Найти приращение функции это как

Содержание:

  • Приращение аргумента и функции
  • Определение производной
  • Дифференцирование функции

Пусть задана некоторая функция $y=f(x)$. Возьмем какое-нибудь
значение $x_{0}$ из области определения этой функции:
$x_{0} in D[f]$ . Соответствующее значение функции в этой точке
будет равно $y_{0}=fleft(x_{0}right)$ .

Приращение аргумента и функции

Определение

Приращением аргумента называется разность между двумя значениями аргумента: «новым» и «старым».

Обычно обозначается как $Delta x=x_{1}-x_{0}$ .

Пример

Задание. Найти приращение аргумента $x$, если он переходит от значения 3 к значению 3,2.

Решение. Искомое приращение: $Delta x=3,2-3=0,2$ .

Ответ. $Delta x=0,2$

Зададим аргументу $x_{0}$ приращение
$Delta x$. А тогда значение функции в новой точке
$fleft(x_{0}+Delta xright)$.

Определение

Приращением функции $y=f(x)$ в точке
$x_{0}$, соответствующее приращению аргумента
$Delta x=x-x_{0}$, называется величина:

$Delta y=fleft(x_{0}+Delta xright)-fleft(x_{0}right)$

Иллюстрация приращения аргумента и функции

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти приращение функции $y=2 x^{2}$
при $x_{0}=3$ и
$Delta x=0,1$

Решение. Подставляя в формулу, получаем, что приращение функции:

$Delta y=y(3+0,1)-y(3)=2 cdot(3+0,1)^{2}-2 cdot 3^{2}=1,22$

Ответ. $Delta y=1,22$

Определение производной

Определение

Производной $y^{prime}(x)$ от функции
$y=f(x)$ в точке
$x_{0}$ называется предел отношения
приращения функции $Delta y$ к приращению аргумента
$Delta x$ : 
$frac{Delta y}{Delta x}$ при
$Delta x rightarrow 0$, если он существует, то есть:

$y^{prime}left(x_{0}right)=f^{prime}left(x_{0}right)=lim _{Delta x rightarrow 0} frac{Delta y}{Delta x}=lim _{Delta x rightarrow 0} frac{fleft(x_{0}+Delta xright)-fleft(x_{0}right)}{Delta x}$

или

$y^{prime}left(x_{0}right)=lim _{x rightarrow x_{0}} frac{f(x)-fleft(x_{0}right)}{x-x_{0}}$

Пример

Задание. Найти производную функции $y=x^{2}+3 x$
в точке $x_{0}=0$.

Решение. Найдем приращение заданной функции в точке $x_{0}$ :

$Delta y=y(0+Delta x)-y(0)=y(Delta x)-y(0)=$

$=(Delta x)^{2}+3 Delta x-0=Delta x(Delta x+3)$

Тогда

$y^{prime}(0)=lim _{Delta x rightarrow 0} frac{Delta x(Delta x+3)}{Delta x}=lim _{Delta x rightarrow 0}(Delta x+3)=0+3=3$

Ответ. $y^{prime}(0)=3$

Дифференцирование функции

Определение

Операция нахождения производной функции называется дифференцированием этой функции.

Функция $y=f(x)$ имеет производную на интервале
$(a ; b)$ или называется дифференцируемой в этом
интервале
, если производная $f^{prime}(x)$ существует в каждой точке этого интервала.

Функция $y=f(x)$ имеет в точке
$x$ бесконечную производную, если в этой точке
$f^{prime}(x)=lim _{Delta x rightarrow 0} frac{Delta y}{Delta x}=infty$ .

Теорема

(О непрерывности функции в точке)

Если функция $y=f(x)$ имеет конечную производную в
точке $x_{0}$ , то она непрерывна в этой точке.

Замечание. Обратное заключение не всегда верно: если функция $y=f(x)$
непрерывна в некоторой точке $x_{0}$ , то она может
и не иметь производной в этой точке.

Определение

Функция $y=f(x)$ называется дифференцируемой
в точке
$x$, если приращение функции,
соответствующее приращению аргумента, можно представить в виде:

$Delta y=A cdot Delta x+alpha(Delta x) cdot Delta x$

где $A$ — число, не зависящее от
$Delta x$,
$alpha(Delta x)$ — б.м. функция при
$Delta x rightarrow 0$.

Теорема

(О необходимом и достаточном условии дифференцируемости)

Для того чтобы функция $y=f(x)$ была дифференцируемой
в точке $x$, необходимо и достаточно,
чтобы $y=f(x)$ имела в этой точке конечную производную.

Теорема устанавливает, что для функции $y=f(x)$
дифференцируемость в данной точке $x$ и существование конечной производной в этой точке — понятия равносильные.

Читать дальше: односторонние производные.

Дата публикации: 09 апреля 2017.

Алгебра – 10 класс. Приращение аргумента, приращение функции

Урок на тему: «Приращение аргумента, приращение функции»

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.


Скачать:
Приращение аргумента, приращение функции (PDF)


Что будем изучать:

1.Определение приращения аргумента, приращения функции.
2. Непрерывная функция и приращение.
3. Примеры.

Определение приращения аргумента и приращения функции

Ребята, мы с вами научились находить пределы функции в точке. Важным остается вопрос, как изменяется значение функции при изменении значения аргумента около этой точки?
Математики ввели такое понятие – приращение аргумента и функции. Давайте запишем определение.

Определение: Пусть функция $y=f(x)$ определена в точках $x_0$ и $x_1$. Разность $x_1-x_0$ называют приращением аргумента, а разность $f(x_1)-f(x_0)$–приращением функции.
Иначе говоря, узнаем прирост точки $x_0$ в точке $x_1$. Приращение аргумента обозначают как $Δx$, читается как дельта x.
Приращение функции обозначают, как $Δy$ или $Δf(x)$.
Из нашего определения следует: $x_1-x_0=Δx$ => $x_1= Δx+x_0$ и $f(x_1)-f(x_0)=Δy$. Тогда получаем важное равенство: $Δy=f(x_0+ Δx)-f(x_0)$.
Приращение аргумента и функции
Приращение функции может быть как положительным, так и отрицательным.

