Одним из самых фундаментальных терминов в электротехнике является термин «электрическое напряжение». В этой статье мы объясним, что это такое и как его рассчитать.
Объяснение простыми словами
Электрическое напряжение U является той самой причиной, которая «заставляет» протекать электрический ток I. Электрическое напряжение всегда возникает, когда заряды разделены друг от друга, то есть все отрицательные заряды на одной стороне, а все положительные — на другой. Если соединить эти две стороны электропроводящим материалом, потечет электрический ток.
Общепринятое определение термина «электрическое напряжение».
Электрическое напряжение (или просто напряжение) — это разность потенциалов между двумя точками в электрическом поле. Это движущая сила для электрического заряда.
Потенциал в электрическом поле — это энергия заряженного тела, не зависящая от его электрического заряда. Для пояснения вы можете посмотреть на сравнение с водяным контуром чуть ниже в статье.
Есть другое определение (из учебника по физике 8 класса):
Напряжение — это физическая велuчuна, характеризующая электрическое поле. Электрическое напряжение между двумя точками электрического поля численно равно работе, совершенной при переносе между ними заряда 1 Кл силами электрического поля.
Сравнение с использованием модели протекания воды.
Хорошей аналогией, которая поможет вам представить себе электрическое напряжение и потенциал, является водяной контур. В этой схеме у вас есть два бассейна на разной высоте, которые соединены трубой. В этой трубе вода может перетекать из верхнего бассейна в нижний. Затем вода перекачивается обратно в верхний бассейн с помощью насоса, как показано на рисунке ниже.
В своих размышлениях вы теперь легко можете сравнить насос с источником электрического напряжения. Кроме того, поток воды можно сравнить с электрическим током. Насос транспортирует воду из нижнего бассейна в верхний. Оттуда она самостоятельно течет обратно в нижний бассейн. В данном примере насос является приводом для потока. Чем больше разница в высоте, тем сильнее поток. Решающим фактором является потенциальная энергия верхнего бассейна. Вы можете сравнить разность энергий двух бассейнов с разностью электрических потенциалов. Проще говоря, большая разница в высоте соответствует большему электрическому напряжению.
Формула
Формула для электрического напряжения U, согласно закона Ома для участка цепи, имеет вид
U = R * I .
Как видно из этой формулы, если электрическое напряжение остается неизменным, то чем больше электрическое сопротивление (R), тем меньше сила тока (I).
Другая формула для расчета электрического напряжения такова:
U = P / I .
То есть электрическое напряжение U равно мощности деленной на силу тока I.
Единица измерения электрического напряжения
Единицей измерения электрического напряжения в СИ является Вольт, сокращенно В (в честь итальянского учёного А. Вольта).
1 вольт (1 В) — это напряжение между двумя точками электрического поля, при переносе между которыми заряда 1 Кл совершается работа 1 Дж.
[U] = 1 В
Теперь вы можете объяснить смысл надписи 4,5 В или 9 В на круглой или плоской батарейке. Смысл в том, что при переносе с одного полюса источника на другой (через спираль лампочки или другой проводник) заряда 1 Кл силами электрического поля может быть совершена работа соответственно 4,5 Дж или 9 Дж.
В электротехнике напряжение может варьироваться от микровольт (1 мкВ = 1 * 10-6 В) и миливольт (1 мВ = 10-3 В), до киловольт (1 кВ = 1 * 103 В) и мегавольт (1 МВ = 106 В)
Вы можете преобразовать отдельные единицы измерения следующим образом:
1 В = 1000 мВ, 1 мВ = 1000 мкВ, 1 МВ = 1000 кВ, 1 кВ = 1000 В.
Электрическое напряжение в цепи
Для источников напряжения в схемах обычно используется один из следующих символов.
Источник напряжения всегда имеет два соединения/полюса. Полюс «плюс» и полюс «минус». Само напряжение обозначено стрелкой напряжения (UQ). Для источников оно всегда отображается от плюса к минусу.
