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы умножить две дроби, нужно перемножить их числители и их знаменатели и первый результат записать числителем произведения, а второй — знаменателем:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Положительные и отрицательные числа

    Модулем числа называют расстояние от начала отсчета до точки, изображающей это число на координатной прямой.

    Модуль положительного числа и числа нуль — само это число, а модуль отрицательного — противоположное ему число:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Чтобы сложить два отрицательных числа, нужно сложить их модули и перед полученным результатом записать знак Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы сложить два числа с разными знаками, нужно из большего модуля слагаемых вычесть меньший модуль и перед полученным результатом записать знак слагаемого с большим модулем.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число, противоположное вычитаемому:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Произведение двух чисел с одинаковыми знаками равно произведению их модулей. Произведение двух чисел с разными знаками равно произведению их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Частное двух чисел с одинаковыми знаками равно частному от деления их модулей. Частное двух чисел с разными знаками равно частному от деления их модулей, взятому со знаком «-».

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Уравнение

    Корнем, или решением, уравнения называют число, обращающее уравнение в правильное числовое равенство.

    Примеры:

    1) Число 3 является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    2) Число -2 не является корнем уравнения Квадратные уравнения - определение и вычисление с примерами решения так как Квадратные уравнения - определение и вычисление с примерами решения

    Решить уравнение — значит найти все его корни или доказать, что корней нет.

    Два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и уравнения, не имеющие корней.

    Примеры:

    1) Уравнения Квадратные уравнения - определение и вычисление с примерами решения равносильны, так как каждое из них имеет единственный корень, равный 2.

    2) Уравнения Квадратные уравнения - определение и вычисление с примерами решения не являются равносильными, так как корень первого — число 1, а второго — число 2.

    Для решения уравнений используют следующие свойства:

    1) если в любой части уравнения раскрыть скобки или привести подобные слагаемые, получим уравнение, равносильное данному;

    2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, получим уравнение, равносильное данному;

    3) если обе части уравнения

    Уравнение вида Квадратные уравнения - определение и вычисление с примерами решения где Квадратные уравнения - определение и вычисление с примерами решения числа, Квадратные уравнения - определение и вычисление с примерами решения переменная, называют линейным уравнением с одной переменной.

    Решение линейного уравнения представим в виде схемы:

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    В большинстве случаев уравнения последовательными преобразованиями приводят к линейному уравнению, равносильному данному.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения Раскроем скобки: Квадратные уравнения - определение и вычисление с примерами решения Перенесем слагаемые, содержащие переменную, в левую часть уравнения, остальные — в правую, изменив знаки переносимых слагаемых на противоположные: Квадратные уравнения - определение и вычисление с примерами решения приведем подобные слагаемые: Квадратные уравнения - определение и вычисление с примерами решения решим полученное линейное уравнение: Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножим обе части уравнения на наименьшее общее кратное знаменателей дробей — число 6:

    Квадратные уравнения - определение и вычисление с примерами решения

    Дальше решаем, как в предыдущем примере:

    Квадратные уравнения - определение и вычисление с примерами решения

    Ответ. Любое число.

    Степень с натуральным показателем

    Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с натуральным показателем Квадратные уравнения - определение и вычисление с примерами решения называют произведение Квадратные уравнения - определение и вычисление с примерами решения множителей, каждый из которых равен Квадратные уравнения - определение и вычисление с примерами решения Степенью числа Квадратные уравнения - определение и вычисление с примерами решения с показателем 1 называют само это число.

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Свойства степени с натуральным показателем

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Используя свойства степени с натуральным показателем, можем существенно упростить вычисления.

    Квадратные уравнения - определение и вычисление с примерами решения

    Одночлен

    Целые выражения — числа, переменные, их степени и произведения называют одночленами.

    Например Квадратные уравнения - определение и вычисление с примерами решения — одночлены; выражения Квадратные уравнения - определение и вычисление с примерами решения Не одночлены.

    Если одночлен содержит только один числовой множитель, записанный первым, и содержит степени разных переменных, то такой одночлен называют одночленом стандартного вида.

    Например, Квадратные уравнения - определение и вычисление с примерами решения — одночлен стандартного вида, а одночлен Квадратные уравнения - определение и вычисление с примерами решения не является одночленом стандартного вида.