Давайте рассмотрим пример.
Найти приращение функции $y=х^3$ при переходе от $x_0=2$ к точке:
а) $x=2,1$; б) $x=1,9$.

Решение:
Обозначим $f(x)=х^3$.
Имеем: $f(2)=2^3=8$.

а) Воспользуемся формулой $Δy=f(x_0+ Δx)-f(x_0)$.
Нам надо найти значение $f(2,1)$.

$f(2,1)=2,1^3=9,261$.
$Δy= f(2,1)- f(2)= 9,261-8=1,261$.

б) $f(2)=8$.
$f(1,9)=1,9^3=6,859$.
$Δy= f(1,9)- f(2)= 6,859-8=-1,141$.

Ответ: а) $1,261$; б) $-1,141$.

Непрерывная функция и приращение

Ребята, давайте вернемся к определению непрерывной функции, и посмотрим на него с помощью приращений.
Вспомним определение непрерывной функции.
Определение. Функцию $y=f(x)$ называют непрерывной в точке $x=a$, если выполняется тождество:
[lim_{x rightarrow a}f(x)=f(a)]
Обратим внимание: $x →a$, тогда $(x-a) →0$ т.е. $Δx → 0$.

Также заметим: $f(x) → f(a)$ , значит $f(x) — f (a) → 0$ т.е. $Δy → 0$.

Определение непрерывности функции в точке можно записать так.

Функция $y=f(x)$ непрерывна в точке $x=a$, если в этой точке выполняется следующее условие:
если $Δx→0$, то $Δy → 0$.

Примеры

1. Для функции $y=kx+b$ найти:
а) приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$;

б)предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю.

Решение:

а) $f(x)= kx+b$.
$f(x+ Δx)=k(x+Δx)+b$;
$Δy= f(x+ Δx)-f(x)= k(x+Δx)+b-( kx+b)= kx+kΔx+b – kx-b= kΔx$.

б) Найдем требуемый предел: $lim_{Δx rightarrow 0}frac{Δy}{Δx}=lim_{Δx rightarrow 0}frac{kΔx}{Δx}=lim_{Δx rightarrow 0}k=k$.

2. Для функции $y=x^3$ найти:
а) приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

б)предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю.

Решение:

а) $f(x)= x^3$.
$f(x+ Δx)=(x+Δx)^3=x^3+3x^2Δx+3xΔx^2+Δx^3$.
$Δy= f(x+Δx)-f(x)= x^3+3x^2Δx+3xΔx^2+Δx^3-x^3=3x^2Δx+3xΔx^2+Δx^3$.

б) Найдем требуемый предел: $lim_{Δx rightarrow 0}frac{Δy}{Δx}=lim_{Δx rightarrow 0}frac{3x^2Δx+3xΔx^2+Δx^3}{Δx}=lim_{Δx rightarrow 0}(3x^2+3xΔx+Δx^2)=3x^2$.

Задачи для самостоятельного решения:

1) Найти приращение функции $y=x^4$ при переходе от $x_0=3$ к точке:
а) $x=3,2$;
б) $x=2,8$.

2) Для функции $y=3x+5$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

3) Для функции $y=x^2$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

4) Для функции $y=2x^3$ найти приращение функции при переходе от фиксированной точки $x$ к $x+ Δx$.

  1. Приращение аргумента и приращение функции
  2. Определение производной
  3. Физический смысл производной
  4. Геометрический смысл производной
  5. Алгоритм поиска значения производной в заданной точке
  6. Алгоритм поиска уравнения производной
  7. Примеры

п.1. Приращение аргумента и приращение функции

Приращением аргумента называют разность $$ triangle x=x-x_0 $$ где (x) — произвольное число, которое мало отличается от начальной точки (x_0). Приращение аргумента может быть как положительным, так и отрицательным.
Приращением функции называют соответствующую разность $$ triangle y=f(x)-f(x_0 )=f(x_0+triangle x)-f(x_0) $$ Приращение функции может быть как положительным, так и отрицательным.

Например:

Приращение аргумента и приращение функции begin{gather*} y=2x-1\ x_0=1, x=1,1 end{gather*} Найдем приращение аргумента и функции. begin{gather*} triangle x= x-x_0=1,1-1=0,1gt 0\ \ f(x)=f(1,1)=2cdot 1,1-1=1,2\ f(x_0 )=f(1)=2cdot 1-1=1\ triangle y=f(x)-f(x_0 )=1,2-1=0,2gt 0 end{gather*}
Приращение аргумента и приращение функции begin{gather*} y=-x+2\ x_0=1, x=1,1 end{gather*} Найдем приращение аргумента и функции. begin{gather*} triangle x= x-x_0=1,1-1=0,1gt 0\ \ f(x)=f(1,1)=-1,1+2=0,9\ f(x_0 )=f(1)=-1+2=1\ triangle y=f(x)-f(x_0)=0,9-1=-0,1lt 0 end{gather*}

Если функция возрастает, приращение аргумента и приращение функции имеют один и тот же знак: $$ begin{cases} y=f(x) — text{возрастает}\ triangle xgt 0 end{cases} Rightarrow triangle ygt 0 $$ Если функция убывает, приращение аргумента и приращение функции имеют разные знаки: $$ begin{cases} y=f(x) — text{убывает}\ triangle xgt 0 end{cases} Rightarrow triangle ylt 0 $$

п.2. Определение производной

Производной функции (f(x)) в точке (x_0) называют предел отношения приращения функции в точке (x_0) к приращению аргумента, если приращение аргумента стремится к нулю, а предел существует: $$ f'(x_0)=lim_{triangle xrightarrow 0}frac{triangle y}{triangle x} $$

