Область значения функции на интервале как найти

Область значения функции

Общая информация

У каждой функции y = f (x) есть два типа переменных: зависимые и независимые. Переменная «х» является независимой, поскольку она может принимать любые значения, кроме тех, которые «превращают» функцию в пустое множество (этого необходимо избегать). Они бывают с одной или несколькими независимыми переменными. Необходимо выяснить все значения зависимой переменной.

Как найти область значений квадратичной функции

Существует несколько методов решения задач такого типа. К ним относятся следующие способы: автоматизированный и ручной. Решение первым подразумевает использование специальных программных оболочек и web-приложений, позволяющих найти область значения функции. Онлайн-калькулятор с решением применяется для тех, кто выполняет большое количество вычислений или проверку вычислений.

В различных дисциплинах необходимо исследовать поведение функций. Например, при проектировании какого-либо программного продукта. Программисты занимаются поиском «багов», при которых происходит некорректная работа приложения. Если заданы недопустимые параметры независимой переменной, то произойдет ошибка. Это называется исключением, и его всегда следует обрабатывать. При проектировании различных устройств нужно также уметь находить область значения функции.

Основные понятия

Область значения функции

Руководствуясь некоторыми данными, можно сделать вывод: областью значений некоторой функции называются все ее допустимые значения. Обозначается она буквой «E», т. е. E (f) или E (y). Когда y = f (x) является сложной (w = f (x, y, z)), тогда можно ее обозначить «E (w)».

Независимая переменная, принимающая некоторые значения, называется аргументом. Для конкретного случая существует определенный алгоритм. Можно сразу определить E (f), но в некоторых ситуациях нужно выполнить некоторые преобразования.

Например, нужно найти область значений квадратичной функции y = 3x 2 — 2x — 1. Следует записать уравнение 3x 2 — 2x — 1 = 0. Ордината вычисляется таким образом: y0 = -D / 4a = -[b 2 — 4ac] / 4a = -[(-2)^2 — 4 * 3 * (-1)] / (4 * 3) = -16 / 12 = -4/3. Если коэффициент а>0, то ветви параболы направлены вверх. Следовательно, E (y) = (-4/3;+бесконечность).

Специалисты-математики утверждают, что важным аспектом является определение типа функции. Следовательно, следует разобраться в их классификации. Для этого необходимо знать их графики и названия.

Типы функций

Перед тем, как найти все допустимые значения, нужно знать область значения некоторых элементарных функций. Для каждой из них существует свой промежуток:

Онлайн калькулятор с решением как находить область значения функции

  1. (-бесконечность;+бесконечность): y =kx + b, y = x^(2n+1), y = x^(1/(2n+1)), y = log (x) с основанием а, y = tg (x) и y = ctg (x).
  2. [0;+бесконечность): y = x^(2n), y = x^(1/(2n)) и y = a^x.
  3. (-бесконечность;0] U [0;+бесконечность) только для y = k / x (гипербола).
  4. [-1;1]: y = sin (x) и y = cos (x).
  5. [0;Pi]: y = arccos (x) и arcsin (x).
  6. [-Pi/2;Pi/2]: y = arctg (x) и arcsin (x).

Если функция является многочленом четной степени, то для нее существует интервал [m;+бесконечность). Значение «m» — наименьшее значение многочлена. На промежутке (-бесконечность;n) число n — наибольшее его значение.

Довольно сложной задачей считается нахождение области значений тригонометрических функций. Примером одной из них считается y = cos (2x) + 2cos (x). Кроме того, при нахождении E (f) необходимо руководствоваться не только табличными значениями. Этих данных мало, поскольку нужно также знать о свойствах некоторых функций и способы нахождения E.

Важные свойства

Для качественного исследования нужно знать свойства простых функций: монотонность, непрерывность, дифференцируемость, четность или нечетность, периодичность, область определения и значения. Среди свойств можно выделить несколько основных:

Решение задач

  1. В случае, когда функция f (x) является непрерывной, и наблюдается ее возрастание или убывание на отрезке [a;b], то множество значений — интервал [f (a);f (b)].
  2. Если y = f (x) обладает непрерывностью на промежутке [a;b], и существует некоторое минимальное m и максимальное М ее значения, то множеством ее значений является интервал [m;M].
  3. При непрерывности и дифференцируемости функции на промежутке [a;b], она имеет минимальное и максимальное значения на данном промежутке.

Последние два свойства применяются для непрерывных функций. Простое решение позволяет получить первое свойство. При этом очень важно доказать ее монотонность. Задача существенно упрощается, когда удается доказать четность или нечетность функции, а также ее периодичность. По необходимости следует проверять и использовать некоторые ее свойства: непрерывность (при разрыве нужно определить его точку или интервал), монотонность, дифференцируемость, периодичность, четность или нечетность и т. д.

Методы нахождения

Существует много способов нахождения области значений. Однако для решения задач нужно подбирать оптимальный метод, поскольку следует избегать лишних вычислений. Например, если функция является простой, то нет необходимости применять сложные алгоритмы решения. К методам нахождения относятся следующие:

  1. Отдельное нахождение значений элементов сложной функции.
  2. Оценочный.
  3. Учет непрерывности и монотонности.
  4. Взятие производной.
  5. Использование max и min функции.

Для каждого из методов существует определенный алгоритм. Хотя встречаются случаи, когда целесообразно применить два простых метода. Нужно руководствоваться минимальным количеством вычислений и затраченным временем.

Для каждого элемента

Иногда в задачах следует найти E (f) при условии, когда функция является сложной. Очень распространенная методика разбиения задачи на подзадачи, которая применяется не только в дисциплинах с физико-математическим уклоном, но в экономике, бизнесе и других направлениях. Решение с помощью метода последовательного нахождения E (f) каждой из функций. Алгоритм имеет такой вид:

  1. Выполнить необходимые преобразования — упростить выражение.
  2. Разбить выражение на элементы.
  3. Выполнить поиск E (f) для каждого элемента.
  4. Произвести замену.
  5. Анализ.
  6. Результат решения.

