Найти скорость точки как функцию времени

Содержание:

  1. Определение скорости
  2. Определение ускорения
  3. Пример с решением №1.
  4. Пример с решением №2.
  5. Определение траектории, скорости и ускорения точки при векторном способе задания движения
  6. Определение траектории, скорости и ускорения точки при координатном способе задания движения
  7. Пример с решением №3.
  8. Пример с решением №4.
  9. Пример с решением №4.
  10. Определение скорости и ускорения точки при естественном способе задания движения

Определение скорости

Вспомним основную формулу кинематики для определения скорости

Скорость точки по теоретической механике

Здесь Скорость точки по теоретической механике — вектор перемещения точки, Скорость точки по теоретической механике — время перемещения (рис. 86). Обозначим Скорость точки по теоретической механике перемещение вдоль траектории за этот же промежуток времени и представим правую часть этого равенства в виде произведения двух пределов:

Скорость точки по теоретической механике

Первый из этих пределов равен производной Скорость точки по теоретической механике и может быть вычислен, поскольку закон движения по траектории Скорость точки по теоретической механике при естественном способе описания движения задается. Далее, простые рассуждения показывают, что второй предел равен по модулю единице (как предел отношения длины хорды к длине дуги) и направлен по касательной в сторону возрастания Скорость точки по теоретической механике Следовательно, он определяет орт касательной Скорость точки по теоретической механике для которого попутно получаем формулу

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Таким образом, при естественном способе задания движения скорость точки определяется формулой

Скорость точки по теоретической механике

Формулу можно рассматривать как результат разложения вектора Скорость точки по теоретической механике на составляющие по естественному координатному базису. Величина Скорость точки по теоретической механике равна проекции скорости на направление касательной, а проекции скорости на главную нормаль и бинормаль равны нулю. В общем случае Скорость точки по теоретической механике где Скорость точки по теоретической механике — модуль скорости. Если точка движется в положительном направлении, то Скорость точки по теоретической механике и можно записать

Скорость точки по теоретической механике

Определение ускорения

Будем исходить из общей формулы для ускорения

Скорость точки по теоретической механике

Пусть, для определенности, точка движется в положительную сторону отсчета дуг; тогда вектор скорости выражается формулой

Скорость точки по теоретической механике

где Скорость точки по теоретической механике — модуль скорости, Скорость точки по теоретической механике — орт касательной. В общем случае криволинейного движения переменны оба сомножителя в этой формуле; последний — вследствие изменения направления касательной. Поэтому орт Скорость точки по теоретической механике имеет производную по времени, которая выражается формулой

Скорость точки по теоретической механике

где Скорость точки по теоретической механике и Скорость точки по теоретической механике — соответственно орт главной нормали и радиус кривизны траектории в рассматриваемом положении движущейся точки.*

Возможно вам будут полезны данные страницы:

Дифференцируя по времени выражение для скорости, получим

Скорость точки по теоретической механике

Формула выражает ускорение точки в виде суммы составляющих по осям естественной системы координат. Из нее следует, что ускорение имеет на эти оси проекции

Скорость точки по теоретической механике

Первая из них есть проекция ускорения Скорость точки по теоретической механике на касательную и называется касательным ускорением. Вектор касательного ускорения

Скорость точки по теоретической механике

направлен в сторону скорости, если движение ускоренное Скорость точки по теоретической механике и против скорости, если движение замедленное Скорость точки по теоретической механике

Проекция ускорения на главную нормаль называется нормальным ускорением. Модуль Скорость точки по теоретической механике и вектор Скорость точки по теоретической механике нормального ускорения выражаются формулами

Скорость точки по теоретической механике

Так как величина Скорость точки по теоретической механике положительна, нормальное ускорение всегда направлено в сторону орта Скорость точки по теоретической механике то есть по главной нормали в сторону вогнутости траектории.

Проекция ускорения на бинормаль (аь) равна нулю, что означает, что вектор ускорения лежит в соприкасающейся плоскости. Таким образом, ускорение при естественном способе задания движения точки определяется как сумма касательного и нормального ускорений:

Скорость точки по теоретической механике

Это правило дополнительно проиллюстрировано на рис. 87, где случай а) соответствует ускоренному движению точки, а случай б) — замедленному движению. Модуль ускорения в обоих случаях определяется по теореме Пифагора:

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Если точка движется прямолинейно, то нормальное ускорение не Скорость точки по теоретической механике и ускорение состоит только из касательного: Скорость точки по теоретической механике

При равномерном криволинейном движении Скорость точки по теоретической механике наоборот, отсутствует касательное ускорение Скорость точки по теоретической механике и полное ускорение точки равно ее нормальному ускорению: Скорость точки по теоретической механике

Пример с решением №1.

Точка движется по окружности радиуса Скорость точки по теоретической механике согласно закону Скорость точки по теоретической механике Вычислить и построить скорость и ускорение точки в момент Скорость точки по теоретической механике когда она пройдет половину окружности.

В момент Скорость точки по теоретической механике дуговая координата точкиСкорость точки по теоретической механике равна половине длины окружности: Скорость точки по теоретической механике откуда находим

Скорость точки по теоретической механике

Определяем скорость точки в момент Скорость точки по теоретической механике ив расчетный момент Скорость точки по теоретической механике

Скорость точки по теоретической механике

Определяем касательное ускорение

Скорость точки по теоретической механике

Видно, что оно не изменяется с течением времени — точка движется равноускоренно. Это же значение касательное ускорение имеет и в расчетный момент:

Скорость точки по теоретической механике

Определяем нормальное ускорение

Скорость точки по теоретической механике

Определяем полное ускорение в момент Скорость точки по теоретической механике

Скорость точки по теоретической механике

На рис. 88 показаны положения точки в текущий Скорость точки по теоретической механике и расчетный Скорость точки по теоретической механике моменты времени, а также векторы скорости и ускорений точки в момент Скорость точки по теоретической механике

Скорость точки по теоретической механике

В заключение заметим, что от одногоспособа задания движения можно перейти к другим способам. Например, при определении скорости в случае координатного способа описания движения был предварительно сделан переход к векторному способу в виде

Скорость точки по теоретической механике

  • Чтобы перейти от координатного способа к естественному, прежде всего требуется найти уравнение траектории. Как было показано выше, это делается исключением из уравнений движения времени Скорость точки по теоретической механике Закон движения по траектории можно получить на основе равенств

Скорость точки по теоретической механике и Скорость точки по теоретической механике

определяющих скорость точки при естественном и координатном способах задания движения. Приравняв правые части равенств, разрешая полученное соотношение относительно Скорость точки по теоретической механике и интегрируя, находим

Скорость точки по теоретической механике

Это выражение определяет закон движения по траектории в общем

виде.

Если отсчет дуговой координаты вести от начального положения точки в сторону движения, то Скорость точки по теоретической механике радикал положителен, и закон движения примет вид

Скорость точки по теоретической механике

Различают векторный, координатный и естественный (натуральный) способы задания движения.

Векторный способ задания движения состоит в следующем.

Пусть Скорость точки по теоретической механике — движущаяся точка, Скорость точки по теоретической механике — тело отсчета (рис. 72). Выберем в теле Скорость точки по теоретической механике произвольную точку Скорость точки по теоретической механике — точку отсчета, построим вектор Скорость точки по теоретической механике Этот вектор, начало которого совпадает с точкой отсчета Скорость точки по теоретической механике, а конец — с точкой Скорость точки по теоретической механике называется радиусом-вектором точки Скорость точки по теоретической механике При движении точки Скорость точки по теоретической механике радиус-вектор Скорость точки по теоретической механике непрерывно изменяется во времени, поэтому существует некоторая вектор-функция времени

Скорость точки по теоретической механике

Если эта функция известна, то для каждого момента времени Скорость точки по теоретической механике может быть построен вектор Скорость точки по теоретической механике и тем самым найдено положение движущейся точки в этот момент.

Функция (1) называется векторным законом (векторным уравнением) движения точки Скорость точки по теоретической механике

Скорость точки по теоретической механике

При координатном способе задания движения с телом отсчета связывается какая-либо, например декартова прямоугольная, система координат (рис. 73). Движение точки будет задано, если ее координаты будут известны как функции времени

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Зависимости (2), выражающие текущие координаты движущейся точки в виде функций времени, называются уравнениями движения точки в декартовых координатах.

Если точка движется, оставаясь все время в одной плоскости, то оси Скорость точки по теоретической механике можно расположить в той же плоскости и ограничиться двумя уравнениями движения

Скорость точки по теоретической механике

При движении в плоскости часто удобно пользоваться полярной системой координат, задавая положение точки ее полярным углом Скорость точки по теоретической механике и полярным радиусом Скорость точки по теоретической механике (рис. 74). В этом случае уравнения движения точки имеют вид

Скорость точки по теоретической механике

Линия, описываемая движущейся точкой в пространстве, называется траекторией точки. Естественный способ задания движения состоит в задании траектории точки и закона движения по траектории.

Скорость точки по теоретической механике

Пусть траектория точки Скорость точки по теоретической механике суть заданная кривая, Скорость точки по теоретической механике — положение точки на ней (рис. 75). Будем рассматривать траекторию как криволинейную координатную ось, для чего выберем на ней начало отсчета дуг (точку Скорость точки по теоретической механике) и направление отсчета дуг (на рис. 75 направление отсчета дуг выбрано вправо от точки Скорость точки по теоретической механике). Длина дуги Скорость точки по теоретической механике взятая со знаком плюс или минус в зависимости от положения точки Скорость точки по теоретической механике относительно начала отсчета дуг Скорость точки по теоретической механике вполне определяет положение точки в пространстве и называется дуговой координатой точки. Движение точки будет задано, если ее дуговая координата Скорость точки по теоретической механике будет выражена в виде функции времени

Скорость точки по теоретической механике

Зависимость (4) называется законом движения точки по траектории или, что то же самое, законом движения точки в естественной форме.