Например:
Найдем производную функции (f(x)=x^2-4) в точке (x_0=3)
Значение функции в точке: (f(x_0 )=3^2-4=5)
Пусть (triangle x) — некоторое приращение аргумента. Тогда: begin{gather*} f(x)=f(x_0+triangle x)=(x_0+triangle x)^2-4=(3+triangle x)^2-4=9+6triangle x+triangle x^2-4=\ =5+6triangle x+triangle x^2 end{gather*} Приращение функции: $$ triangle y=f(x)-f(x_0)=5+6triangle x+triangle x^2-5=6triangle x+triangle x^2=triangle x(6+triangle x) $$ Производная: $$ f'(x_0)=lim_{triangle xrightarrow 0}frac{triangle x}{triangle y}=lim_{triangle xrightarrow 0}frac{triangle x(6+triangle x)}{triangle x}=lim_{triangle xrightarrow 0}(6+triangle x)=6+0=6 $$ Ответ: 6

п.3. Физический смысл производной

Рассмотрим прямолинейное движение.
Пусть расстояние по прямой между городами (triangle x=) 300 км поезд преодолевает за (triangle t=)4 часа. Мы легко можем найти его среднюю скорость: $$ v_{cp}=frac{triangle x}{triangle t}, v_{cp}=frac{300}{4}=75 (text{км/ч}) $$ Но поезд не едет все время с одной и той же скоростью: где-то ускоряется, где-то замедляется, где-то и вовсе останавливается.
Если мы захотим определить скорость как можно точнее, нам понадобится уменьшать интервалы времени и измерять соответствующий путь. Уменьшив время до «мгновений», мы получим «мгновенную скорость» для каждой точки траектории в каждый момент времени.

Мгновенная скорость это скорость тела в данный момент времени (t_0): $$ v(t_0)=lim_{triangle trightarrow 0}frac{triangle x}{triangle t}=x'(t_0) $$ где (triangle x=x-x_0) — путь тела за время (triangle t=t-t_0, x(t)) – уравнение движения.
Мгновенная скорость равна первой производной от уравнения движения при (t=t_0).

Сравнивая определения мгновенной скорости и производной функции, мы можем сформулировать физический смысл производной:

Производная функции (y=f(x)) в точке (x_0) равна скорости изменения функции в этой точке.

Или, ближе к физике/химии/биологии:

Производная уравнения процесса (s=f(t)) в момент времени (t_0) равна скорости протекания процесса в этот момент.

п.4. Геометрический смысл производной

Геометрический смысл производной
Пусть на плоскости задана кривая (y=f(x)).
Выберем на кривой две точки (A(x_0,y_0)) и (B(x,y)). Прямая AB будет секущей для кривой (y=f(x)). Угол наклона прямой AB определяется угловым коэффициентом: $$ k_{AB}=tgangle A=frac{BC}{AC}=frac{triangle y}{triangle x} $$ Начнем движение точки B вдоль кривой по направлению к точке A. Приращение аргумента при этом будет уменьшаться: (triangle x=ACrightarrow 0). В тот момент, когда B совпадет с A, секущая AB превратится в касательную AD. Угловой коэффициент касательной: $$ k_{AD}=lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=y'(x_0) $$
Мы можем сформулировать геометрический смысл производной:

Производная функции (y=f(x)) в точке (x_0) равна угловому коэффициенту касательной к графику этой функции в этой точке.

п.5. Алгоритм поиска значения производной в заданной точке

На входе: уравнение функции (y=f(x)), точка (x_0)
Шаг 1. Найти значение функции в заданной точке (y_0=f(x_0)).
Шаг 2. Задать приращение аргумента (triangle x=x-x_0), найти приращение функции (triangle y=f(x)-f(x_0)=f(x_0+triangle x)-f(x_0)).
Шаг 3. Найти предел (lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=f'(x_0))
На выходе: значение производной в точке (x_0)

Например:
Найдем значение производной в точке (x_0=1) для функции (y=x^2-3).
Значение функции в заданной точке: (f(x_0)=1^2-3=-2)
Пусть (∆x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x_0+triangle x)-f(x_0)=((1+triangle x)^2-3)-(-2)=\ =1+2triangle x+(triangle x)^2-1=2triangle x+(triangle x)^2=triangle x(2+triangle x) end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle x(2+triangle x)}{triangle x}=lim_{triangle xrightarrow 0}(2+triangle x)=2+0=2 end{gather*} Искомая производная в заданной точке: (f'(1)=2)
Ответ: 2

п.6. Алгоритм поиска уравнения производной

На входе: уравнение функции (y=f(x))
Шаг 1. Задать приращение аргумента (triangle x), найти выражение для приращения функции (triangle y=f(x+triangle x)-f(x)).
Шаг 2. Найти предел выражения (lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=f'(x))
На выходе: уравнение производной (y ‘=f'(x)) в любой точке (x).

Например:
Найдем общее уравнение производной для функции (y=x^2-3).
Пусть (∆x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=((x+triangle x)^2-3)-(x^2-3)=\ =(x+triangle x)^2-x^2=(x+triangle x-x)(x+triangle x+x)=triangle x(2x+triangle x) end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle x(2x+triangle x)}{triangle x}=lim_{triangle xrightarrow 0}(2x+triangle x)=2x+0=2x end{gather*} Ответ: уравнение производной (y ‘=2x)

п.7. Примеры

Пример 1. Пользуясь алгоритмом поиска значения производной в заданной точке, найдите:
a) ( f'(1), text{если} f(x)=2x )
По условию (x_0=1)
Значение функции в заданной точке: (f(x_0 )=2cdot 1=2)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x_0+triangle x)-f(x_0)=2(1+triangle x)-2=2+2triangle x-2=2triangle x end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{2triangle x}{triangle x}=2 end{gather*} Искомая производная в заданной точке: (f'(1)=2)
б) ( f'(3), text{если} f(x)=3x^2 )
По условию (x_0=3)
Значение функции в заданной точке: (f(x_0 )=3cdot 3^2=27)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x_0+triangle x)-f(x_0)=3(3+triangle x)^2-27=3(9+6triangle x+(triangle x)^2)-27=\ =27+18triangle x+3(triangle x)^2-27=3triangle x(6+triangle x) end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{3triangle x(6+triangle x)}{triangle x}=3lim_{triangle xrightarrow 0}(6+triangle x)=3(6+0)=18 end{gather*} Искомая производная в заданной точке: (f'(3)=18)