Однако довольно сложно ориентировать по данному алгоритму, поскольку нужно разобрать решение примера с его помощью. Дана функция y = log0.5 (4 — 2 * 3^x — 9^x). Решается задача таким образом:

Методы нахождения

  1. Упростить (выделить квадрат): y = log0.5 (4 — 2 * 3^x — 9^x) = log0.5 [5 — (1 — 2 * 3^x — 9^x)] = log0.5 [5 — (3^x + 1)].
  2. Разбить на элементарные функции: y = 3^x, y = 3^x + 1, y = [-(3^x + 1)]^2 и y = [5 — (3^x + 1)]^2.
  3. Определить для каждого элемента E (f): E (3^x) = (0;+бесконечность), E (3^x + 1) = (1;+бесконечность), E ([-(3^x + 1)]^2) = (-бесконечность;-1) и E ([5 — (3^x + 1)]^2) = (-бесконечность;4).
  4. Произвести замену: t = 5 — (3^x + 1)]^2 (-бесконечность <= t <=4).
  5. Анализ: поскольку E (f) на луче (-бесконечность;4) совпадает с интервалом (0;4), то функция непрерывна и убывает. Необходимо отметить, что интервал (0;4) получен при пересечении луча (-бесконечность;4) с областью определения функции логарифмического типа (0;+бесконечность). На интервале (0;4) эта функция непрерывна и убывает. Если t>0, то она стремится к бесконечности. Когда t = 4, ее значение равно -2.
  6. Результат решения — искомый интервал: E (f) = (-2;+бесконечность).

Необходимо обратить внимание на пункты 1, 3 и 5. Они являются очень важными, поскольку от них зависит правильность решения. Очень важно уметь анализировать полученную функцию в 4 пункте.

Оценочный способ

Еще одним методом определения E (f) является способ оценки. Необходимо оценить непрерывную функцию в нижнем и верхнем направлениях. Еще следует доказать достижение нижней и верхней границ. Для этой цели существует также алгоритм. Он немного проще предыдущего. Суть его заключается в следующем:

  1. Доказать непрерывность.
  2. Составить неравенство или неравенства для нескольких функций.
  3. Узнать оценку.
  4. Записать интервал.

Необходимо разобрать алгоритм на примере функции y = cos (7x) + 5 * cos (x). Следует учитывать, что известен только один знак неравенства. Второй нужно доказать оценочным методом. Решение задачи имеет такой вид:

  1. Функция вида y = cos (x) является непрерывной.
  2. Неравенства: -1<=cos (7x)?1 и -5<=5 * cos (x)?5.
  3. Оценка получает при объединении неравенств: -6<=y?6. При значениях независимой переменной x = Pi и x = 0 функция принимает значения -6 и 6 соответственно (нижняя и верхняя границы). Функция состоит из двух элементов, следовательно, она является линейной и непрерывной.
  4. Интервал: E (y) = [-6;6].

Метод позволяет найти решение без использования дополнительных вычислений. Но при его использовании легко ошибиться.

Учет непрерывности и монотонности

Одним из простых способов решения, который специалисты рекомендуют новичкам, является метод учета непрерывности и монотонности. Для этого существует специальный алгоритм:

Решается задача таким образом

  1. Упростить выражение.
  2. Выполнить замену при необходимости.
  3. Найти вершину графика.
  4. Определить промежуток.
  5. Вычислить максимальное и минимальное значения.
  6. Записать E (f).

Например, существует некоторая функция y = cos (2x) + 2cos (x). Необходимо найти ее E. Искать следует по алгоритму решения методом учета монотонности и непрерывности:

  1. Упростить (по формуле двойного угла): y = 2 * (cos (x))^2 + 2cosx — 1.
  2. Замена t = cos (x): y = 2 * t 2 + 2 * t — 1 = 2 * (t + 0,5)^2 — 1,5.
  3. Показательная функция является параболой. Она монотонна, непрерывна и имеет вершину по оси ОУ -1,5. Промежуток, который рассматривается — [-1;1], поскольку E (cos (x)) = [-1;1].
  4. Минимальное значение равно -1,5, так как ветви направлены вверх. Максимальное на промежутке [-1;1] — MAX (y) = 3. Для его нахождения нужно построить график параболы y = 2 * (t + 0,5)^2 — 1,5.
  5. Искомый интервал — E (cos (2x) + 2cos (x)) = [-1,5;3].

Чтобы построить график параболы, нужно найти ее вершину и точки пересечения с осью абсцисс. Последние находятся при решении уравнения 2 * (t + 0,5)^2 — 1,5 = 0. Однако существует способ намного проще. Для этого следует привести выражение к виду 2 * (t + 0,5)^2 = 1,5. Отсюда t = — 0,5. Следовательно, координаты вершины — (-0,5;-1,5). Корни уравнения при его решении: t1 = -[(1 + (3)^0.5)] / 2 и t2 = -[(1 — (3)^0.5)] / 2.

Производная, min и max

Одним из простейших способов нахождения E (f) является взятие производной функции. Этот метод можно комбинировать с определением максимального и минимального значений. Математики рекомендуют простейший алгоритм:

  1. Найти производную.
  2. Анализ.
  3. Указать MAX (f) и MIN (f).
  4. Запись интервала в формате (MIN (f);MAX (f)).

Практическое применение алгоритма — решение задачи этим методом. Например, нужно найти E (arcsin (x)). Решение выполняется по нескольким этапам:

  1. Производная: y’ = [arcsin (x)]’ = 1 / [(1 — x 2 )^0.5].
  2. Функция возрастает на интервале (-1;1).
  3. Минимум и максимум на отрезке (-1;1): MIN (arcsin (-1)) = -Pi/2 MAX (arcsin (1)) = Pi/2.
  4. Интервал: E (arcsin (x)) = [-Pi/2;Pi/2].

