Определение как найти критические точки функции

Содержание:

  1. Критические точки и экстремумы функции
  2. Теорема Ферма (Необходимое условие существовании экстремумов)
  3. Достаточное условие существования экстремума
  4. Задача пример №117
  5. Задача пример №118
  6. Задача пример №119
  7. Задача пример №120
  8. Задача пример №121

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

1. Для значений Критические точки и экстремумы функции равных Критические точки и экстремумы функцииКритические точки и экстремумы функции угловой коэффициент касательной к графику равен 0. Т.e. Критические точки и экстремумы функции. Эти точки являются критическими точками функции.

2. В точках Критические точки и экстремумы функции функция не имеет производной. Эти тоже критические точки функции.

Критические точки и экстремумы функции

3. Для рассматриваемой нами функции критические точки Критические точки и экстремумы функцииКритические точки и экстремумы функции делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Критические точки и экстремумы функции— критические точки, которые не изменяют возрастание и убывание (или наоборот).

По графику видно, что в точках внутреннего экстремума Критические точки и экстремумы функции производная функции равна нулю, а в точке Критические точки и экстремумы функции производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Критические точки и экстремумы функции

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Критические точки и экстремумы функции производная функции Критические точки и экстремумы функции равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т.е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Достаточное условие существования экстремума

Пусть функция Критические точки и экстремумы функции непрерывна на промежутке Критические точки и экстремумы функции и Критические точки и экстремумы функции. Если Критические точки и экстремумы функции является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

1 ) Критические точки и экстремумы функции слева от точки Критические точки и экстремумы функции положительна, а справа — отрицательна, то точка Критические точки и экстремумы функции является точкой максимума.

2) Критические точки и экстремумы функции слева от Критические точки и экстремумы функции отрицательна, а справа — положительна, то точка Критические точки и экстремумы функции является точкой минимума

3) Критические точки и экстремумы функции с каждой стороны от точки Критические точки и экстремумы функции имеет одинаковые знаки, то точка Критические точки и экстремумы функции не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Критические точки и экстремумы функции на отрезке Критические точки и экстремумы функции записываются как Критические точки и экстремумы функции и Критические точки и экстремумы функции.

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Критические точки и экстремумы функции

Задача пример №117

Для функции Критические точки и экстремумы функции определите максимумы и минимумы и схематично изобразите график.

Решение:

Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки функции: Критические точки и экстремумы функции

3. Точки Критические точки и экстремумы функции и Критические точки и экстремумы функции разбивают область определения функции на три промежутка.

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки:

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Критические точки и экстремумы функции для интервала Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание и убывание Критические точки и экстремумы функции

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции. (-1;3) — максимум

При Критические точки и экстремумы функции имеем Критические точки и экстремумы функции (1;-1) — минимум

4. Используя полученные для функции Критические точки и экстремумы функции данные и найдя координаты нескольких дополнительных точек, построим график функции.

Критические точки и экстремумы функции Критические точки и экстремумы функции

Задача пример №118

Найдите наибольшее и наименьшее значение функции Критические точки и экстремумы функции на отрезке [-1;2].

Решение:

Сначала найдем критические точки. Так как Критические точки и экстремумы функции, то критические точки можно найти из уравнения Критические точки и экстремумы функции. Критическая точка Критические точки и экстремумы функции не принадлежит данному отрезку [-1; 2], и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Критические точки и экстремумы функции и на концах отрезка.

Критические точки и экстремумы функции

Из этих значений наименьшее — 4, наибольшее 12. Таким образом: Критические точки и экстремумы функции

Задача пример №119

Найдите экстремумы функции Критические точки и экстремумы функции.

Решение:

1. Производная функции: Критические точки и экстремумы функции

2. Критические точки: Критические точки и экстремумы функции, Критические точки и экстремумы функции

3. Интервалы, на которые критические точки делят область определения функции: Критические точки и экстремумы функции

Проверим знак Критические точки и экстремумы функции на интервалах, выбрав пробные точки.

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Для промежутка (0; 1,5) возьмем Критические точки и экстремумы функции

Для промежутка Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции

Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции Возрастание-убывание Критические точки и экстремумы функции

Используя полученную для функции Критические точки и экстремумы функции информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Критические точки и экстремумы функции и Критические точки и экстремумы функции касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Критические точки и экстремумы функции Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

• Точка Критические точки и экстремумы функции критическая точка функции Критические точки и экстремумы функции, но не является экстремумом.

• Функция Критические точки и экстремумы функции на промежутке [0; 1,5] возрастает.

