Три стороны описанного около окружности четырехугольника
27942. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как 1:2:3. Найдите большую сторону этого четырехугольника, если известно, что его периметр равен 32.
Известно, что суммы длин противолежащих сторон четырёхугольника равны, то есть
Две противолежащие стороны относятся как 1:3, значит можем записать
Получается что одна сторона равна 4, противолежащая ей 3∙4=12. Сторона между ними равна 2∙4=8. А противолежащая ей 16–8=8. Получается что большая сторона равна 12.
Вписанные и описанные четырехугольники
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.
Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.
На рисунке — вписанные и описанные четырехугольники и их свойства.
Ты нашел то, что искал? Поделись с друзьями!
Посмотрим, как эти свойства применяются в решении задач ЕГЭ.
. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.
Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .
. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .
Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,
Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .
. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.
Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .
Еще раз повторим свойства вписанного и описанного четырехугольника.
Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .
Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.
Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.
Описанные четырехугольники
Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .
Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.
Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.
Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).
AH = AE, BF = BE, CF = CG, DH = DG,
Складывая эти равенства, получим:
AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,
то справедливо равенство
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.
Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству
и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).
Следовательно, справедливы равенства
из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:
Окружность касается касается стороны BC (рис.4).
В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.
Окружность не касается стороны BC .
В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:
-
Точка K лежит между точками C и D (рис.5)
Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:
Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.
Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.
Итак, возможен и реализуется лишь случай 1.
Из доказательства теоремы 2 непосредственно вытекает
Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.
Примеры описанных четырёхугольников
Фигура | Рисунок | Утверждение |
Ромб | В любой ромб можно вписать окружность | |
Квадрат | В любой квадрат можно вписать окружность | |
Прямоугольник | В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом | |
Параллелограмм | В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом | |
Дельтоид | В любой дельтоид можно вписать окружность | |
Трапеция | В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований |
Квадрат
В любой квадрат можно вписать окружность
Прямоугольник
В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
Параллелограмм
В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
Дельтоид
Трапеция
В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
http://ege-study.ru/ru/ege/materialy/matematika/vpisannyj-i-opisannyj-chetyrexugolniki-i-ix-svojstva/
http://www.resolventa.ru/demo/diaggia.htm
Вписанные и описанные четырехугольники
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.
Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.
Рассмотрим теоремы о вписанных и описанных четырехугольниках и их свойствах.
Теорема 1. Четырёхугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны
Теорема 2. Четырёхугольник можно описать вокруг окружности тогда и только тогда, когда суммы его противоположных сторон равны.
Теорема 3. Диагонали вписанного четырёхугольника разбивают его на две пары подобных треугольников.
Теорема 4. (Птолемея). Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Теорема 5. Площадь описанного четырехугольника равна произведению полупериметра четырёхугольника на радиус вписанной в него окружности.
Теорема 6. Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Теорема 7. Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Теорема 8. Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной.
Теорема 9. Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
Теорема 10. В любой ромб можно вписать окружность.
Теорема 11. В любой квадрат можно вписать окружность.
Теорема 12. В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом.
Теорема 13. В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.
Теорема 14. В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон равна сумме длин оснований.
Посмотрим, как эти свойства применяются в решении задач ЕГЭ.
Задача 1. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.
Решение:
Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .
Ответ: 122.
Задача 2. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .
Решение:
Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,
Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .
Ответ: 12.
Задача 3. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.
Решение:
Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .
Ответ: 10.
Задача 4. Угол A четырехугольника , вписанного в окружность, равен . Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Решение:
Четырехугольник вписан в окружность. Значит, сумма его противоположных углов равна
Поэтому
Ответ: 148.
Задача 5. Углы четырехугольника относятся как . Найдите угол D, если около данного четырехугольника можно описать окружность. Ответ дайте в градусах.
Решение:
Пусть
Сумма всех углов четырехугольника равна
А сумма каждой пары противоположных углов равна (т.к. четырехугольник вписан в окружность).
Запишем эти два условия в виде двух уравнений с двумя неизвестными:
Подставляем второе уравнение в первое и получаем
Ответ: 90.
Задача 6. Стороны четырехугольника и стягивают дуги описанной окружности, градусные величины которых равны соответственно и . Найдите угол C этого четырехугольника. Ответ дайте в градусах.