В некоторых случаях рекомендуется вычислять пределы, поскольку часть задач решается только с их применением. Существует определенный тип задач, в которых нужно доказать, что отрезок является E (f) конкретной функции. Например, следует выяснить принадлежность [-1;1] функции sin (x). Для этого необходимо воспользоваться вышеописанным алгоритмом:

Укажите область значения функции

  1. Производная: y’ = [sin (x)]’ = cos (x).
  2. Период функции равен 2Pi. Следует взять отрезок [0;2Pi]. Для нахождения множества значений на нем нужно приравнять производную функции к 0, т. е. cos (x) = 0. Найти х = Pi/2 + Pi * к, где «к» принадлежит Z. Точки экстремума равны Pi/2 и 3Pi/2.
  3. Минимум и максимум на отрезке [0;2Pi): MIN ([sin (3Pi/2)]) = -1 и MAX ([sin (3Pi/2)]) = 1.
  4. E (sin (x)) = [-1;1].

Отрезок [-1;1] является E (sin (x)). Оптимальный метод — нахождение производной и определение E (f). В этом примере необходимо знать и проверить периодичность.

Таким образом, существует несколько способов нахождения E (f), но всегда необходимо выбирать метод, приводящий к минимуму вычислений. Нет смысла усложнять решение, поскольку большинство алгоритмов направлены на оптимизацию вычислений.


Загрузить PDF


Загрузить PDF

Множество значений (область значений) функции — все значения, которые принимает функция в ее области определения. Другими словами, это те значения у, которые вы получаете при подстановке всех возможных значений х. Все возможные значения х и называются областью определения функции. Выполните следующие действия для нахождения множества значений функции.

  1. Изображение с названием Find the Range of a Function in Math Step 1

    1

    Запишите функцию. Например: f(x) = 3x2 + 6x -2. Подставив x в уравнение, мы сможем найти значение y. Эта квадратичная функция, и ее график — парабола.

  2. Изображение с названием Find the Range of a Function in Math Step 2

    2

    Найдите вершину параболы. Если вам дана линейная функция или любая другая с переменной в нечетной степени, например, f(x) = 6x3+2x + 7, пропустите этот шаг. Но если вам дана квадратичная функция или любая другая с переменной х в четной степени, нужно найти вершину графика этой функции. Для этого используйте формулу х=-b/2a. В функции 3x2 + 6x -2 a = 3, b = 6, c = -2. Вычисляем: х = -6/(2*3)= -1.

    • Теперь подставьте х= -1 в функцию, чтобы найти у. f(-1) = 3*(-1)2 + 6*(-1) -2 = 3 — 6 -2 = -5.
    • Координаты вершины параболы (-1,-5). Нанесите ее на координатную плоскость. Точка лежит в третьем квадранте координатной плоскости.
  3. Изображение с названием Find the Range of a Function in Math Step 3

    3

    Найдите еще несколько точек на графике. Для этого подставьте в функцию несколько других значений х. Так как член x2 положительный, то парабола будет направлена вверх. Для подстраховки подставим в функцию несколько значений x, чтобы узнать, какие значения y они дают.

    • f(-2) = 3(-2)2 + 6(-2) -2 = -2. первая точка на параболе (-2, -2)
    • f(0) = 3(0)2 + 6(0) -2 = -2. Вторая точка на параболе (0,-2)
    • f(1) = 3(1)2 + 6(1) -2 = 7. Третья точка на параболе (1, 7).
  4. Изображение с названием Find the Range of a Function in Math Step 4

    4

    Найдите множество значений функции на графике. Найдите наименьшее значение у на графике. Эта вершина параболы, где у=-5. Так как парабола лежит выше вершины, то множество значений функции y ≥ -5.

    Реклама

  1. Изображение с названием Find the Range of a Function in Math Step 5

    1

    Найдите минимум функции. Вычислите наименьшее значение у. Допустим, минимум функции у=-3. Это значение может становиться все меньше и меньше, вплоть до бесконечности, так что минимум функции не имеет заданной минимальной точки.

  2. Изображение с названием Find the Range of a Function in Math Step 6

    2

    Найдите максимум функции. Допустим, максимум функции у= 10. Как и в случае с минимумом, максимум функции не имеет заданной максимальной точки.

  3. Изображение с названием Find the Range of a Function in Math Step 7

    3

    Запишите множество значений. Таким образом, множество значений функции лежит в диапазоне от -3 до +10. Запишите множество значений функции как: -3 ≤ f(x) ≤ 10

    • Но, допустим, минимум функции у=-3, а ее максимум — бесконечность (график функции уходит бесконечно вверх). Тогда множество значений функции: f(x) ≥ -3.
    • С другой стороны, если максимум функции у=10, а минимум — бесконечность (график функции уходит бесконечно вниз), то множество значений функции: f(x) ≤ 10.

    Реклама

  1. Изображение с названием Find the Range of a Function in Math Step 8

    1

    Запишите множество координат. Из множества координат можно определить его область значения и область определения. Допустим, дано множество координат: {(2, -3), (4, 6), (3, -1), (6, 6), (2, 3)}.[1]

  2. Изображение с названием Find the Range of a Function in Math Step 9

    2

    Перечислите значения у. Чтобы найти область значений множества, просто запишите все значения у: {-3, 6, -1, 6, 3}.[2]

  3. Изображение с названием Find the Range of a Function in Math Step 10

    3

    Удалите все повторяющиеся значения у. В нашем примере удалите «6»: {-3, -1, 6, 3}.[3]

  4. Изображение с названием Find the Range of a Function in Math Step 11

    4

    Запишите область значений в порядке возрастания. Областью значений множества координат {(2, –3), (4, 6), (3, –1), (6, 6), (2, 3)} будет {-3, -1, 3, 6}.[4]

  5. Изображение с названием Find the Range of a Function in Math Step 12

    5

    Убедитесь, что множество координат дано для функции. Чтобы это было так, каждому одному значению х должно соответствовать одно значение у. Например, множество координат {(2, 3) (2, 4) (6, 9)} дано не для функции, потому что одному значению х=2 соответствуют два разных значения у: у=3 и у=4.[5]

    Реклама

  1. Изображение с названием Find the Range of a Function in Math Step 13

    1

    Прочитайте задачу. «Ольга продает билеты в театр по 500 рублей за билет. Общая вырученная сумма за проданные билеты является функцией от количества проданных билетов. Какова область значений этой функции?»