Пример с решением №2.

Написать уравнения движения точки, движущейся равномерно по окружности радиуса Скорость точки по теоретической механике и делающей Скорость точки по теоретической механике оборотов за одну минуту.

Начнем с естественного способа описания движения. Изображаем траекторию- окружность радиуса Скорость точки по теоретической механике с центром в точке Скорость точки по теоретической механике (рис. 76). Начало отсчета дуг Скорость точки по теоретической механике совместим с положением точки в момент начала наблюдения, то есть при Скорость точки по теоретической механике за положительное направление отсчета выберем направление в сторону движения точки.

Скорость точки по теоретической механике

Пусть Скорость точки по теоретической механике — положение движущейся точки в текущий момент времени Скорость точки по теоретической механике Для центрального угла Скорость точки по теоретической механике который будем отсчитывать в сторону движения точки, согласно условию, можем написать

Скорость точки по теоретической механике

Здесь Скорость точки по теоретической механике измеряется в радианах, Скорость точки по теоретической механике — в секундах.

Длина Скорость точки по теоретической механике дуги Скорость точки по теоретической механике радиус окружности Скорость точки по теоретической механике и центральный угол Скорость точки по теоретической механике связаны геометрическим соотношением

Скорость точки по теоретической механике

Подставляя сюда найденное значение Скорость точки по теоретической механике получаем

Скорость точки по теоретической механике

Это и есть естественной форме.

Для описания движения в координатной форме прежде всего следует выбрать подходящую систему координат, например, изображенную на рис. 77. Далее строят координатные отрезки и определяют соответствующие переменные расстояния. В нашем случае будем иметь:

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Подставляя сюда угол Скорость точки по теоретической механике как функцию времени, получаем уравнения движения в координатной форме

Скорость точки по теоретической механике

Пусть Скорость точки по теоретической механике — координатные орты. Тогда для радиуса-вектора точки Скорость точки по теоретической механике будем иметь:

Скорость точки по теоретической механике

Полученное равенство, выражающее радиус-вектор точки Скорость точки по теоретической механике как функцию времени, служит векторным уравнением ее движения.

Определение траектории, скорости и ускорения точки при векторном способе задания движения

Пусть движение точки Скорость точки по теоретической механике задано векторным способом, то есть задан радиус-вектор точки как функция времени

Скорость точки по теоретической механике

Линия, описываемая концом переменного вектора, начало которого находится в заданной неподвижной точке, называется годографом этого вектора. Отсюда и из определения траектории следует правило: траектория точки есть годограф ее радиуса-вектора.

Пусть в некоторый момент Скорость точки по теоретической механике точка занимает положение Скорость точки по теоретической механике и имеет радиус-вектор Скорость точки по теоретической механике а в момент Скорость точки по теоретической механике — положение Скорость точки по теоретической механикеи радиус-вектор Скорость точки по теоретической механике (рис. 78).

Вектор Скорость точки по теоретической механике соединяющий последовательные положения точки в указанные моменты, называется вектором перемещения точки за время Скорость точки по теоретической механике Вектор перемещения следующим образом выражается через значения вектор-функции (5):

Скорость точки по теоретической механике

Если вектор перемещения поделить на величину промежутка Скорость точки по теоретической механике получим вектор средней скорости точки за время Скорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Будем теперь уменьшать промежуток Скорость точки по теоретической механике устремляя его к нулю. Предел, к которому стремится вектор средней скорости Скорость точки по теоретической механике при неограниченном уменьшении промежутка Скорость точки по теоретической механике называется скоростью точки в момент Скорость точки по теоретической механике или просто скоростью точки Скорость точки по теоретической механике В соответствии со сказанным для скорости получаем:

Скорость точки по теоретической механике

Итак, вектор скорости точки равен производной по времени от ее радиуса-вектора:

Скорость точки по теоретической механике

Поскольку секущая Скорость точки по теоретической механике в пределе (при Скорость точки по теоретической механике) переходит в касательную Скорость точки по теоретической механике приходим к выводу, что вектор скорости Скорость точки по теоретической механике направлен по касательной к траектории в сторону движения точки.

В общем случае скорость точки также переменна, и можно интересоваться быстротой изменения скорости. Скорость изменения скорости называется ускорением точки.

Для определения ускорения Скорость точки по теоретической механике выберем какую-либо неподвижную точку Скорость точки по теоретической механике и будем откладывать из нее вектор скорости Скорость точки по теоретической механике в различные моменты времени. Линия, которую опишет конец Скорость точки по теоретической механике вектора скорости, представляет собой годограф Годограф и скорости (рис. 79). Изменение вектора скорости выражается в том, что геометрическая точка Скорость точки по теоретической механике движется по годографу скорости, а скорость этого движения служит, по определению, ускорением точки Скорость точки по теоретической механике

Скорость точки по теоретической механике

Применив для переменного вектора Скорость точки по теоретической механике все те рассуждения, которые были использованы выше для переменного вектора Скорость точки по теоретической механике для ускорения Скорость точки по теоретической механике получаем:

Скорость точки по теоретической механике

или, при обозначении производной по времени точкой:

Скорость точки по теоретической механике

Формулы (6) — (8) являются наиболее общими формулами кинематики для определения скорости и ускорения.

Определение траектории, скорости и ускорения точки при координатном способе задания движения

Пусть движение точки задано уравнениями движения в декартовых координатах: Скорость точки по теоретической механике

Для каждого момента времени Скорость точки по теоретической механике по этим уравнениям можно определить координаты точки в этот момент и указать ее положение в пространстве. Придавая Скорость точки по теоретической механике всевозможные значения, получим множество положений движущейся точки в пространстве — ее траекторию. Следовательно, уравнения движения одновременно являются уравнениями траектории точки в параметрической форме, причем параметром служит время Скорость точки по теоретической механике. Чтобы получить уравнение траектории в виде зависимости между координатами точки, достаточно из уравнений движения исключить время.

Пример с решением №3.

Движение точки задано уравнениями Скорость точки по теоретической механике (Скорость точки по теоретической механике — в сантиметрах, Скорость точки по теоретической механике — в секундах). Найти уравнение траектории точки в координатной форме.

Для определения уравнения траектории из уравнений движения исключаем время Скорость точки по теоретической механике Для этого из первого уравнения выражаем

Скорость точки по теоретической механике

и подставляем это значение во второе уравнение, преобразованное к функциям одинарного угла:

Скорость точки по теоретической механике

Опуская промежуточные выражения, получаем уравнение траектории

Скорость точки по теоретической механике

Уравнение определяет параболу, расположенную симметрично относительно оси у, с вершиной в точке Скорость точки по теоретической механике Траекторией служит кусок этой параболы, заключенный между точками с координатами Скорость точки по теоретической механике и Скорость точки по теоретической механике (рис. 80).

Скорость точки по теоретической механике

Пример с решением №4.

Определить уравнение траектории, если точка движется согласно уравнениям (Скорость точки по теоретической механике— в сантиметрах, Скорость точки по теоретической механике — в секундах):

Скорость точки по теоретической механике

Для исключения времени Скорость точки по теоретической механике из уравнений движения выразим из этих уравнений Скорость точки по теоретической механике и Скорость точки по теоретической механике

Скорость точки по теоретической механике

Возводя эти равенства в квадрат и почленно складывая, получаем уравнение траектории в координатной форме:

Скорость точки по теоретической механике

Это уравнение эллипса с центром в точке Скорость точки по теоретической механике и с полуосями Скорость точки по теоретической механике Скорость точки по теоретической механике (рис. 81). Траекторией служит вся кривая эллипса.

Скорость точки по теоретической механике

Займемся теперь определением скорости и ускорения.

Зная уравнения движения точки, можно выразить в функции времени радиус-вектор точки (рис. 82):

Скорость точки по теоретической механике

Теперь находим скорость, дифференцируя радиус-вектор по времени:

Скорость точки по теоретической механике

При дифференцировании учитывается, что оси Скорость точки по теоретической механике неподвижны, поэтому координатные орты являются постоянными векторами, и их производные равны нулю.

Полученная формула определяет скорость точки в виде разложения

по координатному базису Скорость точки по теоретической механике Так как коэффициенты при ортах равны проекциям скорости на соответствующие координатные оси, отсюда следуют формулы

Скорость точки по теоретической механике

По известным проекциям находим модуль и направляющие косинусы скорости:

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Аналогичным образом определяется и ускорение. Дифференцируя выражение для вектора скорости, получаем:

Скорость точки по теоретической механике

Откуда для проекций ускорения следуют формулы

Скорость точки по теоретической механике

Проекции ускорения можно выразить также через проекции скорости:

Скорость точки по теоретической механике

Модуль и направляющие косинусы ускорения выражаются равенствами

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Пример с решением №4.