Электрическое напряжение, падающее на резисторе, также можно обозначить стрелкой напряжения (на схеме обозначена как красная стрелка UR ). Это указывает на техническое направление электрического тока.
Также часто можно услышать термин «напряжение холостого хода» или «напряжение источника». Это выходное напряжение ненагруженного источника, т.е. источника, к которому ничего не подключено. Если цепь замкнута с нагрузкой, то можно измерить только напряжение на полюсах источника.
Электрические напряжения при последовательном и параллельном соединении
У нас уже есть статья о последовательном и параллельном соединении проводников, в котором мы обсуждаем эту тему более подробно. Поэтому здесь мы рассмотрим лишь некоторые основы.
При последовательном соединении компоненты подключаются в ряд.
Здесь электрическое напряжение источника делится на резисторы. Этот момент также описывается вторым правилом Кирхгофа. Здесь применимо следующее:
UQ = U1 + U2 + U3
то есть напряжение источника равно сумме электрических напряжений на отдельных резисторах. Напряжение источника по-разному распределяется по разным резисторам.
В электрической цепи с параллельным соединением компоненты расположены, соответственно, параллельно друг относительно друга. Это можно увидеть на следующей схеме.
Здесь гораздо проще определить электрические напряжения на резисторах, так как при параллельном соединении:
UQ = U1 = U2 = U3
Поэтому электрическое напряжение на резисторах такое же высокое, как и электрическое напряжение источника.
Измерение электрического напряжения
Приборы для измерения напряжения, также называемые вольтметрами, всегда подключаются параллельно потребителю, на котором необходимо измерить электрическое напряжение.
Одним из наиболее часто используемых вольтметров является цифровой мультиметр (DMM), поэтому мы покажем вам процедуру измерения напряжения с помощью DMM. Сначала необходимо установить тип электрического напряжения (DC — постоянный ток или AC — переменный ток).
Для постоянного тока необходимо обратить внимание на правильную полярность, т.е. подключить плюс к положительному полюсу. На следующем этапе необходимо выбрать правильный диапазон измерения. Если вы не можете оценить, насколько велика измеряемая величина, установите наибольший возможный диапазон и двигайтесь от него вниз, пока не найдете нужный. Наконец, вам нужно только «считать» электрическое напряжение прибором.
Примеры типовых значений электрического напряжения
Для некоторых применений соответствующее электрическое напряжение можно найти в таблице ниже.
Светодиод | 1,2 — 1,5 В |
Зарядное устройство USB | 5 В |
Напряжение автомобильного аккумулятора | 12, 4 — 12,8 В |
Напряжение в розетке (среднеквадратичное или действующее значение) | 230 В |
Высоковольтные линии электропередач (ЛЭП) | 60 кВ — 1 МВ |
Вы можете видеть, что на высоковольтных линиях присутствует напряжение до мегавольт. Такие большие электрические напряжения используются для того, чтобы уменьшить потери в длинных линиях.
Решающим фактором для потребителя является мощность P, которую можно рассчитать для постоянного напряжения с помощью формулы:
P = U * I
Это означает, что электрический ток I так же важен для потребителя, как и электрическое напряжение. Согласно закону Ома, зависимость между током и напряжением имеет вид:
U = R * I .
Если напряжение остается неизменным, сопротивление определяет величину тока. Чтобы проиллюстрировать это, представьте следующее. У вас есть три разных бассейна, которые заполнены одинаковым количеством воды. Каждый бассейн имеет слив, который различается по сечению, т.е. в одном бассейне сливная труба очень маленькая, а в другом — очень большая.
Постоянное электрическое напряжение можно определить по тому, что все емкости заполнены на одинаковую высоту. Если слив узкий в нижней части, он представляет собой большое сопротивление. Ток здесь может течь только медленно. Если сечение сливной трубы больше, то сопротивление меньше и, соответственно, может протекать больший ток.