в) ( f'(-1), text{если} f(x)=4x-1 )
По условию (x_0=-1)
Значение функции в заданной точке: (f(x_0)=4cdot (-1)-1=-5)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x_0+triangle x)-f(x_0)=(4(-1+triangle x)-1)-(-5)=-5+4triangle x+5=4triangle x end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{4triangle x}{triangle x}=4 end{gather*} Искомая производная в заданной точке: (f'(-1)=4)

г) ( f'(2), text{если} f(x)=x^3 )
По условию (x_0=2)
Значение функции в заданной точке: (f(x_0)=2^3=8)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x_0+triangle x)-f(x_0)=(2+triangle x)^3-8=\ =2^3+3cdot 2^2cdot triangle x+3cdot 2cdot (triangle x)^2+(triangle x)^3-8=\ =12triangle x+6(triangle x)^2+(triangle x)^3=triangle xcdot (12+6triangle x+(triangle x)^2 ) end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle xcdot(12+6triangle x+(triangle x)^2)}{triangle x}=lim_{triangle xrightarrow 0}(12+6triangle x+(triangle x)^2)=12+0+0=12 end{gather*} Искомая производная в заданной точке: (f'(2)=12)

Ответ: а) 2; б) 18; в) 4; г) 12

Пример 2. Пользуясь алгоритмом поиска уравнения производной, найдите общее уравнение производной для функции (y=f(x)):
a) ( f(x)=C), где C – постоянная величина
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=C-C=0 end{gather*} Отношение (frac{triangle y}{triangle x}=frac{0}{triangle x}=0)
Предел (lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}0=0)
Производная (y ‘=C’=0)

Производная постоянной равна нулю: (C ‘=0)

б) ( f(x)=x)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=x+triangle x-x=triangle x end{gather*} Ищем предел: (lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle x}{triangle x}=lim_{triangle xrightarrow 0}1=1)
Производная (x ‘=1)

Производная аргумента равна единице: (x ‘=1)

в) ( f(x)=x^2)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=(x+triangle x)^2-x^2=(x+triangle x-x)(x+triangle x+x)=triangle x(2x+triangle x) end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle x(2x+triangle x)}{triangle x}=lim_{triangle xrightarrow 0}(2x+triangle x)=2x+0=2x end{gather*} Производная ((x^2) ‘=2x)

г) ( f(x)=x^3)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=(x+triangle x)^3-x^3=\ =(x+triangle x-x)((x+triangle x)^2+x(x+triangle x)+x^2)=triangle x((x+triangle x)^2+x(x+triangle x)+x^2) end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{triangle x((x+triangle x)^2+x(x+triangle x)+x^2)}{triangle x}=\ =lim_{triangle xrightarrow 0}((x+triangle x)^2+x(x+triangle x)+x^2)=(x+0)^2+x(x+0)+x^2=3x^2 end{gather*} Производная ((x^3) ‘=3x^2)

д) ( f(x)=frac1x)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=frac{1}{x+triangle x}-frac1x=frac{x-(x+triangle x)}{x(x+triangle x)}=-frac{triangle x}{x(x+triangle x)} end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}left(-frac{triangle x}{triangle xcdot x(x+triangle x)}right)=-lim_{triangle xrightarrow 0}frac{1}{x(x+triangle x)}=-frac{1}{x(x+0)}=-frac{1}{x^2} end{gather*} Производная (left(frac1xright) ‘=-frac{1}{x^2})

e) ( f(x)=kx+b)
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=k(x+triangle x)+b-kx-b=ktriangle x end{gather*} Ищем предел: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{ktriangle x}{triangle x}=lim_{triangle xrightarrow 0}k=k end{gather*} Производная ((kx+b) ‘=k)

ж) ( f(x)=sqrt{x})
Пусть (triangle x) — некоторое приращение аргумента. Тогда приращение функции: begin{gather*} triangle y=f(x+triangle x)-f(x)=sqrt{x+triangle x}-sqrt{x} end{gather*} Ищем предел, умножив числитель и знаменатель на сопряженное выражение: begin{gather*} lim_{triangle xrightarrow 0}frac{triangle y}{triangle x}=lim_{triangle xrightarrow 0}frac{sqrt{x+triangle x}-sqrt{x}}{triangle x}= lim_{triangle xrightarrow 0}frac{(sqrt{x+triangle x}-sqrt{x})(sqrt{x+triangle x}+sqrt{x})}{triangle x(sqrt{x+triangle x}+sqrt{x})}=\ =lim_{triangle xrightarrow 0}frac{x+triangle x-x}{triangle x(sqrt{x+triangle x}+sqrt{x})}=lim_{triangle xrightarrow 0}frac{1}{(sqrt{x+triangle x}+sqrt{x})}=frac{1}{sqrt{x+0}+sqrt{x}}=frac{1}{2sqrt{x}} end{gather*} Производная ((sqrt{x}) ‘=frac{1}{2sqrt{x}})

13

Курс лекций

по
медицинской и биологической физике

ЛЕКЦИЯ
№1

ПРОИЗВОДНАЯ
И ДИФФЕРЕНЦИАЛ ФУНКЦИИ.

ЧАСТНЫЕ
ПРОИЗВОДНЫЕ.

1. Понятие
производной, ее механический и
геометрический смысл.

а)Приращение
аргумента и функции.

Пусть
дана функция y=f(х), где х – значение
аргумента из области определения
функции. Если выбрать два значения
аргумента хо и х из
определенного интервала области
определения функции, то разность между
двумя значениями аргумента называется
приращением аргумента:
х — хо=∆х.

Значение аргумента x можно определить
через x0 и его приращение:
х = хо+ ∆х.

Разность
между двумя значениями функции называется
приращением функции: ∆y =∆f =
f(хо+∆х) – f(хо).

Приращение
аргумента и функции можно представить
графически (рис.1). Приращение аргумента
и приращение функции может быть как
положительным, так и отрицательным. Как
следует из рис.1 геометрически приращение
аргумента ∆х изображается приращением
абсциссы, а приращение функции ∆у –
приращением ординаты. Вычисление
приращения функции следует проводить
в следующем порядке:

  1. даем аргументу
    приращение ∆х и получаем значение –
    x+Δx;

2) находим значение
функции для значения аргумента (х+∆х)
– f(х+∆х);

3) находим приращение
функции ∆f=f(х + ∆х) — f(х).