Точка движется в плоскости ху согласно уравнениям

Скорость точки по теоретической механике

где Скорость точки по теоретической механике — заданы в сантиметрах, время Скорость точки по теоретической механике — в секундах, а величины Скорость точки по теоретической механике — заданные постоянные. Найти скорость и ускорение точки в момент, когда она впервые после начала движения пересекает ось Скорость точки по теоретической механике

Скорость и ускорение находим, вычисляя их проекции на координатные оси. Сначала это сделаем для произвольного моментаСкорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Когда точка находится на оси Скорость точки по теоретической механике, выполняется равенство Скорость точки по теоретической механике Подставляя это значение во второе уравнение движения и решая полученное уравнение относительно Скорость точки по теоретической механике находим

Скорость точки по теоретической механике

Момент Скорость точки по теоретической механике соответствует началу движения, а первое после начала движения пересечение оси Скорость точки по теоретической механике происходит при Скорость точки по теоретической механике Подставляя это значение в предыдущие формулы, найдем

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Таким образом, в расчетный момент времени Скорость точки по теоретической механике скорость Скорость точки по теоретической механике ускорение Скорость точки по теоретической механике имеют модули

Скорость точки по теоретической механике

и направляющие косинусы

Скорость точки по теоретической механике

На рис. 83 показана геометрическая картина движения. Траекторией точки служит окружность радиуса Скорость точки по теоретической механике с центром в точке Скорость точки по теоретической механике Подставляя в уравнения движения Скорость точки по теоретической механике находим, что в начальный момент точка находится в положении Скорость точки по теоретической механике Придавая времени Скорость точки по теоретической механике малое положительное значение Скорость точки по теоретической механике и определяя знаки координат Скорость точки по теоретической механике получаем Скорость точки по теоретической механике из чего следует, что точка движется из положения Скорость точки по теоретической механике против хода часовой стрелки. В расчетный момент Скорость точки по теоретической механике она находится в начале координат, имея скорость Скорость точки по теоретической механике и ускорение Скорость точки по теоретической механике

Скорость точки по теоретической механике

Определение скорости и ускорения точки при естественном способе задания движения

Естественные координатные оси и их орты

Пусть заданы траектория точки, начало и направление отсчета дуг. Выберем на траектории произвольным образом точку Скорость точки по теоретической механике и проведем касательную Скорость точки по теоретической механике. Плоскость, проходящая через точку Скорость точки по теоретической механике перпендикулярно к касательной Скорость точки по теоретической механике называется нормальной плоскостью траектории в точке Скорость точки по теоретической механике (рис. 84).

Скорость точки по теоретической механике

Придадим дуговой координате Скорость точки по теоретической механике приращение Скорость точки по теоретической механике и отметим точку Скорость точки по теоретической механике с координатой Скорость точки по теоретической механике Пусть Скорость точки по теоретической механике — касательная к траектории в точке Скорость точки по теоретической механике В общем случае траектория точки — пространственная кривая, поэтому касательные Скорость точки по теоретической механике и Скорость точки по теоретической механике суть скрещивающиеся прямые.

Проведем прямую Скорость точки по теоретической механике параллельную касательной Скорость точки по теоретической механике Прямые Скорость точки по теоретической механике и Скорость точки по теоретической механике образуют плоскость Скорость точки по теоретической механике Предельное положение плоскости Скорость точки по теоретической механике когда точка Скорость точки по теоретической механике‘ неограниченно приближается к точке Скорость точки по теоретической механике называется соприкасающейся плоскостью траектории в точке Скорость точки по теоретической механикеСоприкасающаяся плоскость представляет собой ту из бесконечного множества плоскостей, проходящих через касательную Скорость точки по теоретической механике которая наиболее тесно примыкает к траектории в окрестности точки Скорость точки по теоретической механике В случае плоской траектории соприкасающаяся плоскость совпадает с плоскостью траектории.

Нормальная и соприкасающаяся плоскости взаимно перпендикулярны. Проведем через точку Скорость точки по теоретической механике третью плоскость, перпендикулярную к обеим указанным плоскостям — так называемую спрямляющую плоскость. В итоге получаем прямой трехгранный угол с вершиной в точке Скорость точки по теоретической механике называемый естественным трехгранником траектории в этой точке. Ребрами естественного трехгранника являются касательная Скорость точки по теоретической механике главная нормаль Скорость точки по теоретической механике — линия пересечения нормальной и соприкасающейся плоскостей и бинормаль (вторая нормаль) Скорость точки по теоретической механике — линия пересечения нормальной и спрямляющей плоскостей (рис. 85).

Касательная, главная нормаль и бинормаль взаимно перпендикулярны и после установления на них направлений образуют естественную систему координатных осей. Положительное направление касательной выбирается в сторону возрастания дуговой координаты Скорость точки по теоретической механике и задается ортом касательной Скорость точки по теоретической механике Положительное направление главной нормали задается ортом Скорость точки по теоретической механике который направляют от точки Скорость точки по теоретической механике в сторону вогнутости траектории. Орт бинормали Скорость точки по теоретической механике выбирают согласно правилу Скорость точки по теоретической механике чем обеспечивается правосторонность естественного координатного базиса Скорость точки по теоретической механикеСкорость точки по теоретической механике (см. рис. 85).

Скорость точки по теоретической механике

    В
задачах данного раздела определяются
координаты, скорость, ускорение точки
в любой назначенный момент времени при
различных способах задания движения.
Из всех способов задания движения точки
наибольшее распространение получили
координатный и естественный способы.

    Рассмотрим
вначале координатный способ задания
движения точки. Положение в пространстве
движущейся точки определяется тремя
координатами в декартовой системе
координат. Эти координаты задаются как
функции времени:

                      
(1.1)

    Зависимости
(1.1) называются уравнениями движения
точки в декартовых координатах.

    Если
движение точки происходит в плоскости
ху, то задаются только два уравнения
движения:

x
= x(t);              
y = y (t).

    При
прямолинейном движении точки достаточно
задать одно уравнение движения:

x
= x(t),

если
принять, что ось х совпадает с прямой,
по которой движется точка.

    Скорость
точки представляет собой вектор,
характеризующий быстроту и направление
движения точки в данный момент времени.

    При
задании движения точки уравнениями
(1.1) проекции скорости на оси декартовых
координат равны:

    Модуль
скорости

                               
.
                                         
(1.2)

    Направление
скорости определяется направляющими
косинусами:

.

    Если
движение точки задается в плоскости
ху, то

.

    При
прямолинейном движении по оси х:

.

    Характеристикой
быстроты изменения скорости является
ускорение
а.
Ускорение точки равно производной от
вектора скорости по времени:

.

    При
задании движения точки уравнениями
(1.1) проекции ускорения на координатные
оси равны:

    Модуль
ускорения:

                      
.
                                         
(1.3)

    Направление
ускорения определяется направляющими
косинусами

;
;.

    Если
движение точки задается в плоскости
ху, то
;

;
;.

    При
прямолинейном движении по оси х

;
.

    Далее
рассмотрим естественный способ задания
движения точки.

    Считается,
что движение точки задано естественным
способом, если указаны ее траектория и
закон изменения криволинейной координаты
s = s(t). Уравнение s = s(t) называется
законом движения точки по траектории.
При этом на траектории указывается
начало отсчета, а также положительное
направление отсчета координаты s в виде
стрелки
.

    Модуль
скорости точки определяется по формуле

                              
.
                                                                 
(1.4)

    Вектор
скорости
V направлен по касательной к траектории
в сторону стрелки
,
если,
и в противоположную сторону, если.

    Ускорение
точки определяется как векторная сумма
касательного и нормального ускорений
точки:

а
=
а
+
аn
.

    Модуль
касательного ускорения определяется
по формуле

                             
.
                                                   
(1.5)

    Вектор
касательного ускорения
а
направлен
по касательной к траектории в сторону
стрелки
,
если,
и в противоположную, если.

    Модуль
нормального ускорения определяется по
формуле

                                         
,
                                                            
(1.6)

где

– радиус кривизны траектории в данной
точке.

    Вектор
нормального ускорения
аn
всегда направлен по главной нормали в
сторону центра кривизны траектории.

    Модуль
полного ускорения

                                           
.
                                                          
(1.7)

    Если
движение точки задано координатным
способом, то можно определить параметры
движения, характерные для естественного
способа задания движения.

    Так
можно, например, по уравнениям движения
точки (1.1) найти уравнение ее траектории
в форме зависимости между координатами.
Для этого надо из уравнений движения
исключить время t. Затем можно найти
закон движения точки по траектории s =
s(t), используя формулу (1.4). Из этой формулы
следует, что ds = V dt; с учетом формулы
(1.2) имеем
и

                                       
.
                                                
(1.8)

    В
законе движения (1.8) за начало отсчета
координаты s принимается начальное
положение точки, когда t = 0. Знак “плюс”
или “минус” перед интегралом ставится
в зависимости от выбора положительного
направления отсчета координаты s: если
движение точки начинается в сторону
стрелки
,
то следует брать знак “плюс”, в противном
случае – знак “минус”.

    Рассмотрим
вначале методику решения задач, в которых
движение точки задано координатным
способом. Уравнения (1.1) определяются
либо из геометрических условий, либо в
результате интегрирования дифференциальных
уравнений движения точки. Интегрирование
дифференциальных уравнений движения
точки рассматривается в разделе “Динамика
точки”, который не входит в данное
пособие. Получение уравнений (1.1) с
использованием геометрии движения
рассмотрим на примере исследования
движения точки обода колеса.

Задача
1.1 (3)

Задача
1.2 (1)

Задача
1.3 (2)

Задача
1.4 (4)

Задача
1.5 (4)

Задача
1.6 (5)

Задача
1.7 (6)

Задача
1.8 (7)

Задача
1.1 (3)

    Найти
уравнения движения точки М обода колеса
радиуса R вагона, который движется по
прямолинейному участку пути со скоростью
V. Колесо катится без скольжения. Точка
М в начальный момент движения соприкасалась
с рельсом, т.е. занимала положение М0
(рис. 1.1).

Рис.
1.1

    Решение

    Изобразим
на расчетной схеме (рис. 1.1) оси координат
х и у, начало координат поместим в
начальное положение точки М0.

    Рассмотрим
два положения колеса: в начальный момент
t = 0 и в текущий момент времени t.

    Отметим
положение точки М на ободе колеса и
положение центра С колеса в момент t,
координаты точки: xм
= М0В,
ум
= МВ.