    Этот одночлен можно привести к одночлену стандартного вида:

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночленов

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Возведение одночлена в степень

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Многочлен

    Многочленом называют сумму одночленов. Многочлен, являющийся суммой одночленов стандартного вида, среди которых нет подобных слагаемых, называют многочленом стандартного вида.

    Многочлен Квадратные уравнения - определение и вычисление с примерами решения не является многочленом стандартного вида, но его можно привести к стандартному виду:

    Квадратные уравнения - определение и вычисление с примерами решения

    Сложение и вычитание многочленов

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение одночлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Умножение многочлена на многочлен

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Формулы сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Разложение многочленов на множители

    Вынесение общего множителя за скобки

    Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    Способ группировки

    Квадратные уравнения - определение и вычисление с примерами решения

    Использование формул сокращенного умножения

    Квадратные уравнения - определение и вычисление с примерами решения

    Примеры:

    Квадратные уравнения - определение и вычисление с примерами решения

    Функция

    Если каждому значению независимой переменной соответствует единственное значение зависимой переменной, то такую зависимость называют функциональной зависимостью, или функцией.

    Переменную Квадратные уравнения - определение и вычисление с примерами решения в этом случае называют независимой переменной (или аргументом), а переменную Квадратные уравнения - определение и вычисление с примерами решениязависимой переменной (или функцией от заданного аргумента).

    Все значения, которые принимает независимая переменная (аргумент), образуют область определения функции; все значения, которые принимает зависимая переменная (функция), образуют область значений функции.

    Линейной называют функцию, которую можно задать формулой вида Квадратные уравнения - определение и вычисление с примерами решения независимая переменная, Квадратные уравнения - определение и вычисление с примерами решения -некоторые числа.

    Графиком любой линейной функции является прямая. Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки на координатной плоскости и провести через них прямую.

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения

    Составим таблицу для любых двух значений аргумента: Квадратные уравнения - определение и вычисление с примерами решения

    Отметим на координатной плоскости полученные точки и проведем через них прямую (рис. 20). Квадратные уравнения - определение и вычисление с примерами решения

    Пример:

    Построим график функции Квадратные уравнения - определение и вычисление с примерами решения Любому значению Квадратные уравнения - определение и вычисление с примерами решения соответствует одно и то же значение Квадратные уравнения - определение и вычисление с примерами решения равное числу -2. Графиком функции является прямая, состоящая из точек с координатами Квадратные уравнения - определение и вычисление с примерами решения— любое число. Обозначим две любые такие точки, например Квадратные уравнения - определение и вычисление с примерами решения и проведем через них прямую (рис. 21).

    Квадратные уравнения - определение и вычисление с примерами решения

    Системы линейных уравнений с двумя переменными

    Если нужно найти общее решение двух (или более) уравнений, то говорят, что эти уравнения образуют систему уравнений.

    Пример:

    Квадратные уравнения - определение и вычисление с примерами решения система уравнений с двумя неизвестными Квадратные уравнения - определение и вычисление с примерами решения

    Решением системы уравнений с двумя переменными называют пару значений переменных, при которых каждое уравнение обращается в верное числовое равенство.

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения является решением данной выше системы, поскольку Квадратные уравнения - определение и вычисление с примерами решения

    Пара чисел Квадратные уравнения - определение и вычисление с примерами решения не является решением системы. Для этих значений переменных первое уравнение обращается в верное равенство Квадратные уравнения - определение и вычисление с примерами решения а второе — нет Квадратные уравнения - определение и вычисление с примерами решения

    Решить систему уравнений — значит найти все ее решения или доказать, что решений нет.

    Решение системы двух линейных уравнений с двумя переменными способом подстановки Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения Квадратные уравнения - определение и вычисление с примерами решения

    Решение системы двух линейных уравнении с двумя переменными способом сложения

    Решить систему уравнений Квадратные уравнения - определение и вычисление с примерами решения

    Квадратные уравнения - определение и вычисление с примерами решения

    • Неравенства
    • Числовые последовательности
    • Предел числовой последовательности
    • Предел и непрерывность числовой функции одной переменной
    • Разложение многочленов на множители
    • Системы линейных уравнений с двумя переменными
    • Рациональные выражения
    • Квадратные корни

    Основные понятия уравнения

    Определение

    Уравнением называют равенство, в котором одна из переменных неизвестна, и её нужно найти. Значение этой неизвестной должно быть таким, чтобы равенство было верным.

    К примеру: 3+4=7 это числовое равенство, при вычислении которого с левой стороны получается 7=7.