Пример: Определить
приращение функции y=х2, если
аргумент изменился от хо=1 до х=3.
Для точки хозначение функции
f(хо)=х²о; для точки (хо+∆х)
значение функции f(хо+∆х) = (хо+∆х)2
= х²о+2хо∆х+∆х2,
откуда ∆f = f(хо+∆х)–f(хо) =
о+∆х)2–х²о=
х²о+2хо∆х+∆х2–х²о= 2хо∆х+∆х2; ∆f = 2хо∆х+∆х2;
∆х = 3–1 = 2; ∆f =2·1·2+4 = 8.

б) Задачи, приводящие
к понятию производной. Определение
производной, ее физический смысл.

Понятие приращения
аргумента и функции необходимы для
введения понятия производной, которое
исторически возникло исходя из
необходимости определения скорости
тех или иных процессов.

Рассмотрим, каким
образом можно определить скорость
прямолинейного движения. Пусть тело
движется прямолинейно по закону: ∆Ѕ=
·∆t. Для равномерного
движения:= ∆Ѕ/∆t.

Для
переменного движения значение ∆Ѕ/∆t
определяет значениеср.,
т.е.ср. =∆Ѕ/∆t.
Но средняя скорость не дает возможности
отразить особенности движения тела и
дать представление об истинной скорости
в момент времени t. При уменьшении
промежутка времени, т.е. при ∆t→0 средняя
скорость стремится к своему пределу
– мгновенной скорости:

мгн.=
ср.=
∆Ѕ/∆t.

Таким же образом
определяется и мгновенная скорость
химической реакции:

мгн.=
ср.=
∆х/∆t,

где х – количество
вещества, образовавшееся при химической
реакции за время t. Подобные задачи по
определению скорости различных процессов
привели к введению в математике понятия
производной функции.

Пусть
дана непрерывная функция f(х), определенная
на интервале ]а,в[ и ее приращение
∆f=f(х+∆х)–f(х). Отношениеявляется функцией ∆х и выражает среднюю
скорость изменения функции.

Предел
отношения
,
когда ∆х→0, при условии, что этот
предел существует, называется производной
функции:

y’x=.

Производная обозначается:
– (игрек штрих по икс);f(х)
– (эф штрих по икс);
y’
– (игрек штрих); dy/dх(дэ игрек по
дэ икс);

(игрек с точкой).

Исходя
из определения производной, можно
сказать, что мгновенная скорость
прямолинейного движения есть производная
от пути по времени:

мгн.=
S’t =
f(t).

Таким
образом, можно сделать вывод, что
производная функции по аргументу х есть
мгновенная скорость изменения функции
f(х):

у’x=f(х)=мгн.

В этом и заключается
физический смысл производной. Процесс
нахождения производной называется
дифференцированием, поэтому выражение
«продифференцировать функцию» равносильно
выражению «найти производную функции».

в) Геометрический
смысл производной.

Производная
функции у = f(х) имеет простой
геометрический смысл, связанный с
понятием касательной к кривой линии в
некоторой точкеM. При
этом, касательную, т.е. прямую линию
аналитически выражают в виде у = кх = tg· х, где
угол наклона касательной (прямой)
к оси Х. Представим непрерывную кривую
как функцию у= f(х), возьмем на кривой
точкуMи близкую к ней
точку М1 и приведем через них
секущую. Ее угловой коэффициент ксек=tg
β =.
Если приближать точку М1к M, то
приращение аргумента ∆х будет
стремиться к нулю, а секущая при β=α
займет положение касательной. Из рис.2
следует:tgα =
tgβ
=
=у’x.
Но tgα равен угловому коэффициенту
касательной к графику функции:

к = tgα =
=у’x
= f(х). Итак, угловой коэффициент
касательной к графику функции в данной
точке равен значению ее производной в
точке касания. В этом и состоит
геометрический смысл производной.

г) Общее правило
нахождения производной.

Исходя
из определения производной, процесс
дифференцирования функции можно
представить следующим образом:

  1. выбрав некоторое
    значение аргумента х, дают ему приращениех
    и находят приращенное значение функции
    в точке (х + ∆х), равное

f(х+∆х) = f(х)+∆f;

  1. находят приращение
    функции: ∆f= f(х + ∆х) —
    f(х);

  2. составляют отношение
    приращения функции к приращению
    аргумента:

;

  1. находят предел
    отношения
    при ∆x→0, если этот предел существует:

    =f'(х).

Пример: f(х)=х2;
f(х)=?.

  1. f(х +∆х) = (х+∆х)2;

  2. ∆f= f(х+∆х)-f(х) = (х+∆х)22=
    х2+2х∆х+∆х22 = 2х
    ∆х+∆х2;

  3. ==
    2х+х;

  4. f(х) =
    =
    (2х+∆х)
    =
    2х+∆х
    = 2х;

  5. f(х) = 2х.

Однако, как видно даже
из этого простого примера, применение
указанной последовательности при взятии
производных – процесс трудоемкий и
сложный. Поэтому для различных функций
вводятся общие формулы дифференцирования,
которые представлены в виде таблицы
«Основных формул дифференцирования
функций».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

План урока:

Предел функции на бесконечности

Предел функции в точке

Приращение аргумента и функции  

Средняя скорость изменения функции

Мгновенная скорость и понятие производной

Предел функции на бесконечности

Рассмотрим довольно простую функцию

y = 1/x

Её график называется гиперболой и выглядит так:

1 grafik giperboly

Можно заметить, что при больших положительных значениях х график функции приближается к горизонтальной оси Ох, но не пересекает её. Действительно, если мы будем вычислять значение у при всё больших значениях х, то будем получать всё меньшие, но всё же положительные числа:

2ytuyu

Получается, что при бесконечном росте аргумента х функция стремится к нулю. Можно ли эту особенность функции как-то записать, используя математические символы? Оказывается, можно, и выглядит это запись так:

3gfgh

которая означает, что х стремится к бесконечности. После символа lim записана сама функция 1/х. В целом вся запись читается так: «предел функции у = 1/х при х, стремящемся к бесконечности, равен нулю».