    Расстояние
от центра колеса до рельса остается
постоянным и равным R; это значит, что
центр C колеса движется по прямой,
параллельной оси х. За время t центр
колеса переместится на расстояние C0C
= Vt (закон равномерного движения точки
C), одновременно колесо повернется на
угол 
.

    Чтобы
получить уравнения движения точки М,
надо координаты этой точки представить
как функции времени.

    Из
расчетной схемы (рис. 1.1) видно, что

хм
= C0C
– ЕС, ум
= ВЕ – МЕ;

или

хм
= Vt – ЕС, ум
= R – МЕ.

    Из
треугольника МЕС имеем;

МЕ
= Rsin (90
– 
) = Rcos
,

ЕC
= Rcos (90
– 
) = Rsin
,

Тогда
хм
= Vt – Rsin
, (a)

ум
= R – Rcos
.

    Найдем
зависимость угла 
от времени t: так как колесо катится без
скольжения, то длина дуги АМ окружности
обода колеса (рис.1.1) равна длине отрезка
М0А.

    При
этом

М0А
= С0С
= Vt ,

но
длина дуги АМ равна также произведению
радиуса R на центральный угол 
; поэтому Vt = R
, отсюда
.

    Теперь
уравнения (а) будут иметь вид

;
                
.

    Полученные
уравнения представляют собой уравнения
движения точки М. В аналитической
геометрии показано, что это параметрические
уравнения циклоиды (параметром в данном
случае является время t). Таким образом,
траектория точки обода колеса, движущегося
по прямолинейному участку пути без
проскальзывания, является циклоидой.
Длина одной ветви циклоиды L (рис. 1.1)
равна 2
R, высота – H = 2R.

Задача
1.2 (1)

    Даны
уравнения движения точки:

      
;       
(х,
у – м; t – с).                          
(б)

  1. Определить
    уравнение траектории и построить ее.

  2. Определить
    начальное положение точки на траектории.

  3. Указать
    моменты времени, когда точка пересекает
    оси координат.

  4. Найти
    закон движения точки по траектории s =
    s(t), принимая за начало отсчета расстояний
    начальное положение точки.

  5. Построить
    график движения точки.

    Решение

    1.
Для получения уравнения траектории
вида F(x, y) = 0 исключим из уравнений
движения (б) время t: из первого уравнения
системы (б) найдем

,

подставляя
это выражение во второе уравнение той
же системы, получим уравнение траектории

y
= x + 5.

Рис.
1.2

Это
– уравнение прямой линии. Для построения
прямой представим ее уравнение в
отрезках

,

где а– отрезок, отсекаемый прямой на оси
х, b – отрезок, отсекаемый прямой на
оси у. В данном случаеа= -5 м, b = 5 м. Откладываем на оси х отрезока= -5 м,
по оси у – отрезок b = 5 м. Через полученные
точки проводим прямую (рис. 1.2).

    2.
Для определения положения точки в
начальный момент времени необходимо
подставить значение t = 0 в уравнения
движения (б)

м;

м.

Точка
при t = 0 занимает положение М0
(-1;4).

    3.
В момент пересечения точкой оси у
координата х равна нулю, а первое
уравнение системы (б) примет вид:

.

Отсюда

где
n = 0, 1, 2 …

    В
момент пересечения точкой оси х координата
у равна нулю, а второе уравнение системы
(б) примет вид:

или
.

Но
косинус не может быть больше 1.
Следовательно, точка не пересекает ось
х (см. об этом также п. 4 решения задачи).

    4.
Для определения закона движения точки
по траектории воспользуемся формулой
(1.8). За начало отсчета координаты s примем
начальное положение точки М0.
Подставляя в уравнения (б) значения t >
0, видим, что с выходом из начального
положения М0
координаты точки х и у увеличиваются.
Это направление движения точки примем
за положительное направление отсчета
координаты s (см. стрелку
на
рис. 1.2), а в формуле (1.8) оставим знак
“плюс”:

.

    Учитывая,
что

получим

или

                                         
.
                                                      
(в)

    Из
закона (в) следует, что координата s не
может быть отрицательной, т.е. точка
движется по полупрямой М0М
(рис.1.2) и ось х не пересекает (см. по этому
поводу п. 3 решения задачи).

    5.
График движения точки – это графическое
представление зависимости расстояния
s от времени t. Для построения такого
графика по оси абсцисс откладывают
последовательные значения времени t, а
по оси ординат – соответствующие им
значения расстояния s. Построенные точки
соединяют плавной линией. График
зависимости (в) можно построить быстрее,
если воспользоваться известным графиком
косинуса. Для этого вначале построим
график функции
(штриховая
линия на рис. 1.3), затем этот график
сместим вдоль оси s на величинум.

Рис.
1.3.

Задача
1.3 (2)

    Даны
уравнения движения точки:

          
;       
(х,
у – см; t – с ).                            
(г)

  1. Определить
    уравнение траектории и построить ее.

  2. Определить
    начальное положение точки на ее
    траектории.

  3. Найти
    закон движения точки по траектории s =
    s(t), принимая за начало отсчета расстояний
    начальное положение точки.

  4. Определить
    время T прохождения точкой полной
    окружности.

    Решение

Рис.
1.4

1. Чтобы найти уравнение траектории
точки необходимо из уравнений движения
(г) исключить время t. Для этого уравнения
движения (г) разрешим относительно
ии
возведем полученные результаты в
квадрат

;

,

    сложим
эти уравнения и после преобразования
получим

.

    Это
уравнение окружности радиуса R = 5 см,
центр окружности расположен в точке
С (-2,5; 5) (рис. 1.4).

    2.
Для определения начального положения
точки подставим значение времени t = 0 в
уравнения (г)

х0
= 5 соs0 – 2,5 = 2,5 см; у0
= 5 sin0 – 5 = 5 см;

    Точка
при t = 0 занимает положение М0
(2,5; 5).

    3.
Для определения закона движения точки
по траектории воспользуемся формулой
(1.8). За начало отсчета координаты s примем
точку M0.
Из системы уравнений (г) видно, что с
увеличением времени t от нуля x уменьшается,
а y увеличивается.

    Такое
возможно, если после выхода из начального
положения точка будет двигаться по
окружности против часовой стрелки. Это
направление движения точки примем за
положительное направление отсчета
координаты s (см. стрелку
на
рис. 1.4), а в формуле (1.8) перед интегралом
оставим знак “плюс”:

,
где
;.

    Отсюда

                                              
;
.
                                          
(д)

    4.
Определим время Т прохождения точкой
полной окружности.
Т – время, по
истечении которого s в формуле (д) станет
равным длине окружности 2
R:

                                       
.

    Отсюда
с.

Задача
1.4 (4)

    Даны
уравнения движения точки:

                              
;
               
y = t (x, y – м; t – с ).                                
(е)

  1. Определить
    уравнение траектории точки.

  2. Определить
    скорость и ускорение точки при t = 0 и t
    = 1 с.

  3. Построить
    траекторию и указать полученные векторы
    скорости и ускорения на чертеже.

    Решение

    1.
Уравнение траектории получается
подстановкой в первое уравнение системы
(е) величины t = y, полученной из второго
уравнения этой системы:

                                                  
.
                                                            
(ж)

    2.
Модуль скорости точки определяется по
формуле
,
где
проекции вектора скорости на координатные
оси. Для заданного движения (е) имеем

,
                            
м/c.

    При
t = 0                  
,м/c.

    Модуль
скорости V0
= 1 м/c.

    При
t = 1 с,          
м/c,м/c.

    Модуль
скорости V1
= 4,82 м/с.

    Модуль
ускорения точки определяется по формуле
,
где,
проекции вектора ускорения на координатные
оси. Для заданного движения (е) имеем

                               
,
                          
.

    При
t = 0             
м/с2
,
               
.

    Модуль
ускорения a0
= 7,4 м/с2.

    При
t = 1 с                  
,.

    Модуль
ускорения a1
= 0.

    3.
Траектория точки (ж) представляет собой
косинусоиду.

Рис.1.5

Для
построения траектории найдем по
уравнению (ж) пять точек, задавшись
пятью значениями у: у = 0, 1, 2, 3, 4, М0(3;
0), М1(0;
1), М2(-3;
2), М3(0;
3), М4(3;
4). По этим точкам построена траектория
на рис. 1.5.   Определим положение
точки в моменты времени t = 0 и t = 1 с,
учитывая (е). При t = 0 x0
= 3 м, y0 =
0, точка занимает положение М0(3;
0).

  При
t = 1 с x1
= 0, y1 =
1 м, точка занимает положение М1(0;
1). Для этих положений точки построим
векторы скорости и ускорения. От точки
M0
отложим проекции скорости V0x = 0
и V0y = 1
м/с (см. п.2); направление вектора 
V0
показано на рис. 1.5. Вектор скорости 
V1
построим следующим образом: через точку
M1
проведем оси
и,
осьпараллельна
оси x, а осьсовпадает
с осью y. Вдоль этих осей от точки M1
отложим отрезки, равные проекциям V1x
и V1y

учетом их знаков); затем построим
прямоугольник, диагональ которого есть
вектор 
V1.
Модуль вектора ускорения
a0
равен модулю проекции a0x
(см. п. 2), 
a0
направлен от точки M0
в сторону, противоположную положительному
направлению оси x (cкорости 
V0,

V1
должны совпадать с касательными к
траектории соответственно в точках M0
и M1.
Вектор
a0
должен быть направлен от точки M0
внутрь кривой).

Задача
1.5 (4)

    Даны
уравнения движения точки:

                       
;
         
(х,
у – м; t – с ).                     
(з)

  1. Определить
    уравнение траектории точки.

  2. Определить
    скорость и ускорение точки при t = 1 с.

  3. Построить
    траекторию и указать полученные векторы
    скорости и ускорения на чертеже.