  2. Изображение с названием Find the Range of a Function in Math Step 14

    2

    Запишите задачу как функцию. В этом случае М — общая вырученная сумма за проданные билеты, а t — количество проданных билетов. Так как один билет стоит 500 рублей, надо умножить количество проданных билетов на 500, чтобы найти вырученную сумму. Таким образом, функция может быть записана в виде M(t) = 500t.

    • Например, если она продаст 2 билета, нужно умножить 2 на 500 — в итоге получим 1000 рублей, вырученных за проданные билеты.
  3. Изображение с названием Find the Range of a Function in Math Step 15

    3

    Найдите область определения. Для нахождения области значений вы должны сначала найти область определения. Это все возможные значения t. В нашем примере Ольга может продать 0 или больше билетов, — она не может продать отрицательное число билетов. Поскольку мы не знаем количество мест в театре, можно предположить, что теоретически она может продать бесконечное число билетов. И она может продавать только целые билеты (она не может продать, например, 1/2 билета). Таким образом, область определения функции t = любое неотрицательное целое число.

  4. Изображение с названием Find the Range of a Function in Math Step 16

    4

    Найдите область значений. Это возможное количество денег, которые Ольга выручит от продажи билетов. Если вы знаете, что область определения функции — любое неотрицательное целое число, а функция имеет вид: М(t) = 5t, то вы можете найти вырученную сумму, подставив в функцию любое неотрицательное целое число (вместо t). Например, если она продаст 5 билетов, то М(5) = 5*500 = 2500 рублей. Если она продаст 100 билетов, то М(100) = 500 х 100 = 50000 рублей. Таким образом, область значений функции — любые неотрицательные целые числа, кратные пятистам.

    • Это означает, что любое неотрицательное целое число, которое делится на 500, является значением у (вырученная сумма) нашей функции.

    Реклама

Советы

  • В более сложных случаях лучше сначала чертить график, используя область определения, и только потом находить область значений.
  • Посмотрите, можете ли вы найти обратную функцию. Область определения обратной функции равна области значений исходной функции.
  • Проверьте, повторяется ли функция. Любая функция, которая повторяется вдоль оси x, будет иметь ту же область значений для всей функции. Например, область значений для f(x) = sin(x) будет составлять от -1 до 1.

Реклама

Об этой статье

Эту страницу просматривали 455 114 раз.

Была ли эта статья полезной?

subjects:mathematics:множество_значений_функции

Содержание

Математика ( Справочник )

    • Множество значений функции

Нахождение множества значений функции

Обозначения

  • D(f) — те значения, которые может принимать аргумент, т.е. область определения функции.

  • E(f) — те значения, которые может принимать функция, т.е. множество значений функции.

Способы нахождения областей значений функций.

  1. последовательное нахождение значений сложных аргументов функции;

  2. метод оценок/границ;

  3. использование свойств непрерывности и монотонности функции;

  4. использование производной;

  5. использование наибольшего и наименьшего значений функции;

  6. графический метод;

  7. метод введения параметра;

  8. метод обратной функции.

Рассмотрим некоторые из них.

Используя производную

Общий подход к нахождению множества значений непрерывной функции f(x) заключается в нахождении наибольшего и наименьшего значения функции f(x) в области ее определения (или в доказательстве того, что одно из них или оба не существуют).

В случае, если нужно найти множества значений функции на отрезке:

  1. найти производную данной функции f ‘(x);

  2. найти критические точки функции f(x) и выбрать те из них, которые принадлежат данному отрезку;

  3. вычислить значения функции на концах отрезка и в выбранных критических точках;

  4. среди найденных значений выбрать наименьшее и наибольшее значения;

  5. Множество значений функции заключить между этими значениями.

Если областью определения функции является интервал, то используется та же схема, но вместо значений на концах используются пределы функции при стремлении аргумента к концам интервала. Значения пределов из не входят в множество значений.

Метод границ/оценок

Для нахождения множества значений функции сначала находят множество значений аргумента, а затем отыскивают соответствующие наименьше и наибольшее значения функции функции. Используя неравенства — определяют границы.

Суть состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.

Свойства непрерывной функции

Другой вариант заключается в преобразовании функции в непрерывную монотонную, тогда используя свойства неравенств оценивают множество значений вновь полученной функции.

Последовательное нахождение значений сложных аргументов функции

Основан на последовательном отыскании множества значений промежуточных функций, из которых составлена функция

Области значений основных элементарных функций

Функция Множество значений
$y = kx+ b$ E(y) = (-∞;+∞)
$y = x^{2n}$ E(y) = [0;+∞)
$y = x^{2n +1}$ E(y) = (-∞;+∞)
$y = k/x$ E(y) = (-∞;0)u(0;+∞)
$y = x^{frac{1}{2n}}$ E(y) = [0;+∞)
$y = x^{frac{1}{2n+1}}$ E(y) = (-∞;+∞)
$y = a^{x}$ E(y) = (0;+∞)
$y = log_{a}{x}$ E(y) = (-∞;+∞)
$y = sin{x}$ E(y) = [-1;1]
$y = cos{x}$ E(y) = [-1;1]
$y = {rm tg}, x$ E(y) = (-∞;+∞)
$y = {rm ctg}, x$ E(y) = (-∞;+∞)
$y = arcsin{x}$ E(y) = [-π/2; π/2]
$y = arccos{x}$ E(y) = [0; π]
$y = {rm arctg}, x$ E(y) = (-π/2; π/2)
$y = {rm arcctg}, x$ E(y) = (0; π)

Примеры

Найдите множество значений функции:

Используя производную

НЕ используя производную

Найдите наибольшее и наименьшее значения функции:

$f(x)=sin^{2}{x}+cos{x}-frac{1}{2}$

Используя метод границ/оценок

$y=5-4sin{x}$

$y=cos{7x}+5cos{x}$

$f(x)=1+2sin^{2}{x}$

$$
\ -1leqsin{x}leq 1
\ 0leqsin^{2}{x}leq 1
\ 0leq2sin^{2}{x}leq 2
\ 1leq1+2sin^{2}{x}leq 3
$$
Ответ: E(f) = [1; 3].