Вернемся к графику функции у = 1/х. Видно, что если мы будем брать всё меньшие отрицательные значения х, то функция также будет стремится к нулю. Действительно, попробуем подставлять в нее как можно меньшие значения аргумента:

4hfgh

Чтобы записать эту особенность функции, используется следующая запись:

5hfgh

который может быть получен параллельным переносом графика у = 1/х на две единицы вверх:

2 grafik funkcii parallelnym perenosom grafika

Очевидно, что пределы этой функции при х → + ∞ и х → – ∞ равны 2:

7ghfgh

Возможны случаи, когда при бесконечном увеличении аргумента функции она не стремится к какому-то конкретному числу, а сама также неограниченно возрастает. Для примера посмотрим на график у = х3:

3 grafik u3

Видно, что при х → ∞ сама функция неограниченно растет, что можно показать расчетами:

9jghj

Возникает вопрос – для всякой ли функции можно указать ее предел на бесконечности? Оказывается, что нет. Для примера рассмотрим тригонометрическую функцию у = sinx, графиком которой является синусоида:

4 trigonometricheskaya funkciya usinx

С одной стороны, sinx явно не стремится к какому-то конкретному числу при увеличении х, он «колеблется» между числами 1 и (– 1). С другой стороны, нельзя и сказать, что он стремится к бесконечности. Получается, что у этой функции просто нет пределов на бесконечности.

Предел функции в точке

Порою нас интересует поведение функции не на бесконечности, а вблизи конкретной точки х0. Конечно, в большинстве случае можно просто вычислить функцию в этой точке, однако иногда это невозможно сделать. Для примера рассмотрим функцию

11bgfh

Очевидно, что точка х = 2 не входит в ее область определения, ведь при подстановке этого значения в функцию знаменатель дроби обратится в ноль. Однако в любой другой точке значение функции будет равняться единице:

12fgh

График такой функции будет выглядеть как прямая у = 1, у которой есть одна «выколотая точка», соответствующая х = 2:

13gfgh

Итак, функция не определена в точке х = 2, однако можно вычислить предел функции в точке х = 2. Действительно, при любом, сколь угодно близком к 2 значении х функция будет равна единице:

14gdfg

Попробуем также приблизиться к точке 2 с другой стороны, подставляя в функцию числа, меньшие двух:

15bfgh

Снова всё время получается единица. Поэтому мы можем уверенно записать, что

16jghj

Значительно чаще приходится иметь дело с пределами в точке, которые равны бесконечности. Снова посмотрим на график функции у = 1/х:

17nghj

Видно, график не пересекает ось Оу, ведь число х = 0 не входит в область определения функции. Однако можно заметить, что при приближении х к нулю функция неограниченно возрастает:

18jghj

Обратите внимание, что под пределом мы использовали запись «х → + 0», а не «х → 0». Почему? Дело в том, что если мы будем приближаться к нулю с «противоположной» стороны, подставляя в функцию не положительные, а отрицательные числа, то функция будет стремится к – ∞:

19hfgh

Получается, что предел функции в точке х = 0 зависит от того, с какой стороны мы приближаемся к этой точке, слева или справа. В связи с этим в математике существует понятие односторонних пределов. Для обозначения пределов, получаемых при приближении к нулю справа, то есть со стороны бОльших чисел, перед ним ставят знак плюс, а при указании предела слева, то есть со стороны мЕньших чисел – знак минус:

20jghj

Предел и односторонние пределы – это два разных понятия. Считается, что функция имеет предел в точке только тогда, когда оба односторонних предела в этой точке совпадают.

В качестве ещё одного примера предела функции в точке можно привести зависимость у = tg х, график которой выглядит следующим образом:

21gfdg

В точке х = π/2 функция не определена. Однако видно, что при приближении к этой точке слева функция неограниченно возрастает, а при приближении справа – неограниченно убывает. Это записывается следующим образом:

22hfgh

До этого мы вычисляли пределы функций в точках, где сами функции не определены. Однако пределы можно вычислять и в тех точках, где функция определена. В большинстве случаев (но не всегда) они как раз равны значению функции в этой точке. Например, найдем предел

23gdfg

В точке х = 2 значение функции будет равно 4:

24gdfg

Будут ли односторонние пределы в этой точке также равняться 4? Сначала проверим предел справа

25ghfgh

Действительно, получаем значения у, всё более близкие к 4. Аналогично можно убедиться, что и предел слева также равен 4:

26ffgh

Приведем несколько искусственный пример функции, у которой предел в точке не совпадает со значением функции в этой точке. Пусть функция задается с помощью такого графика

27hfgh

Он представляет собой параболу у = х2 с выколотой точкой (2; 4). При этом функция определена в точке х = 2, но имеет там значение, равное единице. Аналитически эту функцию можно описать так:

28hfgh

Понятно, что у(2) = 1, однако попытаемся приблизиться к точке х = 2 справа и слева и посмотрим, что получится:

29jghj

Мы видим, что при х→2 функция и справа, и слева стремится к четверке, а не к единице. То есть получается, что предел функции в точке х = 2 не совпадает со значением функции этой функции в этой же точке. Такая ситуация произошла именно из-за того, что точка х = является выколотой.

Сразу заметим, что непосредственно в практических задачах пределы почти не используются. В связи с этим эта тема изучается в школьном курсе довольно поверхностно, не дается строгое определение предела функции (предполагается, что это понятие интуитивно понятно), а также не рассматриваются примеры на вычисление пределов функций. С другой стороны, на понятии предела построены почти все строгие рассуждения и доказательства в математическом анализе. В частности, определение понятие производной (которая имеет огромное практическое применение) дается именно с помощью предела. Поэтому полностью исключить пределы из школьного курса нельзя.