    Решение

    1.
Для того чтобы получить уравнение
траектории, необходимо из уравнений
движения (з) исключить время. Запишем
эти уравнения в виде

,
.

    Возведем
оба уравнения в квадрат, вычтем второе
из первого и получим уравнение траектории:

                                                  
x2
– y2
= 42.
                                                              
(и)

    Это
уравнение равнобочной гиперболы, полуось
которой b = 4 м.

    2.
Определим проекции скорости

    В
заданный момент времени t = 1с, V1x
= 4,68 м/с, V
=
6,16 м/с
модуль скорости
м/с.

    Определим
проекции ускорения

м/с2,
           
м/с2
.

    В
момент времени t = 1с, а1x
= 6,16 м/с2,
а
=
4,68 м/с2
модуль
ускорения
м/с2.

    3.
Построим траекторию точки по уравнению
(и). Действительной осью гиперболы
является ось х (рис. 1.6). На траектории
найдем точку М1,
соответствующую моменту времени t = 1 с.
Координаты этой точки: x1 = 2(e +
e-1)
= 6,16 м; y1 = 2(e –
e-1)
= 4,68 м; M1
(6,16; 4,68).

Рис.
1.6

Вектор
скорости построим следующим образом:
через точку М1
проведем оси
и,
параллельные соответствующим осям x и
y; вдоль этих осей от точки М1
отложим отрезки, равные проекциям V1x
и V1y
(с учетом их знаков). Диагональ
прямоугольника, построенного на этих
отрезках, есть вектор
V1.
Вектор ускорения
a1
строим подобным образом: от точки М1
вдоль оси
отложим
отрезок, равный проекцииa1x,
а вдоль оси
отложим
отрезокa1y.
Затем на этих отрезках строим прямоугольник,
диагональ которого есть вектор
a1.
Вектор скорости
V1
должен быть направлен по касательной
к траектории в точке M1,
а вектор ускорения
a1
должен быть направлен от точки M1
внутрь кривой.    
Задача 1.6 (5)

Рис.
1.7

Даны уравнения
движения точки М шатуна АВ
кривошипно-ползунного механизма
(рис. 1.7):

(х,
у – м; t – с ).        
(к)

  1. Определить уравнение траектории
    точки.

  2. Определить
    скорость и ускорение точки в момент,
    когда она пересечет прямую y = 20 см.

    Решение

1.
Чтобы определить уравнение траектории,
следует исключить время из уравнений
движения (к). Учитывая, что

,

получим
.

Траектория
представляет собой эллипс с полуосями
20 см и 40 см.

    2.
Определим время Т, когда точка пересечет
прямую у = 20 см, первое уравнение системы
(к) в этот момент примет вид:
20 = 40 sin2
t, отсюда следует
с.

    Найдем
величины скорости и ускорения по
значениям их проекций в момент времени
с:

см/с;
               
см/с.

    Модуль
скорости
см/с.

    Проекции
ускорения

см/с2;

см/с2.

    Модуль
ускорения

см/с2.

Задача
1.7 (6)

    Дан
закон движения точки по окружности
радиуса R = 5 м:

                 
(s
– см; t –с ).                                             
(л)

  1. Определить
    скорость и ускорение точки при t = 0 и t1
    = 10 с.

  2. Определить
    моменты остановки точки.

  3. Определить
    путь, пройденный точкой за 10 с.

    Решение

Рис. 1.8

1. На траектории
отметим точку O – начало отсчета
координаты s и укажем положительное
направление отсчета этой координаты
стрелкой
(рис.
1.8). Отметим положение точки в моменты
времени t = 0 и t1= 10 с. При t = 0
s0= -15 см; при t1= 10 с s1= 355 см. Положение точек M0и M1указано на рис. 1.8. Проведем из точек
M0и M1естественные оси
координат0,
n0;1,
n1.

Определим
проекцию скорости на касательную
,
учитывая (л),

                                          
.
(м)

При
t = 0,                 
V
o
= 162 см/с             
и t1
= 10 c                
V
1
= 12 см/с.

    Теперь
отложим найденные проекции скорости
из точек M0
и M1
по соответствующим касательным: V
o
– по касательной 
o,
V
1
– по касательной 
1.
Векторы 
Vo
и 
V1
совпадают со своими проекциями V
o
и V1.

Определим
проекции ускорения на естественные оси
координат, учитывая (л),

см/с2;
см/с2.

    Ускорение
точки
.

При
t = 0                       
см/с2;
                   
см/с2;

см/с2.

При
t1
= 10 с             
см/с2;
                     
см/с2;

см/с2.

    Отложим
из точек M0
и M1
по естественным осям проекции аo,
аno,
а
1,
аn1.
Векторы
a0,
a1
изображаются диагоналями прямоугольников,
построенных на проекциях ускорений.

    2.
Чтобы найти моменты остановки, необходимо
найти время t*, когда скорость точки
равна нулю. Из уравнения (м) получим

3(t*)2
– 45t* + 162 = 0.

    Решив
это уравнение, будем иметь t1*
= 6 с, t2*
= 9 с.

    3.
Поскольку за 10 с точка сделала две
остановки (см. п. 2), пройденный ею путь
за 10 с можно найти как сумму пути,
пройденного точкой от начального
положения до первой остановки, пути,
пройденного точкой от первой до второй
остановки, и пути, пройденного точкой
от второй остановки до момента времени
t1
= 10 с, т.е.

,

где
s0
= -15 см;

см;

см;

см.

Путь,
пройденный точкой за 10 с, равен

 см.

Задача
1.8 (7)

    По
заданным уравнениям движения точки:

       
;
               
(х,
у – м; t – с)                         
(н)

найти
ее касательное и нормальное ускорение,
а также радиус кривизны траектории для
заданного момента времени t1
= 0,5 
с.

    Решение

    Заданные
уравнения движения точки (н) позволяют
найти проекции скорости точки, м/с,

;

.

    Модуль
скорости, м/с,

                                    
.
                                  
(о)

    В
момент времени t1
= 0,5 
с V1
= 2 м/с.

    Проекции
ускорения точки, м/с2:

.

    Модуль
полного ускорения, м/с2

                                   
.
                                      
(п)

    В
момент времени t1
= 0,5 
                        
са
= 2 м/с2.

    Зная
выражение скорости, как функции времени
t (о), определим модуль касательного
ускорения точки, м/с2,
по формуле (1.5)

                                          
.
                                       
(р)

    В
момент
см/с2.

    По
полному ускорению (п) и касательному
ускорению (р) найдем модуль нормального
ускорения точки для
с,
учитывая формулу (1.7)

м/с2.

    Нормальное
ускорение аn1
и радиус кривизны траектории 
1
связаны зависимостью (1.6), из которой
следует, что при
с

м.

15 мая 2014

Иногда в задаче 6 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» заданий 6.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=xleft( t right)$, то $v$ мы можем посчитать следующим образом:

[v={S}’={x}’left( t right)]

Точно так же мы можем посчитать и ускорение:

[a={v}’={{S}’}’={{x}’}’left( t right)]

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

Материальная точка движется по закону:

[xleft( t right)=-frac{1}{5}{{t}^{5}}+{{t}^{4}}-{{t}^{3}}+5t]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

[v={S}’={x}’left( 2 right)]

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

[{x}’left( t right)=-frac{1}{5}cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

[{x}’left( t right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

Нам требуется найти производную в точке 2. Давайте подставим:

[{x}’left( 2 right)=-{{2}^{4}}+4cdot {{2}^{3}}-3cdot {{2}^{2}}+5=]

[=-16+32-12+5=9]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

[xleft( t right)=frac{1}{3}{{t}^{3}}-4{{t}^{2}}+19t-11]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

[{x}’left( t right)=frac{1}{3}cdot 3{{t}^{2}}-4cdot 2t+19]

[{x}’left( t right)={{t}^{2}}-8t+19]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

[{{t}^{2}}-8t+19=3]

[{{t}^{2}}-8t+16=0]

[{{left( t-4 right)}^{2}}=0]

[t-4=0]

[t=4]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Смотрите также:

  1. Не допускайте таких ошибок, когда видите график производной в задаче 6 из ЕГЭ по математике!
  2. ЕГЭ 2022, задание 6. Касательная и квадратичная функция с параметром
  3. Схема Бернулли. Примеры решения задач
  4. Комбинаторика в задаче B6: средний тест
  5. Как решать задачи про летающие камни?
  6. B4: счетчики на электричество

Скоростью точки называют кинематическую меру ее движения, равную производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета.

Скорость относительно выбранной системы отсчета это одна из основных характеристик движения точки.

Вектор скорости направлен по касательной к траектории точки в сторону движения.

Рассмотрим перемещение точки за малый промежуток времени Δt:

тогда

средняя скорость точки за промежуток времени Dt.

Наш видеоурок по теме:

Другие видео

Скорость точки в данный момент времени

скорость точки

Скорость точки при векторном способе задания движения

Положение движущейся точки М относительно системы отсчета в момент времени t1 определяется радиус-вектором r.

Скорость точки при векторном способе задания движения

Рис. 1

В другой момент времени t1=t+Δt точка займет положение М1 с радиус-вектором r1.

За время Δt радиус-вектор движущейся точки изменится на

Средней скоростью vср называется отношение изменения радиус-вектора Δr к изменению времени Δt.

Скорость точки равна первой производной по времени от ее радиус-вектора.

Скорость точки при координатном способе задания движения

Разложим радиус-вектор и скорость на составляющие, параллельные осям координат. Получим

После дифференцирования

Отсюда следует

Проекция скорости точки на какую-либо координатную ось равна первой производной по времени от соответствующей координаты этой точки.