Формула напряжения в физике — это представление электрической потенциальной энергии на единицу заряда. Если ток был размещен в определенном месте, напряжение указывает на ее потенциальную энергию в этой точке. Другими словами, это измерение силы, содержащейся в электрическом поле или цепи в данной точке. Он равен работе, которую нужно было бы выполнить за единицу заряда против электрического поля, чтобы переместить его из одной точки в другую.
Напряжение является скалярной величиной, у него нет направления. Закон Ома гласит, что интенсивность равна текущему временному сопротивлению.
Сопротивление
Формула механической мощности — средняя и мгновенная мощность
Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.
Резисторы различных типов
Для переменного тока
Нужно понимать, что закон не применим напрямую к переменным цепям, например, с катушками индуктивности, конденсаторами или линиям передач. Закон может использоваться только для чисто резистивных цепей переменного тока без каких-либо изменений. В цепи RLC противодействие току является импедансом Z, который образует комбинацию двух ортогональных частей сопротивления.
Переменный ток
Im=Vm/Z
В этом случае Vm связано с Im с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R. Для чисто резистивных линий, где (Z = R).
Vm = ImZ и Vm = ImR
Z — это общее сопротивление участка к переменному току, состоящее из реальной части — сопротивления и мнимой — реактивности.
Формула ее определяется теоремой Пифагора, поскольку угол Ф зависит от реактивной составляющей.
Интегральная форма
Взаимосвязь параметров электрической цепи
Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.
К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.
Формула напряжения тока закона Ома выглядит следующим образом:
I=U/R.
Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.
Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:
- I – сила тока;
- U – напряжение;
- R – сопротивление.
Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.
Кроме закона Ома, используется формула расчета мощности:
P=U∙I.
Символом P здесь обозначена мощность тока.
Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.
Закон Ома для неоднородного участка цепи
Физическая величина, равная отношению работы сторонних сил Aст при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой (ЭДС) источника Eэдс:
$ E_{эдс} = {A_{cт}over q} $ (1).
Таким образом, ЭДС равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда. При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа электростатического поля равна нулю, а работа сторонних сил равна сумме всех ЭДС, действующих в этой цепи.
Работа электростатических сил по перемещению единичного заряда равна разности потенциалов $ Δφ = φ_1 – φ_2 $ между начальной и конечной точками 1 и 2 неоднородного участка. Работа сторонних сил равна, по определению, электродвижущей силе Eэдс, действующей на данном участке. Поэтому полная работа равна:
$ U_п = φ_1 – φ_2 + E_{эдc} $ (2).
Величина Uп называется напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:
$ U_п = φ_1 – φ_2 $ (3).
Немецкий исследователь Георг Симон Ом в начале XIX века установил, что сила тока I, текущего по однородному проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:
$ I = {U over R} $ (4).
Рис. 2. Портрет Георга Ома.
Величина R — это электрическое сопротивление. Уравнение (4) выражает закон Ома для однородного участка цепи. Для участка цепи, содержащего ЭДС, закон Ома записывается в следующем виде:
$ U_п = I * R = φ_1 – φ_2 + E_{эдс} = Δ φ_{12} + E_{эдс}$ (5).
Данное уравнение называется обобщенным законом Ома для неоднородного участка цепи.
Как работает закон в реальной жизни
Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.
Сила тока формула через мощность:
I=P/U;
Сопротивление:
R=U/I.
Такой же результат можно найти из мощности, не прибегая к промежуточным расчетам:
R=U2/P.
Аналогично можно вычислить любую величину, зная только две из них. Для упрощения преобразований имеется мнемоническое отображение формул, позволяющее находить любые величины.
Внимательно посмотрев на формулы, можно заметить, что, если уменьшить напряжение на лампе в два раза, ожидаемая мощность не снизится аналогично в два раза, а в четыре, согласно формуле:
P=U2/R.