Приращение аргумента и функции

Часто нас интересует, как изменяется функция при изменении аргумента. Например, известно, что объем куба вычисляется по формуле

30hfgh

где а – ребро куба. Предположим, что мы провели измерения какого-то куба и выяснили, что длина его ребра равна 2 см. Тогда объем куба составит 23 = 8 см3. Но ведь любое измерение производится не с абсолютной точностью, а с некоторой погрешностью. Как оценить погрешность вычисления объема, если известна погрешность измерения его ребра?

Пусть с учетом погрешности линейки, составляющей 0,1 см, известно, что длина ребра находится в диапазоне от 2 до 2 + 0,1 = 2,1 см. Тогда максимально возможный объем куба составит 2,13 = 9,261 см3. Получается, что погрешность в измерении объема куба составляет 9,261 – 8 = 1,261 см3.

С точки зрения математического анализа мы в данном случае рассматривали поведение функции у = х3 в точке х = 2. Мы допустили некоторое изменение величины х, которое называют приращением аргумента и обозначают как ∆х. Далее мы высчитали, какое изменение величины у, или приращение функции, обозначаемое как ∆у, соответствует этому приращению аргумента. Выяснилось, что приращению ∆х = 0,1 соответствует приращение ∆у = 1,261.

В более общем случае произвольной функции у = f(x) можно дать некоторое приращение ∆х в некоторой точке х0. В результате этого изменится и само значение f(x), причем величину этого изменения обозначают как ∆у. Это можно проиллюстрировать графически:

31gdfg

Задание. Дана функция у = 3х2 + х + 4. Вычислите приращение функции в точке х0 = 5, если ∆х = 1.

Решение. Сначала вычислим новое значение аргумента функции, с учетом данного ему приращения:

32dfghg

Далее вычислим значения функции, соответствующие старому и новому аргументу:

33gdfg

Задание. Радиус круга, измеренный с погрешностью не более 0,5 см в меньшую сторону, равен 10 см. Оцените погрешность вычисления его площади.

Решение. Площадь круга рассчитывается по формуле:

34gdfg

Средняя скорость изменения функции

Часто в физике и других естественнонаучных дисциплинах одни величины характеризуют изменение других величин. Классический случай – это скорость, которая характеризует, насколько быстро изменилось положение тела (или материальной точки в пространстве). Рассмотрим пример. Пусть пешеход движется по прямой улице с постоянной скоростью 2 м/с. Попытаемся построить график, который иллюстрирует зависимость пройденного пешеходом пути и его скорости от времени. Известно, что при равномерном прямолинейном движении пройденный путь можно найти по формуле:

S = v*t

Где s – путь;

V – скорость;

t – время.

Так как скорость равна 2 м/с, то зависимость пути от времени будет выглядеть так:

s(t) = 2t

которая является прямой пропорциональностью. Поэтому ее график будет прямой линией:

35gdfg

Так как скорость во время всего движения остается равной 2 м/с, то зависимость скорости от времени будет иметь вид v = 2, а выглядеть она будет как горизонтальная линия:

36hfgh

В данном случае найти зависимости s(t) и v(t) было очень легко. Но теперь усложним задачу. Пусть зависимость s(t) задается не прямой линией, а некоторой кривой:

37fghfgh

Можно ли теперь что-то сказать о скорости движения пешехода?

Ясно, что в различные моменты времени скорость пешехода различна. Но мы можем найти среднюю скорость пешехода в какой-то момент времени. Например, рассмотрим промежуток времени со 2-ой по 10-ую секунду.

Его протяженность, очевидно, равна 10 – 2 = 8 секундам. Если первый момент времени обозначить как t1, а второй как t2, то протяженность этого промежутка времени (∆t) можно вычислить по формуле

38ghj

Судя по графику, к моменту времени t1 пешеход прошел только 1 метр, а на момент t2он преодолел уже 9,5 м. Сколько же метров он прошел за промежуток времени ∆t? Если первое расстояние обозначить как s1, а второе как s2, то пройденное расстояние (∆s) можно рассчитать так:

39hfgh

Тогда средняя скорость на рассматриваемом участке можно вычислить, поделив ∆s на ∆t

40hfghf

В данной ситуации мы рассматривали функцию, которая задает зависимость между перемещением пешехода и временем. Средняя скорость характеризует, как быстро двигается пешеход, то есть как быстро функция s(t) меняет своё значение. Очевидно, что в данном случае величина ∆t – это некоторое приращение аргумента функции s(t), в то время как ∆s– это приращение самой функции. Получается, что с помощью приращений можно вычислять среднюю скорость объектов.

Однако в физике рассматривается не только скорость перемещения вточек пространстве. Например, можно говорить о скорости остывания горячего чайника. Пусть его температура меняется по закону, график которого представлен на рисунке:

41hfgh

Можно ли узнать, с какой средней скоростью остывал чайник на промежутках от 2-ой до 4-ой минуты? Да, для этого надо в точке t = 2 мин дать приращение аргумента ∆t = 2мин и посмотреть, какое приращение ∆T получит сама функция:

42hfgh

Пусть t1 = 2 мин, а t2 = 4 мин. Тогда

43gdfg

По графику видно, что в момент tтемпература чайника составляет Т1 = 40°С. Через две минуты она уже упала до отметки Т2 = 20°С. Получается, что за промежуток ∆t функция T(t) получила приращение

44hfgh

Обратите внимание, что приращение оказалось отрицательным. Дело в том, что температура чайника падала, то изменялась в меньшую сторону. Знак минус указывает именно на направление изменения функции. Если бы чайник нагревался, то приращение оказалось бы положительным.

Теперь мы можем вычислить среднюю скорость остывания чайника на промежутке между 2-ой и 4-ой минутой:

45gfgh

Знак минус указывает на то, что температура на этом промежутке времени уменьшается, а не возрастает.