Модуль скорости и направляющие косинусы равны:

Если точка движется в плоскости, то, выбрав оси координат Ox и Oy в этой плоскости, получим:

Для прямолинейного движения точки координатную ось, например ось Ox, направляем по траектории. Тогда

Скорость точки при естественном способе задания движения

Пусть скорость точки задана естественным способом, т.е. заданы траектория точки и закон ее движения по траектории s=f(t).

Скорость точки при естественном способе задания движения

Рис. 2

Вычислим скорость точки. Используем радиус-вектор r. движущейся точки, начало которого находится в неподвижной точке O1


— единичный вектор, направленный по касательной к траектории в сторону возрастающих расстояний.

При ds>0 направления векторов τ и dr совпадают.

Если точка движется в сторону убывающих расстояний, то ds<0 и направления векторов τ и dr противоположны.

При

вектор скорости направлен по τ, т.е. в сторону возрастающих расстояний;

при

он имеет направление, противоположное τ, т.е. в сторону убывающих расстояний.


— алгебраическая скорость точки, проекция скорости v на положительное направление касательной к траектории.

Естественное задание движения точки полностью определяет скорость по величине и направлению.

Примеры решения задач >
Ускорение точки >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Содержание:

Координатный способ определения движения точки:

При координатном способе определения движения точки должны быть даны уравнения движения, т. е. заданы координаты точки как функции времени:
Координатный способ определения движения точки в теоретической механике

Задание движения точки в прямоугольных координатах

Как известно из курса аналитической геометрии, положение точки M в пространстве может быть определено положением ее проекций P, Q и R на три взаимно перпендикулярные оси (рис. 84), называемые осями координат.

Координатный способ определения движения точки в теоретической механике
Рис. 84

Положение точки P на оси Ox вполне определяют абсциссой х. Совершенно так же положение точек Q и R определяют ординатой у и аппликатой z.

Если точка M движется относительно осей xOyz, то проекции Р, Q и R перемещаются по осям и координаты точки M изменяются.

Для определения движения точки M нужно знать ее координаты для каждого мгновения, выразить их в функциях времени.

x = x(t),    (58′)
y = y(t),    (58″)
z = z(t), (58″‘)

Эти функции непрерывны, так как точка не может из одного положения перейти в другое, минуя промежуточные. Они должны быть однозначны, так как точка занимает в пространстве в каждое мгновение только одно положение.

Соотношения (58) называют кинематическими уравнениями движения точки в прямоугольных координатах, а способ определения движения точки посредством соотношений (58) называют координатным способом определения движения точки. Это название неточно, потому что, кроме прямолинейных прямоугольных координат, существует множество других координатных систем.

Если траектория точки лежит в одной плоскости, то движение точки определяют двумя уравнениями в системе координат xОy: x=x(t), y=y(t).

Следовательно, при координатном способе задания движения точки в пространстве нужно задать ее три координаты, а на плоскости—две координаты как функции времени. Если точка движется прямолинейно, то, приняв прямую, по которой она движется, за ось абсцисс, мы определим движение точки одним уравнением

x = x(t).

Если движение точки задано в координатной форме, то для определения ее траектории надо из уравнений движения исключить время

Уравнение траектории

Можно определить траекторию точки, если в уравнениях движения (58) давать аргументу t различные значения и, вычислив соответствующие значения функций, отмечать положения точки по ее координатам. Следовательно. кинематические уравнения движения точки (58) можно
рассматривать как уравнения ее траектории в параметрической форме, а время — как независимый переменный параметр.

Однако более удобно получить уравнение траектории, исключив время из уравнений (58). В самом деле, траекторией называют геометрическое место всех положений движущейся точки, но в геометрии нет понятия времени, а поэтому для получения уравнения траектории нужно из кинематических уравнений движения (58) исключить время t. Если точка движется в плоскости, то, исключив время из уравнений (58′) и (58″), мы получим соотношение, связывающее х и у:

f(x, у) = 0.    (59)

Это уравнение плоской кривой—траектории точки. Если же движение задано тремя уравнениями (58), то, исключив время, получим два уравнения между тремя координатами:
Координатный способ определения движения точки в теоретической механике    (59/)

выражающие, как известно из аналитической геометрии, кривую (траекторию) в пространстве. Точнее говоря, уравнения (59) или (59′) выражают кривую, которая полностью или в некоторой своей части является геометрическим местом всех положений движущейся точки.

Иногда бывает нужно выразить в естественной форме движение точки, заданное в прямоугольных координатах уравнениями (58), и, кроме уравнения траектории, дать также уравнение (51) движения точки по траектории. Чтобы его получить, надо продифференцировать уравнения (58) и полученные дифференциалы координат точки подставить в известную из курса высшей математики формулу, выражающую абсолютную величину элемента дуги:

Координатный способ определения движения точки в теоретической механике    (60)

Проинтегрировав (60), мы получим уравнение (51), выражающее длину дуги s как функцию времени, или, что то же, закон движения точки по траектории.

Задача №1

По заданным уравнениям движения точки в координатной форме найти уравнение траектории и уравнение движения по траектории:

1)    х = 5 cos 2t,       y = 3+5sin 2t;
2)    x=21,2 sin2 t,    у = 21,2 cos 2t.

В обоих примерах за единицу длины принят сантиметр, за единицу времени — секунда.

Решение. Чтобы определить уравнение траектории по уравнениям движения, перенесем во втором из заданных уравнений 3 влево, возведем оба уравнения в квадрат и, сложив, получим

x2 + (y-3)2 = 25.

Это уравнение окружности с центром в точке: x = 0, y = +3.

Чтобы получить закон движения, продифференцируем заданные уравнения: dx=—10 sin 2t dt, dy = 10 cos 2t dt.

Возводя в квадрат, складывая, извлекая квадратный корень и интегрируя, находим закон движения по траектории:
s=10t + C, где C = s0.

2) Исключим время из уравнений движения во втором примере:

x+y = 21,2.

Это уравнение первого порядка относительно х и у, следовательно, траектория-прямая линия. Прямая отсекает на положительных направлениях осей координат отрезки по 21,2 см. Однако не вся прямая служит траекторией точки: из заданных уравнений видно, что х и у должны быть всегда положительны и не могут быть больше 21,2 см каждый, поэтому траекторией точки является лишь отрезок прямой x+y = 21,2, лежащей в первом квадранте (рис. 85).

Координатный способ определения движения точки в теоретической механике
Рис. 85

На этом примере мы видим, что траекторией точки иногда является лишь часть линии, выражаемой уравнением траектории.

Продифференцируем уравнения движения:

dx = 21,2 ∙ 2 sin t cos t dt,
dy = 21,2 ∙ 2 sin t cos t dt.

Теперь no формуле (60) нетрудно найти элемент дуги траектории:

Координатный способ определения движения точки в теоретической механике

ля получения уравнения (51) движения точки по траектории остается лишь проинтегрировать найденное выражение. Интегрируем и подставляем начальные условия (при t= 0, s0 = 0):

Координатный способ определения движения точки в теоретической механике

Ответ. Уравнения траекторий x2+(y-3)2= 25 и x+y=21,2; уравнения движения по траектории s=10t+s0 и s = 30 sin 2t.

Задача №2

Движение точки задано уравнениями:
х = x’ cos φ (t)—y’ sin φ (t),
y = x’ sin φ (t) + y’ cos φ (t),

где х’ и у’ — некоторые постоянные величины, a φ(t)— любая функция времени. Определить траекторию точки.

Решение. Возведем каждое из уравнений в квадрат, а затем сложим их:

x2 + y2 = χ‘2 + y‘2.

По условию, х’ и у’ — постоянные. Обозначая сумму их квадратов через r2, получим

x2 + y2 = r2.

Ответ. Окружность с центром в начале координат радиуса Координатный способ определения движения точки в теоретической механике.

Задача №3

Поезд длиной l м сначала идет по горизонтальному пути (рис. 86, а), а потом поднимается в гору под углом 2α к горизонту. Считая поезд однородной лентой, найти траекторию его центра тяжести.

Координатный способ определения движения точки в теоретической механике
Рис. 86

Решение. Для решения задачи нужно определить координаты центра тяжести поезда, найти уравнения движения центра тяжести и исключить из них время.

Направим оси координат по внутренней и внешней равиоделяшнм угла 2α (рис. 86, б). Траектория центра тяжести поезда не зависит от скорости поезда. Для простоты подсчетов предположим, что он идет равномерно со скоростью υ м/сек и в начальное мгновение t=0 подошел к горе.

Тогда за время t сек на гору поднимется υt м состава поезда и останется на горизонтальном пути l — υt м. Будем считать, что единица длины поезда весит γ. 

Применяя формулы (48), найдем координаты центра тяжести поезда:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Координаты центра тяжести представлены здесь как функции времени, следовательно, полученные соотношения являются уравнениями движения центра тяжести поезда. Определяя t (или υt) из первого уравнения и подставляя во второе, найдем уравнение траектории:

Координатный способ определения движения точки в теоретической механике

Ответ. Парабола.

Задача №4

Мостовой кран движется вдоль цеха согласно уравнению х = t; по крану катится в поперечном направлении тележка согласно уравнению у = 1,5t (х и у—в м, t — в сек). Цепь укорачивается со скоростью t>=0,5. Определить траекторию центра тяжести груза (в начальном положении центр тяжести груза находился в горизонтальной плоскости хОу, ось Oz направлена вертикально вверх).

Решение. В условии задачи даны лишь два уравнения движения и вертикальная скорость груза:

Координатный способ определения движения точки в теоретической механике

откуда dz = 0,5dt, и легко получаем третье уравнение:

z = 0,5t

Определив t из первого уравнения, подставим во второе и в третье:

y= 1,5x, z = 0,5x

Координаты груза должны удовлетворять одновременно обоим уравнениям, т. е. траектория лежит одновременно в обеих плоскостях и является линией их пересечения.
Ответ. Прямая.