Решение:
Сумма противоположных углов вписанного четырехугольника равна .
Поэтому
Угол А – вписанный, опирается на дугу , равную сумме дуг и , т.е.
Тогда вписанный угол А равен половине дуги , т.е.
Ответ: 107.
Задача 7. Точки расположенные на окружности, делят эту окружность на четыре дуги и градусные величины которых относятся соответственно как Найдите угол A четырехугольника Ответ дайте в градусах.
Решение:
Угол А – вписанный, опирается на дугу равную сумме дуг и Найдем дуги и
Обозначим градусные величины дуг и как согласно заданному соотношению между дугами.
Тогда или
Сумма дуг и составляет
Вписанный угол А равен половине дуги т.е.
Ответ: 15.
Задача 8. Радиус окружности, описанной около квадрата, равен Найдите длину стороны этого квадрата.
Решение:
Радиус окружности, описанной около квадрата, равен половине диагонали квадрата. Тогда диагональ квадрата равна
Выразим сторону квадрата через его диагональ:
Ответ: 32.
Задача 9. Чему равна сторона правильного шестиугольника, вписанного в окружность, радиус которой равен 6?
Решение:
Если правильный шестиугольник вписан в окружность, то радиус окружности равен стороне шестиугольника. Поэтому сторона равна 6.
Ответ: 6.
Задача 10. Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен , большее основание равно 12. Найдите радиус описанной окружности этой трапеции.
Решение:
Поскольку трапеция вписана в окружность, она равнобедренная.
Рассмотрим равнобедренную трапецию с основаниями
Тогда боковые стороны
Проведем параллельно Тогда треугольник – равнобедренный, т.к. и равносторонний, т.к. Поэтому
– параллелограмм по построению, но , поэтому – ромб, и
Получаем, что О – центр описанной окружности с радиусом, равным меньшему основанию –
Ответ: 6.
Задача 11. Найти диагональ параллелограмма, вписанного в окружность радиусом 6 см.
Решение:
Согласно одной из теорем, окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Прямой угол, вписанный в окружность, опирается на диаметр. Поэтому диагональ равна диаметру, см.
Ответ: 12.
Задача 12. Около трапеции описана окружность. Периметр трапеции равен 60, средняя линия равна 25. Найдите боковую сторону трапеции.
Решение:
Средняя линия трапеции равна полусумме оснований. Поэтому сумма оснований
Сумму боковых сторон найдем как разность между периметром и суммой оснований:
Трапеция вписана в окружность, следовательно, трапеция равнобедренная, боковые стороны равны:
Ответ: 5.
Задача 13. Найдите радиус окружности, описанной около прямоугольника, две стороны которого равны 13 и
Решение:
Прямой угол, вписанный в окружность, опирается на диаметр. Поэтому диагональ равна диаметру окружности.
В то же время по теореме Пифагора диагональ найдем как
Радиус окружности равен половине диаметра:
Ответ: 9.
Задача 14. Найдите радиус окружности, вписанной в квадрат со стороной 16.
Решение:
Радиус окружности, вписанной в квадрат, равен половине его стороны. Поэтому
Ответ: 8.
Задача 15. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.
Решение:
Трапеция описана около окружности. Следовательно, сумма оснований равна сумме боковых сторон и равна 11 (половине периметра).
Боковая сторона тогда боковая сторона
Радиус вписанной окружности равен половине т.е. 2.
Ответ: 2.
Задача 16. Найдите высоту трапеции, в которую вписана окружность радиуса 14.
Решение:
Высота трапеции, в которую вписана окружность, равна диаметру этой окружности:
Ответ: 28.
Задача 17. Боковые стороны трапеции, описанной около окружности, равны 19 и 13. Найдите среднюю линию трапеции.
Решение:
Трапеция описана около окружности. Следовательно, сумма оснований равна сумме боковых сторон и равна
Средняя линия трапеции равна полусумме оснований
Ответ: 16.
Задача 18. Около окружности, радиус которой равен 2, описан многоугольник, периметр которого равен 16. Найдите его площадь.
Решение:
Площадь описанного многоугольника можно найти как произведение полупериметра на радиус вписанной окружности:
Ответ: 16.