В более общем случае, когда у нас есть произвольная функция у = f(x), с помощью приращений можно вычислить среднюю скорость её изменения на каком-нибудь промежутке. Пусть первая точка промежутка обозначается как х0, а его протяженность составляет ∆х. Тогда первой точке соответствует значение функции у(x0), а концу промежутка – значение у(x0 + ∆x):

46ghfgh

Тогда средняя скорость изменения функции на промежутке [x0;x0 + ∆x] рассчитывается по формуле:

47hfgh

Мгновенная скорость и понятие производной

Итак, зная функцию, можно вычислить среднюю скорость ее изменения на любом промежутке. Но, когда автомобиль едет по шоссе, его спидометр показывает не среднее, а конкретное значение скорости в каждый момент времени. Другими словами, у автомобиля есть мгновенная скорость, и именно ее показывает спидометр. Как же узнать ее?

Пусть у нас есть функция s(t), определяющая пройденной машиной путь, и нам требуется найти мгновенную скорость в некоторый момент времени t1. Мы можем дать функции s(t) приращение ∆t, а потом найти и среднюю скорость на промежутке [t1; t1 + ∆t]. Естественно, она будет являться лишь некоторым приближением, с помощью которого мы оцениваем мгновенную скорость в момент t1. Однако далее мы можем уменьшить промежуток ∆t. Тогда у нас получится иное значение средней скорости, которое будет более близким к мгновенной скорости. Чем меньший промежуток ∆t мы возьмем, тем ближе к мгновенной скорости в точке tбудет полученное нами значение средней скорости.

Например, пусть путь, пройденный машиной, задается функций s = t2. Нас интересует скорость автомобиля в момент t1 = 5 сек. Мы можем найти среднюю скорость на интервале от 5-ой до 6-ой секунды. Так, к пятой секунде машина успеет проехать 52 = 25 метров, а к шестой секунде она проедет 62 = 36 метров. Получится, что за промежуток ∆t, равный 6 – 5 = 1 секунде, машина проедет путь ∆s = 36 – 25 = 11 метров. Тогда средняя скорость на промежутке составит

48hfgh

Теперь возьмем более короткий промежуток ∆t, равный всего лишь 0,1 с. То есть мы рассмотрим период времени между моментом t1 = 5 cи t2 = 5,1 c. Снова-таки, к 5-ой секунде машина проедет 25 метров, а к моменту 5,1 сона пройдет 5,12 = 26,01 м. То есть за 0,1 с автомобиль преодолеет 26,01 – 25 – 1,01 м, а средняя скорость при этом составит

49jghj

Ещё раз уменьшим промежуток ∆t. Пусть теперь он составляет всего 0,01с. Тогда средняя скорость будет определяться так:

50hfgh

Видно, что при уменьшении промежутка ∆t средняя скорость стремится к величине 10 м/с. Поэтому логично считать именно эту величину мгновенной скоростью машины в момент времени t = 5 c. Однако возникает вопрос – уверены ли мы, что мгновенная скорость стремится именно к 10 м/с, а не, скажем, к 10,001 м/с? Как точно определить это число? Здесь как раз помогают пределы. Можно записать, что мгновенная скорость – это предел отношения ∆s/∆t при ∆t, стремящемся к нулю. То есть

51hfgh

Получили, что мгновенная скорость в момент t1 = 5 действительно равна 10 м/с.

Задание. Вычислите мгновенную скорость разгоняющегося самолета через 10 секунд после начала разгона, если пройденное им расстояние задается законом s(t) = 5t2.

Решение. За 10 секунд самолет успеет преодолеть

52hfgh

Дадим функции s(t) приращение ∆t и обозначим как t1 момент времени, когда со старта прошло 10 секунд. Тогда к моменту t1 + ∆t самолет успеет пройти

53hfgh

Решая данную задачу, мы дали функции s(t) приращение ∆t и записали отношение ∆s/∆t. Далее мы устремили величину ∆t к нулю и посмотрели, к какому числу устремится отношение ∆s/∆t. Это число и оказалось мгновенной скоростью. В более общем случае произвольной функции у = f(x)в точке х0 можно дать приращение аргумента ∆х, которому будет соответствовать некоторое приращение функции ∆у. Далее можно вычислить предел отношения ∆у/∆х, который будет характеризовать, как быстро в точке х0 функция меняет свое значение. Этот предел называют производной функции в точке х0. Для обозначения производной над функцией ставят штрих.

54hfgh

В общем случае алгоритм вычисления производной в некоторой точке следующий:

1.Фиксируем точку х0, вычисляем для нее значение функции у(х). Это значение будет конкретным числом

  1. Даем функции приращение аргумента ∆х, переходим в новую точку х0 + ∆х, вычисляем в ней значение функции у(х0 + ∆х). Это значение будет не числом, а выражением, содержащим переменную ∆х.
  2. Находим приращение функции ∆у, используя формулу

55hfgh

Это приращение также должно содержать величину ∆х.

  1. Составляем соотношение ∆у/∆х.
  2. Находим предел этого отношения при ∆х→0. Этот предел и есть значение производной.

Задание. Найдите производную функции у = 4х2 + 7х в точке х0 = 2.

Решение. Сначала вычислим значение функции в точке х0:

56hfgh

Далее определяем величину у(х0 + ∆х) (это будет не конкретное число, а некоторое выражение, содержащее переменную ∆х):

57hfgh

Задание. Найдите производную функции у = 1/х в точке х0 = 5.

Решение. Высчитаем у(х0):

58hfgh

Пусть у функции есть приращение ∆х, тогда в точке х0 + ∆х ее значение составит:

59hfgh

В рассмотренных примерах для вычисления производной мы использовали ее определение. Однако на практике такой метод почти не используется. В будущем мы узнаем более эффективные способы для нахождения производной.

Мы уже убедились, что использование производной помогает находить мгновенную скорость тел. По этой причине понятие производной функции играет огромную роль в механике (разделе физике, изучающем движение). Однако этим ее практическое применение не ограничивается. По сути, она является основой для всей классической физики, и именно ее появление в XVII в. обеспечило выдающийся прогресс в науке вплоть до конца XIX в. При этом производная используется и в геометрии для анализа графиков функций. Более подробно ее применение будет также рассмотрено позже.

Понравилась статья? Поделить с друзьями:
  • Как найти исполнителя на песню спасибо
  • Как найти номер человека через дискорд
  • Как найти где украденный телефон
  • Как найти простейшую формулу кислоты
  • Как найти скорость алгебра 7 класс