Это довольно распространенная ошибка среди далеких от электротехники людей, которые неправильно соотносят мощность и напряжение, а также их действие на остальные параметры.
Кстати. Сила тока, найденная через сопротивление и напряжение, справедлива как для постоянного, так и для переменного тока, если в ней не используются такие элементы, как конденсатор или индуктивность.
Облегчить расчеты можно, используя онлайн калькулятор.
Определение через разложение электрического поля
Используя приведенное выше понятие, потенциал не находится на одном месте, когда магнитные поля меняются со временем. В физике иногда полезно обобщать электрическое значение, рассматривая только консервативную часть поля. Это делается с помощью следующего разложения, используемого в электродинамике.
В показанной выше формуле Е — индуцированный — вращательное электрическое поле, обусловленное изменяющимися во времени магнитными фонами. В этом случае сила между точками всегда определяется однозначно.
Пример с обычной водой
Существуют вещества, которые можно отнести одновременно к проводникам и изоляторам. Самый простой пример – обыкновенная вода. Дистиллированная вода является хорошим изолятором, но наличие в ней практически любых примесей делает ее проводником. Особенно это относится к солям различных металлов. При растворении в воде соли диссоциируются на ионы, их наличие – прямой повод для возникновения тока. Чем больше концентрация солей, тем меньшим сопротивлением будет обладать вода.
Для наглядности можно взять дистиллированную воду для приготовления электролита для автомобильных аккумуляторных батарей. Опустив щупы омметра в воду, можно увидеть, что его показания велики. Добавление всего нескольких кристаллов поваренной соли через некоторое время вызывает резкое уменьшение сопротивления, которое будет тем меньше, чем больше соли перейдет в раствор.
Различные используемые величины
Кроме основных величин: вольт, ампер, ом, ватт, используют кратные, большие или меньшие. Для обозначений применяют соответствующие приставки:
- Кило – 1000;
- Мега – 1000000;
- Гига – 1000000000;
- Милли – 0.001.
Таким образом, получается:
- Киловольт (кВ) – тысяча вольт;
- Мегаватт (Мвт) – миллион ватт;
- Миллиом (мОм) – одна тысячная Ом;
- Гигаватт (ГВт) – тысяча мегаватт или миллиард ватт.
Как найти напряжение
Формула нахождения напряжения как разности потенциалов в электрическом поле:
U=ϕA-ϕB, где ϕAи ϕB – потенциалы в точках А и В, соответственно.
Также можно записать напряжение как работу по переносу единицы заряда из точки А в точку В в электрическом поле:
U=A/q, где q – величина заряда.
Работа тем больше, чем выше напряженность электрического поля Е, то есть сила, действующая на неподвижный заряд.
Потенциальную энергию заряда в электростатическом поле называют электростатический потенциал.
Единицы измерения в формуле
Вам будет интересно:Антиклиналь + синклиналь – это складчатые горы
В формуле, определяющей напряжение, значением СИ является вольт. Таким образом, что 1В = 1 джоуль/кулон. Вольт назван в честь итальянского физика Алессандро Вольта, который изобрел химическую батарею.
Это означает, что в формуле напряжения в физике один кулон заряда получит один джоуль потенциальной энергии, когда он будет перемещен между двумя точками, где разность электрических потенциалов составляет один вольт. При напряжении 12, один кулон заряда получит 12 джоулей потенциальной энергии.
Батарея на шесть вольт имеет потенциал для одного кулона заряда, чтобы получить шесть джоулей потенциальной энергии между двумя местоположениями. Батарея на девять вольт имеет потенциал для одного кулона заряда, чтобы получить девять джоулей потенциальной энергии.
Гидравлическая аналогия
Чтобы легче усвоить законы электрических цепей, можно представить себе аналогию с гидравлической системой, в которой соединение насоса и трубопроводов образует замкнутую систему. Для этого нужны следующие соответствия:
- Источник питания – насос;
- Проводники – трубы;
- Электроток – движение воды.