    Уравнением же будет называться следующее равенство: 3+х=7, поскольку есть неизвестная переменная х, её значение можно найти.

    Из этого уравнения следует, что переменная х=4, только при таком его значении равенство 3+х=7, будет верным.

    Неизвестные переменные принято писать в виде маленьких латинских букв, можно любыми, но чаще используют x,y,z.

    Получается, чтобы равенство сделать уравнением необходимо, чтобы в нем была буква, значение которой неизвестно.

    Как мы понимаем существует множество примеров уравнений с разными арифметическими действиями.

    Пример: х + 5 = 1= 9; z — 2 = 7; 9 * y = 18, 6 :  f = 2

    Помимо этого существуют уравнения со скобками. К таким уравнениям относится 8 : (х — 4) = 2 * (8 — х), неизвестных может быть несколько, они могут быть, как слева уравнения, так и справа или в обеих частях.

    Помимо таких простых уравнений они могут быть с корнями, логарифмами, степенями и тд. 

    Уравнение может содержать несколько переменными, тогда их принято называть, соответственно уравнениями с двумя, тремя и более переменными.

    Пример:

    3 * а = 15 : х — уравнение с двумя переменными:

    8 — а = 5 * х — z — уравнение с тремя переменными.

    Корень уравнения

    Мы часто слышим фразу на уроках математики, «найдите корень уравнения», давайте разберёмся, что же это значит.

    Пример:

    В примере 3+х=7, можно представить вместо буквы число, и уравнение тогда станет равенством, оно может быть либо верным, либо неверным, если поставить х=3, то первичное равенство примет вид 3+3 = 7 и станет неверным, а если х= 4 то равенство 3+4=7 будет верным, а значит х = 4 будет называться корнем или по другому решением уравнения 3+х=7.

    Определение.

    Отсюда можно выделить следующее определение: корень уравнения — это такое значение неизвестной переменной, при котором числовое равенство будет верным.

    Стоит отметить, что корней может быть несколько или не быть вовсе.

    Рассмотрим подробнее пример который не будет иметь корней. Таким примером станет 0 * х = 7, сколько бы чисел мы сюда не подставляли равенство не будет верным, так как умножая на ноль будет ноль, а не 7.

    Но существуют и уравнения с множественным числом корней, к примеру, х — 3 = 6, в таком уравнении только один корень 9, а в уравнении квадратного вида х2 = 16, два корня 4 и -4,  можно привести пример и с тремя корнями х * (х — 1) * (х — 2) = 0,  в данном случае три решения ноль, два и один.

    Для того чтобы верно записать результат уравнения мы пишем так:

    • Если корня нет, пишем уравнение корней не имеет;
    • Если есть и их несколько, они либо прописываются через запятые, либо в фигурных скобках, например, так: {-2, 3, 5};
    • Еще одним вариантом написания корней, считается запись в виде простого равенства, к примеру неизвестная х а корни 3,5 тогда результат прописывается так: х=3, х=5. 
    • или прибавляя индекс снизух1 =3 , х2 = 5. данным способом указывается номер корня;
    • Если решений уравнения бесконечное множество, то запись будет либо в виде числового промежутка от и до, или общепринятыми обозначениями. множество натуральных чисел N, целых –  Z, действительных — R.

    Стоит отметить, что если уравнение имеет два и более корней, то чаще употребляется понятие решение уравнения.  Рассмотрим определение уравнения с несколькими переменными.

    Решение уравнения с двумя и более переменными, означает, что эти несколько значений превращают уравнение в верное равенство.

    Примеры:

    Представим, что мы имеем следующее уравнение х + а = 5, такое уравнение имеет две переменные. Если мы поставим вместо них числа 3 и 6 то равенство не будет верным, соответственно и данные числа не являются решением для данного примера.  А если взять числа 2 и 3 то равенство превратится в верное, а числа 2 и 3 будут решением уравнения. Представленные уравнения с несколькими переменными, тоже могут или не иметь корня вообще или наоборот иметь множество решений.

    Правила нахождения корней

    Таких правил существует несколько рассмотрим их ниже.

    Пример 1 

    Допустим мы имеем уравнение 4 + х = 10, чтобы найти корень уравнения или значение  х в данном случае необходимо  найти неизвестное слагаемое, для этого есть следующее правило или формула. Для нахождения неизвестного слагаемого, нужно из суммы вычесть известное значение.