$f(x)=3-2^{3+{rm tg}^{2}, x}$

$$
\ -infty < {rm tg}, x < +infty
\ 0 leq {rm tg}^{2}, x < +infty
\ 3 leq 3+{rm tg}^{2}, x < +infty
\ 2^{3} leq 2^{3+{rm tg}^{2}, x} < +infty
\ -infty < -2^{3+{rm tg}^{2}, x} leq -8
\ -infty < 3-2^{3+{rm tg}^{2}, x} leq -5
$$
Ответ: E(f) = (–∞; -5].

$f(x)=2+sqrt{16-lg^{2}{x}}$

$$
\ -infty < lg{x} < +infty
\ 0 leq lg^{2}{x} < +infty
\ -infty < -lg^{2}{x} leq 0
\ -infty < 16-lg^{2}{x} leq 16
\ 0 leq sqrt{16-lg^{2}{x}} leq 4
\ 2 leq 2+sqrt{16-lg^{2}{x}} leq 6
$$
Ответ: E(f) = [2; 6].

$f(x)=sqrt{2-x}+sqrt{2+x}$

$y=sin{x}+cos{x}$

Используя непрерывную функцию

Иные

Использованная литература

Статьи:

  • Область значения функций в задачах ЕГЭ, Минюк Ирина Борисовна

  • Советы по нахождению множества значений функции, Беляева И., Федорова С.

  • Нахождение множества значений функции

  • Как решать задачи по математике на вступительных экзаменах, И.И.Мельников, И.Н.Сергеев

Рекомендуем

subjects/mathematics/множество_значений_функции.txt

· Последние изменения: 2018/09/19 21:14 —

Автор статьи

Александр Мельник

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение 1

Функцией, заданной на множестве $X$ и принимающей значения из множества $Y$ называют некую закономерность, по которой каждому элементу из множества $X$ соответствует лишь один и только один элемент из множества $Y$.

Из этого определения следует, что множество (область) значений функции — это те значения функции $y(x)$, которые она может принимать соответственно области её определения. Теперь перейдём к следующему определению.

Определение 2

Область (множество) значений функции на некотором рассматриваемом отрезке — это интервал значений, которые функция принимает на этом рассматриваемом отрезке.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Чаще всего в учебной литературе встречается термин «множество значений функции». Кратко его обозначают $E(f)$.

Как определить область значения функции

Для определения множества значений функции пользуются графическим методом, методом поисков минимума и максимума, вычислением производной и другими.

Определение множества значений функции графическим методом

Графический метод подразумевает построение графика функции и изучение этого графика. Этот метод наиболее удобен, если не известна какая-либо закономерность изменения функции $f(x)$, а есть только набор произвольных точек или собственно сам график.

Пример 1

Определение множества значений функции графическим методом

Рисунок 1. Определение множества значений функции графическим методом

На данном рисунке область значений функции $y=f(x)$ равна $E(y)=3$, так как на протяжении всего отрезка функция $y$ не меняет своего значения и всегда равна $3$, тогда как область определения функции $D(y)=[0;3.5]$.

Скобки в данном случае для области определения функции необходимо использовать квадратные, так как обе точки закрашены, то есть включены в отрезок. В случае если точки не закрашены, они не включаются в отрезок и тогда применяются круглые скобки.

«Множество значений функции» 👇

Метод нахождения области значения функции через производную

Метод нахождения области значения функции через производную состоит в том, чтобы сначала оценить область её определения (то есть определить те значения, которые может принимать аргумент $x$, а затем осуществить процедуру нахождения самой производной. После этого осуществляют поиск значений $x$, при которых производная функции равна нулю и при которых производная не существует.

Рассмотрим пример нахождения области значений функции через производную.

Пример 2

Дана функция $f(x)=sqrt{16-x^2}$. Найдите область её значений.

Сначала определяем, какие значения может принимать $x$ для существования функции.

При значении $x^2>16$ под корнем получается отрицательное число, а это значит, что область определения функции от $[-4;4]$ включительно.

Теперь найдём производную функции:

$(sqrt{16-x^2})’=-frac{x}{sqrt{16-x^2}}$

Если в знаменателе производной нуль, то производной не существует, в данном случае это условие выполняется при $x=±4$.

Приравниваем производную к нулю и находим значения $x$. Производная данной функции принимает нулевое значение при $x=0$. Теперь подставляем найденные значения производной в нашу функцию, и получаем, что наименьшее значение функции — это $f(4)$ и $f(-4)$, при этих значениях функция равна нулю, а наибольшее значение $f(x)$ — при $x=0$, в этой точке функция равна $16$.

Метод поиска минимума и максимума

Метод поиска минимума и максимума основан на том, чтобы найти максимальное и и минимальное значение, которые функция принимает на изучаемой области.

Пример 3

Определите область значений функции:

$y=6-4sinx$

Проанализируем данную функцию. Так как минимальное значение синуса равно минус единице, а а максимальное — единице, то подставив эти значения получаем, что $max(f(x))=10$ при $x=frac{3π}{2}$, а минимум $min(f(x))=2$ при $x=frac{π}{2}$. Следовательно, множество значений, которые может принимать данная функция — $E(x)=[2;10]$.

Разница между областью значения и областью определения функции

Стоит обратить внимание, что область значений функции — не одно и то же с термином «область определения функции».

Определение 3

Область определения функции $D(y)$ — это диапазон таких значений переменной $x$, при которых существует функция $y(x)$.

Например, рассмотрим функцию $y(x)=x^2$. В данном случае область определения этой функции будет множеством вещественных (действительных) чисел $mathbb{R}$, а сама функция будет принимать значения только положительных действительных чисел $mathbb{R}^+$, так как вещественное число, возведённое в квадрат, не может давать отрицательное значение. То есть, в этом примере множество значений функции — это множество положительных вещественных чисел $mathbb{R}^+$.

