Объясните как можно найти площадь кругового сегмента

В данной публикации мы рассмотрим определение сегмента круга и формулы, с помощью которых можно вычислить его площадь (через радиус и центральный угол кругового сектора). Также разберем примеры решения задач для демонстрации практического применения формул.

  • Определение сегмента круга

  • Формулы нахождения площади кругового сегмента

    • Через радиус и центральный угол в градусах

    • Через радиус и угол сектора в радианах

  • Примеры задачи

Определение сегмента круга

Сегмент круга – это часть круга, которая ограничена дугой окружности и ее хордой.

Хорда – это часть прямой (секущей), которая пересекает круг. Концы хорды соединяются с центром круга, в результате чего образуется равнобедренный треугольник, боковые стороны которого являются радиусом окружности. Если к этом треугольнику добавить сегмент, получится сектор.

Сегмент круга

На рисунке выше:

  • сегмент круга закрашен зеленым цветом;
  • отрезок AB – это хорда;
  • часть окружности между точками AB – дуга окружности;
  • R – радиус круга;
  • α – угол сектора.

Формулы нахождения площади кругового сегмента

Через радиус и центральный угол в градусах

Формула нахождения площади кругового сегмента через радиус и центральный угол в градусах

α° – угол в градусах.

Примечание: в расчетах используется значение π, приблизительное равное числу 3,14.

Через радиус и угол сектора в радианах

Формула нахождения площади сегмента круга через радиус и центральный угол в радианах

αрад – угол в радианах.

Примеры задачи

Задание 1
Найдите площадь сегмента круга, если его радиус равен 8 см, а центральный угол сектора, стягивающего сегмент, составляет 45 градусов.

Решение
Воспользуемся первой формулой, подставив в нее известные значения:

Пример нахождения площади сегмента круга через радиус и центральный угол в градусах

Задание 2
Площадь кругового сегмента составляет 24 см2, а центральный угол сектора круга, частью которого является сегмент, равняется 1 радиану. Найдите радиус круга.

Решение
В данном случае мы можем получить радиус из формулы, в которой задействован угол в радианах:

Пример нахождения радиуса круга через площадь сегмента и центральный угол в радианах

Определение сегмента круга

Сегмент — это геометрическая фигура, которая получается путем отсечение части круга хордой.

Онлайн-калькулятор площади сегмента круга

Находится эта фигура между хордой и дугой круга.

Хорда

Это отрезок, лежащий внутри круга и соединяющий две произвольно выбранные точки на нем.

При отсечении части круга хордой можно рассмотреть две фигуры: это наш сегмент и равнобедренный треугольник, боковые стороны которого — радиусы круга.

Площадь сегмента можно найти как разность площадей сектора круга и этого равнобедренного треугольника.

Площадь сегмента можно найти несколькими способами. Остановимся на них более подробно.

Формула площади сегмента круга через радиус и длину дуги круга, высоту и основание треугольника

S=12⋅R⋅s−12⋅h⋅aS=frac{1}{2}cdot Rcdot s-frac{1}{2}cdot hcdot a

RR — радиус круга;
ss — длина дуги;
hh — высота равнобедренного треугольника;
aa — длина основания этого треугольника.

Пример

нахождения площади через каноническое уравнение

Дан круг, его радиус, численно равный 5 (см.), высота, которая проведена к основанию треугольника, равная 2 (см.), длина дуги 10 (см.). Найти площадь сегмента круга.

Решение

R=5R=5
h=2h=2
s=10s=10

Для вычисления площади нам не хватает только основания треугольника. Найдем его по формуле:

a=2⋅h⋅(2⋅R−h)=2⋅2⋅(2⋅5−2)=8a=2cdotsqrt{hcdot(2cdot R-h)}=2cdotsqrt{2cdot(2cdot 5-2)}=8

Теперь можно вычислить площадь сегмента:

S=12⋅R⋅s−12⋅h⋅a=12⋅5⋅10−12⋅2⋅8=17S=frac{1}{2}cdot Rcdot s-frac{1}{2}cdot hcdot a=frac{1}{2}cdot 5cdot 10-frac{1}{2}cdot 2cdot 8=17 (см. кв.)

Ответ: 17 см. кв.

Формула площади сегмента круга по радиусу круга и центральном углу

S=R22⋅(α−sin⁡(α))S=frac{R^2}{2}cdot(alpha-sin(alpha))

RR — радиус круга;
αalpha — центральный угол между двумя радиусами, стягивающий хорду, измеряющийся в радианах.

Пример

нахождения площади через каноническое уравнение

Найти площадь сегмента круга, если радиус круга равен 7 (см.), а центральный угол 30 градусов.