Алгебраическая величина скорости проекции точки на координатную ось равна первой производной от текущей координаты по времени:
Координатный способ определения движения точки в теоретической механике

Алгебраическая величина скорости проекции точки на ось

Пусть движение точки M определяется тремя уравнениями:
x =x(t),    (58′)
y = y(t),   (58″)
z = z(t).    (58″‘)

По мере движения точки M в пространстве ее проекции P, Q и R движутся по своим прямолинейным траекториям, т. е. по осям координат, и их движения вполне соответствуют движению точки М.

Так, координата (абсцисса) точки P всегда равна абсциссе точки М, а координаты точек QnR всегда равны ординате и аппликате точки М. Следовательно, при движении точки M в пространстве согласно уравнениям (58) точка P движется по оси Ox согласно уравнению (58′), а точки Q и R— соответственно по осям Oy и Oz согласно уравнениям (58″) и (58″‘).

Таким образом, движение точки M в пространстве можно разложить на три прямолинейных движения ее проекций P, Q и R.

Определим скорость υp точки P при движении этой точки по ее прямолинейной траектории Ох, иными словами, определим скорость проекции точки M на ось Ох.

Алгебраическая величина скорости выражается по формуле (53), причем дифференциалом расстояния точки P является дифференциал абсциссы х, а поэтому

Координатный способ определения движения точки в теоретической механике    (61)

Следовательно, алгебраическая величина скорости проекции P точки M на координатную ось равна первой производной от текущей координаты х по времени t. Она положительна, если точка P движется в положительном направлении оси Ох, и отрицательна, если точка P движется в отрицательном направлении.
Аналогично получаем алгебраические скорости проекций Q и R на ось Oy и на ось Oz:

Координатный способ определения движения точки в теоретической механике    (61″)

Координатный способ определения движения точки в теоретической механике     (61″‘)   

Чтобы получить векторы скоростей проекций, надо умножить величины (61) на единичные векторы:
Координатный способ определения движения точки в теоретической механике     (61)   

Алгебраическая величина скорости проекции точки на ось равна проекции скорости той же точки на туже ось:

Координатный способ определения движения точки в теоретической механике

Скорость проекции и проекция скорости

Пусть точка М за бесконечно малый отрезок времени dt передвинулась по своей траектории на элемент дуги ds, абсолютную величину которого выразим формулой (60):
Координатный способ определения движения точки в теоретической механике

где dx, dy и dz — проекции элемента дуги на оси координат, или, Что то же, элементарные приращения координат точки М.

На рис. 87 эти элементы условно изображены конечными отрезками. Как видно из чертежа, косинусы углов, составляемых элементарным перемещением (а следовательно, и скоростью точки), с осями х, у и z соответственно равны

Координатный способ определения движения точки в теоретической механике     (62)   

Величина скорости точки M может быть определена по (53):

Координатный способ определения движения точки в теоретической механике

Чтобы определить проекцию скорости Координатный способ определения движения точки в теоретической механике на какую-либо ось, надо умножить абсолютную величину скорости на косинус угла между  направлением скорости и направлением этой оси. Таким образом, для проекций скорости точки M на оси координат имеем:

Координатный способ определения движения точки в теоретической механике   (63′)

Координатный способ определения движения точки в теоретической механике   (63″)

Координатный способ определения движения точки в теоретической механике    (63″‘)

Координатный способ определения движения точки в теоретической механике
Рис. 87

Равенства (63) словами нужно читать так: проекция скорости точки на ось равна алгебраической скорости проекции точки на ту же ось.

Задача №5

Доказать, что проекция Координатный способ определения движения точки в теоретической механике скорости Координатный способ определения движения точки в теоретической механике точки M (х, у, z) иа плоскость хОу равняется скорости Координатный способ определения движения точки в теоретической механике, с которой движется по плоскости проекция M1 (х, у, О) точки M на ту же плоскость.

Решение. Скорость Координатный способ определения движения точки в теоретической механикеточки M составляет с осью Oz угол γυ, следовательно, угол, составляемый ею с плоскостью хОу, равен 90° — yυ п косинус этого угла равен sinγυ. Поэтому модуль проекции скорости точки M на плоскость хОу

Координатный способ определения движения точки в теоретической механике

Подводя Координатный способ определения движения точки в теоретической механикепод радикал и выражая cosγυ, по формуле (62), мы убедимся, что проекция скорости на плоскость равна по величине скорости проекции:

Координатный способ определения движения точки в теоретической механике

Направления векторов Координатный способ определения движения точки в теоретической механике и Координатный способ определения движения точки в теоретической механикетоже совпадают, так как направляющие косинусы их одинаковы. Теорема доказана.

Модуль скорости точки равен квадратному корню из суммы квадратов проекций скорости на оси координат:
Координатный способ определения движения точки в теоретической механике

Модуль скорости. Возведем в квадрат каждое из равенств:
Координатный способ определения движения точки в теоретической механике   (63)

и сложим их:

Координатный способ определения движения точки в теоретической механике

Сумма квадратов направляющих косинусов равна единице и

Координатный способ определения движения точки в теоретической механике

или

Координатный способ определения движения точки в теоретической механике   (64)

Перед радикалом взят положительный знак, так как величина скорости (ее модуль) всегда положительна. В этом ее существенное отличие от алгебраической величины скорости (53), характеризующей скорость точки при движении по заданной траектории и имеющей знак « + » или «—» в зависимости от направления движения. Величину (64) иногда называют полной скоростью.

Направление скорости можно определить по направляющим косинусам скорости:
Координатный способ определения движения точки в теоретической механике Координатный способ определения движения точки в теоретической механике

Направляющие косинусы скорости

Равенство (64) позволяет определить модуль скорости точки, движение которой задано уравнениями (58). Направление скорости определяется по косинусам углов, составляемых положительными направлениями осей координат с направлением скорости. Значения этих косинусов, называемых направляющими косинусами скорости, мы получим из уравнений (63):

Координатный способ определения движения точки в теоретической механике   (62′)

где Координатный способ определения движения точки в теоретической механике, Координатный способ определения движения точки в теоретической механике и Координатный способ определения движения точки в теоретической механике — производные от х, у и z по t.

Если точка движется в плоскости хОу, то γυ = 90o, cosγυ = 0 и cos αυ = sin βυ.

Задача №6

Уравнения движения суть

 Координатный способ определения движения точки в теоретической механике

Определить траекторию и скорость.

Решение. Из уравнений движения следует, что х и у всегда больше нуля.
Для определения уравнения траектории возведем каждое из уравнений движения в квадрат и составим разность

x2 — у2 = a2

Для определения скорости найдем сначала ее проекции:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

а затем уже и полную скорость.

Ответ. Траектория — ветвь гиперболы x2 — у2 = a2 — расположена в области положительных значений х; скорость Координатный способ определения движения точки в теоретической механике.

Задача №7

Движение точки задано уравнениями

Координатный способ определения движения точки в теоретической механике

причем ось Ox горизонтальна, ось Oy направлена по вертикали вверх, υ0, g и Координатный способ определения движения точки в теоретической механике—величины постоянные. Найти траекторию точки, координаты наивысшего ее положения, проекции скорости на координатные оси в тот момент, когда точка находится на оси Ох.

Решение. Уравнения описывают движение тела, брошенного со скоростью υ0 под углом α0 к горизонту (к оси Ох).
Чтобы найти уравнение траектории, определим время из первого уравнения и подставим найденное значение во второе; получим

Координатный способ определения движения точки в теоретической механике

уравнение параболы, проходящей через начало координат (рис. 88).

Координатный способ определения движения точки в теоретической механике
Рис. 88

Чтобы определить координаты наивысшего положения, мы можем применить известные из дифференциального исчисления правила нахождения максимума функции, т. е. взять производную Координатный способ определения движения точки в теоретической механике, приравняв ее нулю, определить значение х и, подставив его в уравнение траектории, определить соответствующее значение у, убедившись при этом, что вторая производная Координатный способ определения движения точки в теоретической механике. Однако мы найдем координаты наивысшего положения точки другим методом, для чего, продифференцировав по времени уравнения движения точки, найдем проекции ее скорости:

Координатный способ определения движения точки в теоретической механике

Первое из этих уравнений показывает, что проекция скорости на горизонтальную ось постоянна и равна проекции начальной скорости.

Исследование второго уравнения убеждает, что проекция скорости на вертикальную ось в начальное мгновение положительна и равна υsin α0; затем, по мере увеличения t, проекция υy уменьшается, оставаясь положительной до мгновения Координатный способ определения движения точки в теоретической механике, когда υy обращается в нуль, после чего υy становится отрицательной, возрастая по абсолютной величине с течением времени t.

Таким образом, точка движется вправо, сначала поднимаясь, затем опускаясь. Мгновение Координатный способ определения движения точки в теоретической механике, при котором точка кончила подниматься, но еще не начала опускаться, соответствует максимальному подъему точки. В это мгновение скорость горизонтальна и Координатный способ определения движения точки в теоретической механике. Подставляя найденное значение t в уравнения движения, найдем координаты наивысшей точки траектории:

Координатный способ определения движения точки в теоретической механике

Определим проекции скорости в мгновение, когда точка находится на оси Ох. В это мгновение ордината точки равна нулю. Приравняем пулю второе из уравнений движения:
Координатный способ определения движения точки в теоретической механике

Точка находится на оси Ox два раза: при t=0 при Координатный способ определения движения точки в теоретической механике

Первое значение t соответствует началу движения, второе —падению точки на ось Ох. Второе значение равно времени всего полета, и оно вдвое больше полученного нами ранее времени наивысшего подъема: время падения равно времени подъема.