Также имеют место случаи, когда область определения функции совпадает с областью значений.
В качестве иллюстрации можно рассмотреть функцию $y(x)=2x$. За аргумент $x$ данная функция может принимать любое действительное число из множества $mathbb{R}$, а значения, которые будет принимать сама функция — это удвоенные числа из множества всех действительных чисел. То есть, в данном случае областью значений $E(y)$ будет также всё множество вещественных чисел $mathbb{R}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понятие функции и всё, что с ним связано, относится к традиционно сложным, не
до конца понятым. Особым камнем преткновения при изучении функции и подготовке к
ЕГЭ являются область определения и область значений (изменения) функции.
Нередко учащиеся не видят разницы между областью определения функции и областью
её значений.
И если задачи на нахождение области определения функции учащимся удаётся
освоить, то задачи на нахождение множества значений функции вызывают у них
немалые затруднения.
Цель данной статьи: ознакомление с методами нахождения значений функции.
В результате рассмотрения данной темы был изучен теоретический материал,
рассмотрены способы решения задач на нахождение множеств значений функции,
подобран дидактический материал для самостоятельной работы учащихся.
Данная статья может быть использована учителем при подготовке учащихся к
выпускным и вступительным экзаменам, при изучении темы “Область значения
функции” на факультативных занятиях элективных курсах по математике.

Приложение 1, Приложение 2

I. Определение области значений функции.

Областью (множеством) значений E(у) функции y = f(x) называется множество
таких чисел y0, для каждого из которых найдётся такое число x0,
что: f(x0) = y0.

Напомним области значений основных элементарных функций.

Рассмотрим таблицу.

Функция Множество значений
y = kx+ b E(y) = (-∞;+∞)
y = x2n E(y) = [0;+∞)
y = x2n +1 E(y) = (-∞;+∞)
y = k/x E(y) = (-∞;0)u(0;+∞)
y = x1/2n E(y) = [0;+∞)
y = x1/2n+1 E(y) = (-∞;+∞)
y = ax E(y) = (0;+∞)
y = logax E(y) = (-∞;+∞)
y = sin x E(y) = [-1;1]
y = cos x E(y) = [-1;1]
y = tg x E(y) = (-∞;+∞)
y = ctg x E(y) = (-∞;+∞)
y = arcsin x E(y) = [-π/2;
π/2]
y = arcos x E(y) = [0; π]
y = arctg x E(y) = (-π/2;
π/2)
y = arcctg x E(y) = (0; π)

Заметим также, что областью значения всякого многочлена чётной степени
является промежуток [m;+∞) , где m – наименьшее значение этого многочлена, либо
промежуток

(-∞;n] , где n – наибольшее значение этого многочлена.

II. Свойства функций, используемые при нахождении области значений функции

Для успешного нахождения множества значений функции надо хорошо знать
свойства основных элементарных функций, особенно их области определения, области
значений и характер монотонности. Приведём свойства непрерывных, монотонных
дифференцируемых функций, наиболее часто используемые при нахождении множества
значений функций.

  1. Если функция f(x) непрерывна и возрастает на отрезке [a;b], то множество
    значений функции на этом отрезке есть отрезок [f(a),f(b)]. При этом каждое
    значение А

    [f(a),f(b)] функция принимает ровно при одном значении x принадлежит [a,b],
    т.е уравнение f(x) = А имеет единственный корень на отрезке [a,b]. Если же f(x)
    – непрерывная и убывающая на отрезке [a,b] функция, то её множество значений
    на [a,b] есть отрезок [f(a),f(b)].
  2. Если функция f(x) непрерывна на отрезке [a,b] и m = min f(x), M = max f(x)
    – её наименьшее и наибольшее значение на этом отрезке, то множество значений
    f(x) на [a,b] есть отрезок [m;M].
  3. Если функция непрерывна на отрезке [a,b] и дифференцируема (имеет
    производную) в интервале (a,b), то наибольшее и наименьшее значения функции
    на отрезке [a,b] существуют и достигаются либо на концах отрезка, либо в
    критических точках функции, расположенных на отрезке

Свойства 2 и 3, как правило, используются вместе свойством элементарной
функции быть непрерывной в своей области определения. При этом наиболее простое
и краткое решение задачи на нахождение множества значений функции достигается на
основании свойства 1, если несложными методами удаётся определить монотонность
функции. Решение задачи ещё упрощается, если функция, вдобавок, – чётная или
нечётная, периодическая и т.д. Таким образом, при решении задач на нахождение
множеств значений функции следует по мере надобности проверять и использовать
следующие свойства функции:

  • непрерывность;
  • монотонность;
  • дифференцируемость;
  • чётность, нечётность, периодичность и т.д.

Несложные задачи на нахождение множества значений функции в большинстве своём
ориентированны:

а) на использование простейших оценок и ограничений: (2х>0,
-1≤sinx?1, 0≤cos2x?1 и т.д.);

б) на выделение полного квадрата: х2 – 4х + 7 = (х – 2)2+
3;

в) на преобразование тригонометрических выражений: 2sin2x – 3cos2x
+ 4 = 5sin2x +1;

г) использование монотонности функции x1/3 + 2x-1
возрастает на R.

III. Рассмотрим способы нахождения областей значений функций.

а) последовательное нахождение значений сложных аргументов функции;
б) метод оценок;
в) использование свойств непрерывности и монотонности функции;
г) использование производной;
д) использование наибольшего и наименьшего значений функции;
е) графический метод;
ж) метод введения параметра;
з) метод обратной функции.

Раскроем суть этих методов на конкретных примерах.

Пример 1. Найдите область значений E(y) функции y = log0,5(4
– 2·3x – 9x).