• Функция Критические точки и экстремумы функциина промежутке Критические точки и экстремумы функции убывает.

Критические точки и экстремумы функции

Задача пример №120

Найдите экстремумы функции Критические точки и экстремумы функции

Решение:

1. Производная Критические точки и экстремумы функции

2. Критические точки: для этого надо решить уравнение Критические точки и экстремумы функции или найти точки, в которых производная не существует. В точке Критические точки и экстремумы функции функция не имеет конечной производной. Однако точка Критические точки и экстремумы функции принадлежит области определения. Значит, точка Критические точки и экстремумы функции является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Критические точки и экстремумы функции и Критические точки и экстремумы функции

Определим знак Критические точки и экстремумы функции, выбрав пробные точки для каждого промежутка:

Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции Для Критические точки и экстремумы функции возьмем Критические точки и экстремумы функции

Интервал Критические точки и экстремумы функции Пробные точки Критические точки и экстремумы функции

Знак Критические точки и экстремумы функции Критические точки и экстремумы функции

Возрастание-убывание Критические точки и экстремумы функции

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции убывает.

• Функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает.

Критические точки и экстремумы функции

Задача пример №121

По графику функции производной Критические точки и экстремумы функции схематично изобразите график самой функции.

Критические точки и экстремумы функции

Решение:

Производная Критические точки и экстремумы функции в точке Критические точки и экстремумы функции равна нулю, а при Критические точки и экстремумы функции отрицательна, значит, на интервале Критические точки и экстремумы функции функция убывающая. При Критические точки и экстремумы функции производная положительна, а это говорит о том, что функция Критические точки и экстремумы функции на промежутке Критические точки и экстремумы функции возрастает. Точкой перехода от возрастания к убыванию функции является точка Критические точки и экстремумы функции. Соответствующий график представлен на рисунке.

Критические точки и экстремумы функции

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Другие темы которые вам помогут понять математику:

  • Объемы подобных фигур
  • Нахождение промежутков возрастания и убывания функции
  • Построение графиков функции с помощью производной
  • Задачи на экстремумы. Оптимизации

Лекции:

  • Экстремумы функции двух переменных. Производная по направлению
  • Доказательство неравенств
  • Системы уравнений
  • Максимальные и минимальные значения функции
  • Действия с корнями
  • Отрицательное биномиальное распределение
  • Длина дуги кривой
  • Вычислить несобственный интеграл
  • Градиент функции: пример решения
  • Интеграл натурального логарифма

Критические точки – это точки в которых производная функции равна нулю или не существует. Если производная равна 0 то функция в этой точке принимает локальный минимум или максимум. На графике в таких точках функция имеет горизонтальную асимптоту, то есть касательная параллельна оси Ох.

критические точки

Такие точки называют стационарными. Если видите на графике непрерывной функции «горб» или «яму» помните, что максимум или минимум достигается в критической точке. Рассмотрим для примера следующее задание.

Пример 1. Найти критические точки функции y=2x^3-3x^2+5 .
Решение. Алгоритм нахождения критических точек следующий:

Итак функция имеет две критические точки.

Далее, если нужно провести исследование функции то определяем знак производной слева и справа от критической точки. Если производная при переходе через критическую точку меняет знак с «-» на «+», то функция принимает локальный минимум. Если с «+» на «-» должны локальный максимум.

Второй тип критических точек это нули знаменателя дробных и иррациональных функций
критические точки

Функции с логарифмами и тригонометрические, которые не определены в этих точках
критические точки
критические точки
Третий тип критических точек имеют кусочно-непрерывные функции и модули.
Например любая модуль-функция имеет минимум или максимум в точке излома.

Например модуль y = | x -5 | в точке x = 5 имеет минимум (критическую точку).
Производная в ней не существует, а справа и слева принимает значение 1 и -1 соответственно.

Попробуйте определить критические точки функций

1) функция
2) функция
3) функция
4) функция
5)

Если в ответе у Вы получите значение
1) x=4;
2) x=-1;x=1;
3) x=9;
4) x=Pi*k;
5) x=1.
то Вы уже знаете как найти критические точки и сможете справиться с простой контрольной или тестами.

Как определить критические точки

Критические точки являются одним из важнейших аспектов исследования функции с помощью производной и имеют широкую область применения. Они используются в дифференциальном и вариационном исчислениях, играют большую роль в физике и механике.

Как определить критические точки

Инструкция

Понятие критической точки функции тесно связано с понятием ее производной в этой точке. А именно, точка называется критической, если производная функции в ней не существует или равна нулю. Критические точки являются внутренними точками области определения функцию.