Без особых усилий становится понятнее, что чем меньше диаметр труб, тем медленнее по ним движется вода. Чем мощнее насос, тем большее количество воды он способен перекачать. При одинаковой мощности насоса уменьшение диаметра труб приведет к снижению потока воды.
Измерительные приборы
Для измерения параметров электрических цепей служат измерительные приборы:
- Вольтметр;
- Амперметр;
- Омметр.
Наиболее часто используется класс комбинированных устройств, в которых переключателем выбирается измеряемая величина – ампервольтомметры или авометры.
Пробовали ли вы когда-нибудь надувать воздушные шарики на время? Один надувает быстро, а другой за это же время надувает гораздо меньше. Без сомнения, первый совершает большую работу, чем второй.
Рис. (1). Надувание шара
С источниками напряжения происходит точно так же. Чтобы обеспечить движение частиц в проводнике, надо совершить работу. И эту работу совершает источник. Работу источника характеризует напряжение. Чем оно больше, тем большую работу совершает источник, тем ярче будет гореть лампочка в цепи (при других одинаковых условиях).
Рис. (2). Лампа в цепи
Напряжение равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.
U=Aq
, где (U) — напряжение, (A) — работа электрического поля, (q) — заряд.
Обрати внимание!
Единица измерения напряжения в системе СИ — [(U)] = (1) B (вольт).
(1) вольт равен электрическому напряжению на участке цепи, где при протекании заряда, равного (1) Кл, совершается работа, равная (1) Дж: (1) В (= 1) Дж/1 Кл.
Все видели надпись на домашних бытовых приборах «(220) В». Она означает, что на участке цепи совершается работа (220) Дж по перемещению заряда (1) Кл.
Кроме вольта, применяют дольные и кратные ему единицы — милливольт и киловольт.
(1) мВ (= 0,001) В, (1) кВ (= 1000) В или (1) В (= 1000) мВ, (1) В (= 0,001) кВ.
Для измерения напряжения используют прибор, который называется вольтметр.
Обозначаются все вольтметры латинской буквой (V), которая наносится на циферблат приборов и используется в схематическом изображении прибора.
Рис. (3). Обозначение вольтметра
В школьных условиях используются вольтметры, изображённые на рисунке:
Рис. (4). Вольтметры
Основными элементами вольтметра являются корпус, шкала, стрелка и клеммы. Клеммы обычно подписаны плюсом или минусом и для наглядности выделены разными цветами: красный — плюс, черный (синий) — минус. Сделано это с той целью, чтобы заведомо правильно подключать клеммы прибора к соответствующим проводам, подключённым к источнику.
Обрати внимание!
В отличие от амперметра, который включается в разрыв цепи последовательно, вольтметр включается в цепь параллельно.
Рис. (5). Электроцепь с подключенным вольтметром и амперметром
Включая вольтметр в цепь постоянного тока, необходимо соблюдать полярность.
Сборку электрической цепи лучше начинать со всех элементов, кроме вольтметра, а его уже подключать в самом конце.
Вольтметры делятся на приборы постоянного тока и переменного тока.
Если прибор предназначен для цепей переменного тока, то на циферблате принято изображать волнистую линию. Если прибор предназначен для цепей постоянного тока, то линия будет прямой.
Таблица (1). Вольтметры
Рис. (6). Вольтметр постоянного тока |
Рис. (7). Вольтметр переменного тока |
Можно обратить внимание на клеммы прибора. Если указана полярность («(+)» и «(-)»), то это прибор для измерения постоянного напряжения.
Иногда используют буквы (AC/DC). В переводе с английского (AC) (alternating current) — переменный ток, а (DC) (direct current) — постоянный ток.
В цепь переменного тока включается вольтметр для измерения переменного тока. Он полярности не имеет.
Рис. (8). Электроцепь с переменным источником тока
Обрати внимание!