Решим этот пример методом последовательного нахождения значений сложных
аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию

y = log0,5(5 – (1 + 2·3x – 32x)) = log0,5(5
– (3x + 1)2)

И последовательно найдём множества значений её сложных аргументов:

E(3x) = (0;+∞), E(3x+ 1) = (1;+∞), E(-(3x+
1)2 = (-∞;-1), E(5 – (3x+1)2) = (-∞;4)

Обозначим t = 5 – (3x+1)2, где -∞≤t≤4.
Тем самым задача сводится к нахождению множества значений функции y = log0,5t
на луче (-∞;4). Так как функция y = log0,5t определена лишь
при, то её множество значений на луче (-∞;4) совпадает со множеством значений
функции на интервале (0;4), представляющем собой пересечение луча (-∞;4) с
областью определения (0;+∞) логарифмической функции. На интервале (0;4) эта
функция непрерывна и убывает. При t > 0 она стремится к +∞, а при t =
4 принимает значение -2, поэтому E(y) = (-2, +∞).

Пример 2. Найдите область значений функции

y = cos7x + 5cosx

Решим этот пример методом оценок, суть которого состоит в оценке непрерывной
функции снизу и сверху и в доказательстве достижения функцией нижней и верхней
границы оценок. При этом совпадение множества значений функции с промежутком от
нижней границы оценки до верхней обуславливается непрерывностью функции и
отсутствием у неё других значений.

Из неравенств -1≤cos7x?1, -5≤5cosx?5 получим оценку -6≤y?6. При x = р и x = 0
функция принимает значения -6 и 6, т.е. достигает нижней и верхней границы
оценки. Как линейная комбинация непрерывных функций cos7x и cosx, функция y
непрерывна на всей числовой оси, поэтому по свойству непрерывной функции она
принимает все значения с -6 до 6 включительно, и только их, так как в силу
неравенств -6≤y?6 другие значения у неё невозможны. Следовательно, E(y) =
[-6;6].

Пример 3. Найдите область значений E(f) функции f(x) =
cos2x + 2cosx.

По формуле косинуса двойного угла преобразуем функция f(x) = 2cos2x
+ 2cosx – 1 и обозначим t = cosx. Тогда f(x) = 2t2 + 2t
– 1. Так как E(cosx) =

[-1;1], то область значений функции f(x) совпадает со множеством
значений функции g(t) = 2t2 + 2t – 1 на отрезке [-1;1],
которое найдём графическим методом. Построив график функции y = 2t2 +
2t – 1 = 2(t + 0,5)2 – 1,5 на промежутке [-1;1], находим E(f)
= [-1,5; 3].

Замечание – к нахождению множества значений функции сводятся многие задачи с
параметром, связанные, в основном, с разрешимостью и числом решений уравнения и
неравенств. Например, уравнение f(x) = а разрешимо тогда и только тогда,
когда

a

E(f)
Аналогично, уравнение f(x) = а имеет хотя бы один корень,
расположенный на некотором промежутке Х, или не имеет ни одного корня на этом
промежутке тогда и только тогда, когда а принадлежит или не принадлежит
множеству значений функции f(x) на промежутке Х. Также исследуются с
привлечением множества значений функции и неравенства f(x)≠ а, f(x)>а
и т.д. В частности, f(x)≠ а для всех допустимых значений х, если
a

E(f)

Пример 4. При каких значениях параметра а уравнение (x + 5)1/2
= a(x2 + 4) имеет единственный корень на отрезке [-4;-1].

Запишем уравнение в виде (x + 5)1/2 / (x2 + 4) = a .
Последнее уравнение имеет хотя бы один корень на отрезке [-4;-1] тогда и только
тогда, когда а принадлежит множеству значений функции f(x) = (x + 5)1/2
/ (x2 + 4) на отрезке [-4;-1]. Найдём это множество, используя
свойство непрерывности и монотонности функции.

На отрезке [-4;-1] функция y = xІ + 4 непрерывна, убывает и положительна,
поэтому функция g(x) = 1/(x2 + 4) непрерывна и возрастает на
этом отрезке, так как при делении на положительную функцию характер монотонности
функции меняется на противоположный. Функция h(x) = (x + 5)1/2
непрерывна и возрастает в своей области определения D(h) = [-5;+∞) и, в
частности на отрезке [-4;-1], где она, кроме того, положительна. Тогда функция
f(x)=g(x)·h(x), как произведение двух непрерывных, возрастающих и
положительных функций, также непрерывна и возрастает на отрезке [-4;-1], поэтому
её множество значений на [-4;-1] есть отрезок [f(-4); f(-1)] = [0,05;
0,4]. Следовательно, уравнение имеет решение на отрезке [-4;-1], причём
единственное (по свойству непрерывной монотонной функции), при 0,05 ≤ a ≤ 0,4

Замечание. Разрешимость уравнения f(x) = a на некотором промежутке Х
равносильна принадлежности значений параметра а множеству значений
функции f(x) на Х. Следовательно, множество значений функции f(x)
на промежутке Х совпадает с множеством значений параметра а, для которых
уравнение f(x) = a имеет хотя бы один корень на промежутке Х. В
частности, область значений E(f) функции f(x)совпадает с
множеством значений параметра а, для которых уравнение f(x) = a
имеет хотя бы один корень.

Пример 5. Найдите область значений E(f) функции

Решим пример методом введения параметра, согласно которому E(f)
совпадает с множеством значений параметра а, для которых уравнение

имеет хотя бы один корень.

При а=2 уравнение является линейным – 4х – 5 = 0 с ненулевым коэффициентом
при неизвестной х , поэтому имеет решение. При а≠2 уравнение является
квадратным, поэтому оно разрешимо тогда и только тогда, когда его дискриминант

Так как точка а = 2 принадлежит отрезку

 то
искомым множеством значений параметра а, значит, и областью значений E(f)
будет весь отрезок.

Как непосредственное развитие метода введения параметра при нахождении
множества значений функции, можно рассматривать метод обратной функции, для
нахождения которой надо решить относительно х уравнение f(x)= y, считая y
параметром. Если это уравнение имеет единственное решение x =g(y), то
область значений E(f) исходной функции f(x) совпадает с областью
определения D(g) обратной функции g(y). Если же уравнение f(x)=
y
имеет несколько решений x =g1(y), x =g2(y)
и т.д., то E(f) равна объединению областей определений функции g1(y),
g2(y)
и т.д.