Чтобы определить критические точки данной функции, необходимо выполнить несколько действий: найти область определения функции, вычислить ее производную, найти область определения производной функции, найти точки обращения производной в ноль, доказать принадлежность найденных точек области определения исходной функции.

Пример 1Определите критические точки функции y = (x — 3)²·(x-2).

РешениеНайдите область определения функции, в данном случае ограничений нет: x ∈ (-∞; +∞);Вычислите производную y’. По правилам дифференцирования произведения двух функций имеется: y’ = ((x — 3)²)’·(x — 2) + (x — 3)²·(x — 2)’ = 2·(x — 3)·(x — 2) + (x — 3)²·1. После раскрытия скобок получается квадратное уравнение: y’ = 3·x² – 16·x + 21.

Найдите область определения производной функции: x ∈ (-∞; +∞).Решите уравнение 3·x² – 16·x + 21 = 0 для того, чтобы найти, при каких x производная обращается в ноль: 3·x² – 16·x + 21 = 0.

D = 256 – 252 = 4×1 = (16 + 2)/6 = 3; x2 = (16 — 2)/6 = 7/3.Итак, производная обращается в ноль при значениях x, равных 3 и 7/3.

Определите, принадлежат ли найденные точки области определения исходной функции. Поскольку x (-∞; +∞), то обе эти точки являются критическими.

Пример 2Определите критические точки функции y = x² – 2/x.

РешениеОбласть определения функции: x ∈ (-∞; 0) ∪ (0; +∞), поскольку x стоит в знаменателе.Вычислите производную y’ = 2·x + 2/x².

Область определения производной функции та же, что у исходной: x ∈ (-∞; 0) ∪ (0; +∞).Решите уравнение 2·x + 2/x² = 0:2·x = -2/x² → x = -1.

Итак, производная обращается в ноль при x = -1. Выполнено необходимое, но недостаточное условие критичности. Поскольку x=-1 попадает в интервал (-∞; 0) ∪ (0; +∞), то эта точка являются критической.

Источники:

  • Критический объем реализации , штПорог

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум при условии, что функция f(x) здесь непрерывна.

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна – то минимум.

О случае f??(а) = 0 можно прочитать в Справочнике по высшей математике М.Я. Выгодского.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной: нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы.

Функция                                 y(x) = 3x2 + 2x – 50.

Производная функции:        y?(x) = 6x + 2

Решаем уравнение:              y?(x) = 0

6х + 2 = 0,      6х = -2,           х=-2/6 = -1/3

В данном случае критическая точка – это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум. Чтобы его найти, подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) – 50 = 3*1/9 – 2/3 – 50 = 1/3 – 2/3 – 50 = -1/3 – 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак – «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак – «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка – в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

а) [-9; 9]

б) [-6; -3]

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

3cos(x) = 0,5

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = —arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = —arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = —arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = —arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88,        у = 5,398,

а наименьшее – при х = 4,88:

x = 4,88,          у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f  ?  (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна – то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0,     fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

f(x,y) – f(a,b)

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный – то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.

Источники:

  • Выгодский М.Я. Справочник по высшей математике
  • Черненко В.Д. Высшая математика в примерах и задачах. В 3-х томах. Том 1.

найти экстремумы функции 

f(x)=x2x−1

.

Производная этой функции —

f′(x)=xx−2(x−1)2

, значит, критические точки функции — это (x=0) и (x=2). Точка (x=1) не принадлежит области определения функции.

Они делят реальную числовую прямую на четыре интервала:

−∞;0∪0;1∪1;2∪2;+∞

. Знак первого интервала положительный  (например,

f′

((-1)=0.75)). Второго — отрицательный, третьего — отрицательный, четвёртого — положительный.

−∞;0

0;1

1;2

2;+∞

(+)

(-)

(-)

(+)

ekstremi.bmp

Значит, производная меняет знак только в точках (x=0) и (x=2).

В точке (x=0) она меняет знак с положительного на отрицательный, значит, это точка локального максимума со значением функции (f(0)=0).

В точке (x=2) она меняет знак с отрицательного на положительный, значит, это точка локального минимума со значением функции (f(2)=4).

Понравилась статья? Поделить с друзьями:
  • Как найти какой был день недели
  • Как исправить ошибку в документе росреестра
  • Как найти приложение на телефоне honor
  • Как найти единицу площади 4 класс
  • Как найти фото в лучшем качестве