Подставляя значение t=0 в уравнения, определяющие проекции скорости, найдем проекции скорости в начальное мгновение:

υx = + υ0 cos α0, υy = + υ0 sin α0.

Подставляя второе из найденных значений t, найдем скорости в момент падения:

υx = + υ0 cos α0, υy = — υ0 sin α0.

Ответ: 1) Парабола Координатный способ определения движения точки в теоретической механике

2) Координатный способ определения движения точки в теоретической механике

3) υx = υ0 cos α0, υy = Координатный способ определения движения точки в теоретической механикеυ0 sin α0.

причем верхний знак соответствует началу движения, а нижний—концу.

Задача №8

По осям координат (рис. 89) скользят две муфты A и B, соединенные стержнем AB длиной l. Скорость В равна υB.

При каком положении муфт скорость муфты А вдвое больше υB?

Координатный способ определения движения точки в теоретической механике

Рис. 89

Решение. Координата точки А связана с координатой точки В соотношением

Координатный способ определения движения точки в теоретической механике

Считая х и у функциями времени и продифференцировав это равенство по времени, найдем зависимость между скоростями обеих точек:
Координатный способ определения движения точки в теоретической механике

Но Координатный способ определения движения точки в теоретической механике и по условию надо, чтобы величина Координатный способ определения движения точки в теоретической механике была равна 2υB, т. е.

Координатный способ определения движения точки в теоретической механике

откуда после алгебраических преобразований получаем ответ.

Ответ: Координатный способ определения движения точки в теоретической механике (см. задачи № 57 и 89, где даны другие решения).

Проекция ускорения точки на координатную ось равна первой производной по времени от проекции скорости на ту же ось или второй производной от текущей координаты по времени:
Координатный способ определения движения точки в теоретической механике

Ускорение проекции и проекция ускорения

Ускорение характеризует изменение скорости точки в данное мгновение. Оно выражается пределом отношения изменения вектора скорости к соответствующему промежутку времени при стремлении этого промежутка времени к нулю.

Для того чтобы определить ускорение точки M при ее движении в пространстве, рассмотрим сначала движение по оси Ox точки Р, являющейся проекцией точки M на эту ось.

Пусть в некоторое мгновение t алгебраическая величина скорости точки P была υх, а в мгновение tl = t + Δt стала υx+∆υx. Тогда ускорение точки P по величине и по знаку выразится пределом

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Если знаки υx и ap одинаковы, то движение точки P ускоренное, а если различны, то замедленное.

Аналогично выразятся ускорения проекций Q и R точки M на другие координатные оси:

Координатный способ определения движения точки в теоретической механике

Проекции υx, υy и υz сами являются производными по времени от координат точки, поэтому ускорения проекций можно выразить вторыми производными по времени от координат точки. Эти равенства характеризуют не только величины, но и знаки ускорений проекций. Иными словами, они выражают изменение алгебраических скоростей проекций P, Q и R в мгновение t.

Только что доказанная теорема о равенстве алгебраической скорости проекции точки на ось и проекции скорости той же точки на ту же ось справедлива для любого момента времени. Следовательно, эта теорема относится не только к скорости, но и к ее изменению в любое мгновение, т. е. к ускорению. Это значит, что написанные выше равенства выражают также проекции ax, ау и аz ускорения а точки M на оси координат Ox, Oy и Oz:

Координатный способ определения движения точки в теоретической механике   (65)

где cosαa, cosβa и cosγa—направляющие косинусы ускорения.

Можно рассматривать эти величины (65) как векторы, направленные по осям координат:

Координатный способ определения движения точки в теоретической механике   (65′)

Модуль ускорения точки равен квадратному корню из суммы квадратов проекций ускорения на оси координат:
Координатный способ определения движения точки в теоретической механике

Величина ускорения при координатном способе задания движения точки

Возведем в квадрат каждое из равенств:

Координатный способ определения движения точки в теоретической механике

и затем сложим их:

Координатный способ определения движения точки в теоретической механике

откуда 

Координатный способ определения движения точки в теоретической механике   (66)

Перед радикалом взят знак плюс, так как модуль вектора—величина положительная. Ускорение точки в отличие от проекций ускорения на оси координат или на другие направления обычно называют полным ускорением. Поэтому равенство (66) можно прочитать так: величина полного ускорения точки равна квадратному корню из суммы квадратов его проекций на оси координат.

Направление ускорения можно определить по направляющим косинусам ускорения:
Координатный способ определения движения точки в теоретической механикеКоординатный способ определения движения точки в теоретической механике

Направляющие косинусы ускорения

Направление ускорения определяют по косинусам углов, составляемых положительными направлениями осей координат с вектором ускорения. Формулы направляющих косинусов получаем из уравнений (65):
Координатный способ определения движения точки в теоретической механике   (67′)

Координатный способ определения движения точки в теоретической механике   (67»)

Координатный способ определения движения точки в теоретической механике   (67»’)

Для определения направления ускорения в каждом конкретном случае надо сначала найти ускорение проекций по (65), для чего необходимо дважды продифференцировать уравнения движения (58), затем найти величину ускорения по (66), а потом определить направляющие косинусы ускорения по (67).

Направление ускорения обычно не совпадает с направлением скорости, и направляющие косинусы (67) ускорения только при прямолинейном ускоренном движении точки постоянно равны направляющим косинусам (62) скорости.

Если точка движется в плоскости хОу, то γa = 90o, cosγa = 0, cosα0 = sin βa.

Задача №9

Точка M движется в системе координат хОу согласно уравнениям х= r cos πt, y=r sinπt, где х и у—в см, a t — в сек. Найти уравнение траектории точки М, ее скорость, направляющие косинусы скорости, ускорение, направляющие косинусы ускорения. Для значений времени t=0; 0,25; 0,5; 0,75, …. 2 сек дать чертежи положений точки M, вектора скорости и вектора ускорения.

Решение. Из уравнения движения видно, что координаты точки M являются проекциями на соответствующие оси радиуса-вектора r, составляющего с осью абсцисс угол πt:

Координатный способ определения движения точки в теоретической механике

Для определения траектории точки исключаем время из уравнений движения. Получаем уравнение окружности

x2 + y2 = r2

Найдем теперь проекции скорости на оси координат, для чего продифференцируем по времени уравнения движения:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

откуда по (64) получаем модуль скорости

Координатный способ определения движения точки в теоретической механике

Величина скорости точки M постоянна.

Направляющие косинусы скорости определим по формуле (62′):

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Эти соотношения показывают, что направление скорости непрерывно меняется и что скорость перпендикулярна радиусу-вектору, проведенному из центра О в точку М.

Ускорение точки M найдем по его проекциям, для чего продифференцируем выражения, полученные для проекций скорости:
Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

откуда по (66) получаем величину ускорения

Координатный способ определения движения точки в теоретической механике

Ускорение характеризует быстроту изменения вектора скорости не только по величине, но и по направлению, поэтому, несмотря на постоянство модуля скорости точки М, ускорение этой точки не равно нулю. Как видно из полученного

Координатный способ определения движения точки в теоретической механике
Рис. 90

равенства, величина полного ускорения постоянна. Направление ускорения определим по направляющим косинусам согласно (67):
Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Направление ускорения точки M противоположно направлению радиуса-вектора.
Положения точки M в различные мгновения показаны на рис. 90, а, векторы скорости — на рис. 90,6 и векторы ускорения — на рис. 90, в.

Ответ. Точка M движется по окружности радиуса r против часовой стрелки с постоянной по величине скоростью υ = rπ и с постоянным по величине ускорением a = rπ2.

Задача №10

Снаряд выбрасывается из орудия с начальной скоростью υ=1600 м/сек под утлом α0 = 55o к горизонту. Определить теоретическую дальность и высоту обстрела, учитывая, что ускорение свободно падающих тел g = 9,81 м/сек2.

Решение. Сначала составим уравнения движения снаряда в координатной форме, направив оси, как показано на чертеже (см. рис. 88), для этого определим проекции ускорения:
Координатный способ определения движения точки в теоретической механике

Разделив переменные, интегрируем:
υх= С1, υy = — gt + С2

Подставляя вместо переменных величин их начальные значения, увидим, что C1 и C2 равны проекциям начальной скорости:

1600 cos 55o = C1, 1600 sin 55o = — gt + C2.

Подставим их в уравнения, полученные для проекций скорости:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Разделяя переменные и интегрируя, найдем

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

При t = 0 координаты снаряда были: х =0, у = 0. Подставляя эти данные, найдем, что C3 = O и C4 = O. Значения cos 55° и sin 55° найдем в тригонометрических таблицах. Уравнения движения снаряда примут вид:

Координатный способ определения движения точки в теоретической механике

Далее поступим, как при решении задачи № 42: приравняв вертикальную скорость нулю, найдем время подъема снаряда (t= 133,7 сек); подставляя это значение t в уравнение движения по оси Оу, найдем теоретическую высоту обстрела (h = 87 636 м); удваивая время /, найдем время полета снаряда (t = 267,4 сек); подставляя это значение- в уравнение движения по оси Ох, найдем теоретическую дальность обстрела (l = 245 393 м).
Ответ. l = 245 км; h = 87,5κм.

  • Касательное и нормальное ускорения точки
  • Основные законы динамики
  • Колебания материальной точки
  • Количество движения
  • Пара сил в теоретической механике
  • Приведение системы сил к данной точке
  • Система сил на плоскости
  • Естественный и векторный способы определения движения точки

Понравилась статья? Поделить с друзьями:
  • Как найти улицу в усть лабинске
  • Как найти рекламу в реестре
  • Как найти объем у твердых веществ
  • Как найти скрытую папку на телефоне samsung
  • Как найти гипотенузу прямоугольного треугольника зная косинус