Пример 6. Найдите область значений E(y) функции y = 52/(1-3x).

Из уравнения

найдём обратную функцию x = log3((log5y – 2)/(log5y))
и её область определения D(x):

Так как уравнения относительно х имеет единственное решение, то

E(y) = D(x) = (0; 1)(25;+).

Если область определения функции состоит из нескольких промежутков или
функция на разных промежутках задана разными формулами, то для нахождения
области значений функции надо найти множества значений функции на каждом
промежутке и взять их объединение.

Пример 7. Найдите области значений f(x) и f(f(x)), где

Найдём сначала множество значений функции f(x) на луче (-∞;1], где она
совпадает с выражением 4x + 9·4-x + 3. Обозначим t = 4x
. Тогда f(x) = t + 9/t + 3, где 0 < t ≤ 4 , так как показательная
функция непрерывно возрастает на луче (-∞;1] и стремится к нулю при х → -∞. Тем
самым множество значений функции f(x) на луче (-∞;1] совпадает с
множеством значений функции g(t) = t + 9/t + 3, на промежутке
(0;4], которое найдём, используя производную g’(t) = 1 – 9/t2.
На промежутке (0;4] производная g’(t) определена и обращается там в нуль
при t = 3. При 0<t<3 она отрицательна, а при 3<t<4
положительна. Следовательно, в интервале (0;3) функция g(t) убывает, а в
интервале (3;4) она возрастает, оставаясь непрерывной на всём промежутке (0;4),
поэтом g(3)= 9 – наименьшее значений этой функции на промежутке (0;4], в
то время как её наибольшее значение не существует, так при t→0 справа
функция g(t)→+∞. Тогда, по свойству непрерывной функции, множеством
значений функции g(t) на промежутке (0;4], а значит, и множеством
значений f(x) на (-∞;-1], будет луч [9;+∞).

При х >1 функция f(x) совпадает с выражением 2cos(x-1)1/2
+ 7. Квадратный корень (x-1)1/2 при x > 1 определён и
принимает все положительные значения, поэтому cos(x-1)1/2
принимает все значения от -1 до 1 включительно, а выражение 2cos(x-1)1/2
+ 7 принимает все значения от 5 до 9 включительно. Следовательно, множеством
значений функции f(x) на луче (1;+∞) будет отрезок [5;9].

Теперь, объединив промежутки [9;+∞) и [5;9] – множества значений функции f(f(x)),
обозначим t = f(x). Тогда f(f(x)) = f(t), где
 
При указанных t функция f(t) = 2cos(x-1)1/2 + 7
и она снова принимает все значения от 5 до 9 включительно, т.е. область значений
E(fІ) = E(f(f(x))) = [5;9].

Аналогично, обозначив z = f(f(x)), можно найти область значений E(f3)
функции f(f(f(x))) = f(z), где 5 ≤ z ≤ 9 и т.д. Убедитесь, что E(f3)
=
[2cos81/2 + 7; 2cos2 + 7].

Наиболее универсальным методом нахождения множества значений функции является
использование наибольшего и наименьшего значений функции на заданном промежутке.

Пример 8. При каких значениях параметра р неравенcтво 8xр
≠ 2x+1 – 2x
выполняется для всех -1 ≤ x < 2.

Обозначив t = 2x, запишем неравенство в виде р ≠ t3
– 2t2 + t
. Так как t = 2x – непрерывная
возрастающая функция на R, то при -1 ≤ x < 2 переменная

2-1 ≤ t <22

0,5 ≤ t < 4, и исходное неравенство выполняется для всех -1 ≤ x < 2 тогда и
только тогда, когда р отлична от значений функции f(t) = t3
– 2t2 + t
при 0,5 ≤ t < 4.

Найдём сначала множество значений функции f(t) на отрезке [0,5;4], где
она всюду имеет производную f’(t) =3t2 – 4t + 1.
Следовательно, f(t) дифференцируема, значит, и непрерывна на отрезке
[0,5;4]. Из уравнения f’(t) = 0 найдём критические точки функции t =
1/3, t = 1,
первая из которых не принадлежит отрезку [0,5;4], а вторая
принадлежит ему. Так как f(0,5) = 1/8, f(1) = 0, f(4) = 36, то, по
свойству дифференцируемой функции, 0 – наименьшее, а 36 – наибольшее значение
функции f(t) на отрезке [0,5;4]. Тогда f(t), как непрерывная
функция, принимает на отрезке [0,5;4] все значения от 0 до 36 включительно,
причём значение 36 принимает только при t = 4, поэтому при 0,5 ≤ t < 4,
она принимает все значения из промежутка [0;36). Тем самым

Заключение.

Данная тема имеет практическое значение. В школьном курсе математики
изучается тема “Область значения функции”. Такие задачи обязательно содержатся в
заданиях различных математических тестов, в частности в заданиях единого
государственного экзамена.
Результаты работы можно использовать на уроках и дополнительных занятиях при
подготовке учащихся выпускным и вступительным экзаменам, при самостоятельной
подготовке учащихся по данной теме.

Литература.

  1. Сильвестров В.В. Множество значений функции: Учебное пособие.–
    Чебоксары, 2004.
  2. Амелькин В.В., Рабцевич В.Л. Задачи с параметрами.– Минск, 1996.
  3. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. –
    Москва – Харьков, 1998.
  4. Мочалов В.В., Сильвестров В.В. Уравнения и неравенства с
    параметрами: Учебное пособие. 4-е изд., доп., перераб. – М., 2006.
  5. Сильвестров В.В. Неравенства с параметром на едином
    государственном экзамене // Математика для школьников. 2008. №
    2.

Понравилась статья? Поделить с друзьями:
  • Как найти диаганали ромба
  • Завещание как найти архив
  • Как составить программу пребывания
  • Как найти самую короткую дорогу
  • Как найти величины двугранных углов