Задача 19. В равнобедренной трапеции, вписанной в окружность, диагонали взаимно перпендикулярны. Средняя линия трапеции равна 12. Найти радиус вписанной окружности.
Решение:
Радиус окружности, вписанной в трапецию, равен половине ее высоты.
Рассмотрим равнобедренную трапецию
Проведем Треугольник – прямоугольный (с прямым углом С) и равнобедренный. Его гипотенуза равна сумме оснований трапеции (т.к. – параллелограмм, и ),
Высота трапеции является также высотой и медианой, проведенной из прямого угла равнобедренного прямоугольного треугольника .
Радиус вписанной окружности
Ответ: 6.
Задача 20. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Центр окружности лежит внутри трапеции. Найдите высоту трапеции.
Решение:
Пусть О – центр описанной окружности. Проведем высоту проходящую через точку О. Тогда (радиусы окружности),
Треугольники и – прямоугольные. Применяя теорему Пифагора, найдем:
Ответ: 7.
Это были задачи по теме «Вписанные и описанные четырехугольники» из первой части ОГЭ и ЕГЭ. Покажем более сложную задачу, из второй части ОГЭ по математике.
Задача 21. В четырёхугольник можно вписать и вокруг него можно описать окружность. Диагонали этого четырёхугольника перпендикулярны. Найдите его площадь, если радиус описанной окружности равен 5, а
Решение:
Обозначим Тогда
Обозначим также
Вписать окружность в четырехугольник можно тогда и только тогда, когда суммы длин противоположных сторон четырехугольника равны.
Значит, Отсюда
Пусть О – точка пересечения диагоналей четырёхугольника
При пересечении и образуется четыре прямоугольных треугольника. Это
Пусть
Запишем для каждого из этих треугольников теорему Пифагора:
Из
Из
Из
Из
Мы получили систему уравнений.
Сложив первое и третье из них и выразив как получим:
Кроме того, Это мы нашли в самом начале.
Из системы уравнений
находим:
Значит,
Перестроим чертеж. Это надо сделать обязательно. Появились новые данные – рисуем новый чертеж. По условию, четырехугольник вписан в окружность.
Треугольники и равны по трем сторонам. Значит, углы и равны.
Четырехугольник вписан в окружность, поэтому сумма углов и равна 180 градусов. Мы получили, что углы и – прямые. Тогда – диаметр окружности.
По условию, , тогда
опирается на диаметр.
– прямоугольный, – его гипотенуза.
По теореме Пифагора для :
Отсюда
Ответ: 40.
Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Вписанные и описанные четырехугольники» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.05.2023
Тренировочный вариант 362 от Ларина Задание 3 (6) № задачи в базе 2993
Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как 4 : 7 : 9. Найдите большую сторону этого четырехугольника, если известно, что его периметр равен 338
Ответ: 117
Ключевые слова:
Геометрия | Планиметрия | Задачи 1 планиметрия | Задания ЕГЭ части 1 | Ларин варианты | Четырёхугольник | ЕГЭ по математике 2022 | Окружность | свойство Описанного четырёхугольника | 362 тренировочный вариант от Ларина |
ФИПИ 2023 🔥 …
Примечание: Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как 4 : 7 : 9 ! Тренировочный вариант 362 от Ларина Задание 3 (6)
10%
Рейтинг сложности задачи:
zeshuale
Вопрос по геометрии:
Три стороны описанного около окружности четырехугольника относятся как 1:5:9. Найдите большую сторону этого четырехугольника, если его периметр равен 20.
Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?
Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!
Ответы и объяснения 1
pldandsmfifo890
Возьмем четырехугольник. Его можно описать около окуржности.
Суммы его противоположных сторон равны. Стороны последовательны, т.е 1+9=5+х. Сумма двух сторон равна половине периметра 20:2=10.
Пусть на одну часть приходится у, тогда
у+9у=10
10у=10
у=1, большая сторона 9*1=9
Знаете ответ? Поделитесь им!
Гость ?
Как написать хороший ответ?
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете
правильный ответ; - Писать подробно, чтобы ответ был исчерпывающий и не
побуждал на дополнительные вопросы к нему; - Писать без грамматических, орфографических и
пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся
уникальные и личные объяснения; - Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
знаю» и так далее; - Использовать мат — это неуважительно по отношению к
пользователям; - Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!
Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.