Решение

R=7R=7
α=30∘alpha=30^{circ}

Переведем сначала угол в градусах в радианы. Поскольку πpi радиан равен 180 градусов, то:
30∘=30∘⋅π180∘=π630^{circ}=30^{circ}cdotfrac{pi}{180^{circ}}=frac{pi}{6} радиан. Тогда площадь сегмента:

S=R22⋅(α−sin⁡(α))=492⋅(π6−sin⁡(π6))≈0.57S=frac{R^2}{2}cdot(alpha-sin(alpha))=frac{49}{2}cdotBig(frac{pi}{6}-sinBig(frac{pi}{6}Big)Big)approx0.57 (см. кв.)

Ответ: 0.57 см. кв.

Не знаете, как выполнить работу с нахождением площади сегмента круга? Наши эксперты помогут вам решить контрольную по геометрии онлайн!

Тест по теме «Площадь сегмента круга»

Сегмент круга

Вычисляет площадь, длину дуги, длину хорды, высоту и периметр сегмента круга. Описывается несколько вариантов расчета по параметрам сегмента — по углу, по хорде, по радиусу, по высоте и длине дуги.

Сегмент круга

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).

На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота

Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:

Формулы вычисления параметров сегмента

Площадь сегмента:
[1]
Длина дуги:

Нахождение площади сегмента круга

В данной публикации мы рассмотрим определение сегмента круга и формулы, с помощью которых можно вычислить его площадь (через радиус и центральный угол кругового сектора). Также разберем примеры решения задач для демонстрации практического применения формул.

Определение сегмента круга

Сегмент круга – это часть круга, которая ограничена дугой окружности и ее хордой.

Хорда – это часть прямой (секущей), которая пересекает круг. Концы хорды соединяются с центром круга, в результате чего образуется равнобедренный треугольник, боковые стороны которого являются радиусом окружности. Если к этом треугольнику добавить сегмент, получится сектор.

На рисунке выше:

  • сегмент круга закрашен зеленым цветом;
  • отрезок AB – это хорда;
  • часть окружности между точками AB – дуга окружности;
  • R – радиус круга;
  • α – угол сектора.

Формулы нахождения площади кругового сегмента

Через радиус и центральный угол в градусах

α° – угол в градусах.

Примечание: в расчетах используется значение π , приблизительное равное числу 3,14.

Через радиус и угол сектора в радианах

αрад – угол в радианах.

Примеры задачи

Задание 1
Найдите площадь сегмента круга, если его радиус равен 8 см, а центральный угол сектора, стягивающего сегмент, составляет 45 градусов.

Решение
Воспользуемся первой формулой, подставив в нее известные значения:

Задание 2
Площадь кругового сегмента составляет 24 см 2 , а центральный угол сектора круга, частью которого является сегмент, равняется 1 радиану. Найдите радиус круга.

Решение
В данном случае мы можем получить радиус из формулы, в которой задействован угол в радианах:

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства. Число π
Формулы для площади круга и его частей
Формулы для длины окружности и ее дуг
Площадь круга
Длина окружности
Длина дуги
Площадь сектора
Площадь сегмента

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Длина окружности
Длина дуги

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

источники:

Нахождение площади сегмента круга

http://www.resolventa.ru/demo/diaggia6.htm

  1. Главная

  2. ГДЗ

  3. 7 класс, 8 класс, 9 класс
  4. Геометрия
  5. Атанасян учебник

  6. 13

Вернуться к содержанию учебника

Вопросы для повторения к главе 12. Страница 284

8
9
10
11
12
13
1129
1130
1131
1132
1133

Вопрос

Что такое круговой сегмент? Объясните, как можно вычислить его площадь?

Подсказка

Вспомните:

  1. Что такое круговой сегмент, его площадь?
  2. Что такое окружность, ее элементы.
  3. Что такое круг.
  4. Что такое круговой сектор.
  5. Какой треугольник называется равнобедренным.

Ответ

8
9
10
11
12
13
1129
1130
1131
1132
1133

8
9
10
11
12
13
1129
1130
1131
1132
1133


Вернуться к содержанию учебника


Сегмент круга — это часть плоскости круга, которая ограничена дугой и хордой.


Для того, чтобы найти площадь сегмента, можно воспользоваться следующей формулой:

Здесь угол альфа — это центральный угол в градусах. Данный угол образуется двумя радиусами.


Как известно, угол можно измерять как в градусах, так и в радианах. Если величина центрального угла задана в радианах, то формула площади кругового сегмента будет следующей:


Другой способ

Хорда окружности AB и два радиуса окружности AO и BO образуют равнобедренный треугольник AOB (AO = BO).

Если известна площадь треугольника AOB, то площадь кругового сегмента будет равна разности площади сектора и площади данного треугольника:

Sсегм = Sсект — Sтр.

Понравилась статья? Поделить с друзьями:
  • Как найти плоскость симметрии у куба
  • Как найти пароль от подключенного вайфая
  • Как найти мелодию по фрагменту записи
  • Как найти стоп кодон ирнк
  • Составьте предложения используя в них следующие слова как эпитеты золотой