Для измерения напряжения можно использовать и мультиметр.
Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.
Рис. (9). Мультиметр
Следует помнить, что высокое напряжение опасно.
Что будет с человеком, который окажется рядом с упавшим оголённым кабелем, находящимся под высоким напряжением?
Так как земля является проводником электрического тока, вокруг упавшего оголённого кабеля, находящегося под напряжением, может возникнуть опасное для человека шаговое напряжение.
При попадании под шаговое напряжение даже небольшого значения возникают непроизвольные судорожные сокращения мышц ног. Обычно человеку удаётся в такой ситуации своевременно выйти из опасной зоны.
Обрати внимание!
Однако нельзя выбегать оттуда огромными шагами, шаговое напряжение при этом только увеличится! Выходить надо обязательно быстро, но очень мелкими шагами или скачками на одной ноге!
Существует много знаков, предупреждающих о высоком напряжении. Вот некоторые из них.
Рис. (10). Предупреждающие об опасности знаки
Источники:
Рис. 5. Электроцепь с подключенным вольтметром и амперметром. © ЯКласс.
Рис. 8. Электроцепь с переменным источником тока. © ЯКласс.
Напряжение электрического тока
4.2
Средняя оценка: 4.2
Всего получено оценок: 135.
4.2
Средняя оценка: 4.2
Всего получено оценок: 135.
Электрическое напряжение между двумя точками электрической цепи или электрического поля равно разности потенциалов в этих точках. Эта величина эквивалентна работе, которую производит электрическое поле при перемещении единичного электрического заряда из начальной точки в конечную. В зависимости от вида приложенного напряжения (постоянного или переменного) в электрической цепи формируется ток, величина которого определяется по формуле закона Ома.
Закон Ома
Электрическая цепь состоит из отдельных участков — однородных и неоднородных. Участки цепи, на которых отсутствует действие сторонних сил, т.е.участки, без источников тока, называются однородными. Участки цепи, на которых имеются источники тока, называются неоднородными.
Формула закона Ома для однородного участка цепи выглядит так:
$ I = {U over R} $ (1).
Полностью формулировка закона Ома звучит следующим образом: сила тока I для проводника на однородном участке цепи прямо пропорциональна напряжению U на этом участке и обратно пропорциональна сопротивлению проводника R.
Для неоднородного участка цепи, содержащего источник тока с электродвижущей силой Еэдс ,закон Ома записывается в следующем виде:
$ I = {E_{эдс} over R + r} $ (2),
где: R — сопротивление цепи, r — сопротивление источника тока. Уравнение (2) называется законом Ома для полной цепи: сила тока в полной цепи равна ЭДС источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
Виды напряжений
В электрических цепях используются два основных напряжения электрического тока: постоянное и переменное.
Постоянное во времени напряжение создается источниками тока (батареи, аккумуляторы), на концах которых долгое время сохраняется одна и та же разность потенциалов (ЭДС).
Электрический ток в этом случае тоже постоянен во времени и течет в одном направлении. Постоянное напряжение используется, когда не требуется транспортировать электроэнергию на большие расстояния: в электрических схемах, на транспорте, в военной и космической технике и т.д.
При изменении полярности потенциалов на клеммах источника, электрический ток тоже будет менять свое направление (колебаться), следуя по закону Ома за временными изменениями напряжения. Количество таких колебаний за определенный промежуток времени (период) называется частотой. Чаще всего используется синусоидальная зависимость тока от времени.
В России стандартная частота составляет 50 Герц, что соответствует изменениям полярности напряжения (и направления тока) 50 раз в секунду. Эти мерцания (пульсации) человеческий глаз не чувствует при использовании в системах освещения. Но в телевизорах и дисплеях компьютеров эту частоту повышают (от 85 Гц и выше), так как при долгом, пристальном рассматривании глаза начинают уставать.