    Решение:

    х = 10 — 4

    х = 6

    Чтобы проверить является ли 6 решением, мы ставим его на место неизвестной переменной х в исходное уравнение, получаем следующее равенство 4 + 6 = 10, такое равенство является верным, что означает число корня уравнения, равно 6.

    Пример 2

    Возьмём уравнение вида х — 5 = 3, в данном примере х это неизвестное уменьшаемое, для того чтобы его найти необходимо следовать следующему правилу:

    Для нахождения уменьшаемого необходимо сложить разность и вычитаемое.

    Решение:

    х = 3 + 5

    х = 8

    Проверяем правильность нахождения корня уравнения, подставляем, вместо переменной неизвестной, найденное число 8, получаем равенство 8 — 5 = 3, так как оно верное, то и корень уравнения найден правильно.

    Пример 3

    Берём уравнение, в котором неизвестное х будет вычитаемое к примеру: 8 — х = 4. для того чтобы найти х необходимо воспользоваться правилом:

    Для нахождения вычитаемого, нужно из уменьшаемого вычесть разность.

    Решение:

    х = 8 — 4

    х = 4

    Проверяем правильность нахождения корня уравнения, для этого полученное значение ставим вместо неизвестного вычитаемого в исходный пример, и получаем следующее равенство 8 — 4 = 4, равенство верно, значит и корень найден правильно.

    Нет времени решать самому?

    Наши эксперты помогут!

    Пример 4

    Возьмём уравнение вида х * 3 = 9, в данном уравнении неизвестна переменная х, является множимым. Для того, чтобы найти корень такого уравнения необходимо использовать следующее правило.

    Для нахождения неизвестного множимого, нужно произведение разделить на множитель.

    Решение:

    х = 9 : 3

    х = 3

    Для проверки подставим найденное значение х в исходное уравнение, получим равенство 3 * 3 =9, так как равенство является верным, то и решение уравнения верное.

    Такое же правило действует и для множителя, чтобы его найти необходимо произведение разделить на множимое.

    Пример 5

    Возьмём уравнение следующего вида: х : 2 = 10 , в данном уравнении х- это неизвестное делимое, 2 — делитель, а 10 — частное. Для нахождения неизвестного значения х, воспользуемся правилом:

    Чтобы найти делимое, необходимо частное умножить на делитель.

    Решение:

    х = 10 * 2

    х = 20

    Проверим, вместо неизвестного х, поставим его значение 20, получим следующее равенство 20: 2 = 10. Равенство верное, значит и решение было верным.

    Пример 6

    Теперь рассмотрим пример с делителем.

    Возьмём уравнение 22: х = 11, где х неизвестный делитель. Для того чтобы его найти существует правило:

    При нахождении неизвестного делителя нужно делимое разделить на частное.

    Решение:

    х = 22 : 11

    х = 2

    Проверяем, 2 ставим на место неизвестного х в исходное уравнение, получаем равенство 22 : 2 = 11. Так как равенство верно, то мы нашли верный корень уравнения.

    Пример применения правил в более сложном уравнении: 2х — 5 =5

    Решение:

    2х = 5 + 5

    2х = 10

    х = 10 : 2

    х = 5

    Проверяем, для этого полученное значение х = 5, ставим в исходное уравнение, получаем равенство 2 * 5 — 5 = 5, так как равенство верно, корень найден правильно.

    Квадратные уравнения

    Существует также уравнения квадратного вида, например: 2х2 = 32, для того, чтобы найти неизвестное или корень квадратного уравнения, в таком уравнении необходимо:

    Решение:

    х2 = 32 : 2

    х2 = 16

    х = √16

    х = 4

    Проверим, для этого полученное значение подставим в исходное уравнение, и получим равенство 242 = 32. так как равенство верное, то и решение уравнения верно.

    Как мы видим нахождение корня уравнения не такой сложный процесс, главное запомнить правила. Стоит отметить, что помимо решения различного вида задач, уравнения применяются в других различных науках. Применение уравнений можно найти в экономике, в физике, химии, биологии и других. При их помощи можно вычислить и описать процессы, происходящие вокруг нас.

    Калькулятор квадратных корней

    Понравилась статья? Поделить с друзьями:
  • Как составить резюме для работы в оаэ
  • Как найти размер автомобиля
  • Как найти область определения с двумя переменными
  • Как найти точки удовольствия
  • Как найти точку соприкосновения двух функций