Переменный ток применяется при передаче электроэнергии на большие расстояния. Для этих целей лучше всего подходят трехфазные сети, которые подключены к электростанциям (тепловым, атомным, гидро-), где турбины генерируют такой переменный вид напряжения электрического тока.
Единицы измерения
В международной системе единиц (системе СИ) единица измерения напряжения (В) названа в честь итальянского исследователя Алессандро Вольта (1745-1827г.). Так как работа измеряется в джоулях (Дж), а заряд в кулонах (К), то:
$$ [1В] ={ [1 Дж]over [1 К] } $$
Единица измерения тока — ампер. Это одна из семи базовых единиц в системе СИ. Ток может изменяться (и измеряться) в широчайших пределах, поэтому часто используются такие внесистемные единицы, как:
- 1 наноампер (нА) = 10-9 А;
- 1 микроампер (мкА) = 0,000001 А;
- 1 миллиампер (мА) = 0,001 А;
- 1 килоампер (кА) = 1000 А.
Что мы узнали?
Итак, мы узнали, что величина напряжения равна работе, которую производит электрическое поле при перемещении единичного электрического заряда из начальной точки в конечную. В электрических цепях находят применение два основных вида напряжения электрического тока: постоянное и переменное. Передача электроэнергии на большие расстояния осуществляется с помощью переменного тока.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
Пока никого нет. Будьте первым!
Оценка доклада
4.2
Средняя оценка: 4.2
Всего получено оценок: 135.
А какая ваша оценка?
«Сила тока. Напряжение»
Сила тока
Характеристикой тока в цепи служит величина, называемая силой тока (I). Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t. Единица измерения силы тока – 1 ампер (1 А).
Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.
За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10-7Н. Эта единица и называется ампером (1 А).
Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.
Амперметр
Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.
У клемм амперметра стоят знаки «+» и «—», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «—» к отрицательному пoлюсу истoчникa тока.
Напряжение
Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда.
Напряжение (U) — это физическая величина, равную отношению работы (А) электрического поля по перемещению электрического заряда к заряду (q): U = A/q.
Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда (t), то получим: U = At/qt. В числителе этой дроби стоит мощность тока (Р), а в знаменателе — сила тока (I). Получается формула: U = Р/I, т.е. напряжение — это физическая величина, равная отношению мощности электрического тока к силе тока в цепи.
Единица напряжения: [U] = 1 Дж/1 Кл = 1 В (один вольт).
Вольтметр
Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят. Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.
У клемм вольтметра стоят знаки «+» и «—», при включении вольтметра в цепь клeмма со знаком «+» присоединяется к положительному полюсу источника тока, а клеммa со знаком «—» к отрицательному полюсу источника тока.
Формулы и определения.
1. Все проводники, используемые в электрических цепях, имеют условные обозначения для изображения на схемах и могут образовывать последовательные, параллельные и смешанные соединения.
2. Мощность тока – физическая величинa, хаpактеpизующая скорость превращения электрической энергии в другие её виды. Единица для измерения – 1 ватт (1 Вт). Измерительный прибор – ваттметр.
3. Сила тока – физическaя вeличина, характеpизующaя скоpость прохождения заряда через проводник и равная отношению заряда, пpoшедшего через попеpeчное сечение проводника, ко времени перемещения. Единица – 1 ампер (1 А). Измерительный прибор – амперметр (подключают последовательно).
4. Электрическое напряжение – физическaя вeличина, характеризующая электрическое поле, создающее ток, и равная отношению мощности тока к его силе. Единица – 1 вольт (1 В). Измерительный прибор – вольтметр (подключают параллельно)
5. Работа тока – физичeская величинa, хаpактеpизующая количество электроэнергии, превратившейся в другие виды энергии. Единица – 1 джоуль (1 Дж). Измерительный прибор – электрический счётчик, использующий единицу 1 киловатт-час (1 кВт·ч).
Конспект урока «Сила тока. Напряжение».
Следующая тема: «Электрическое сопротивление».