Относительная частота интервала как найти


Загрузить PDF


Загрузить PDF

С абсолютной частотой все довольно просто: она определяет, сколько раз конкретное число содержится в имеющемся наборе данных (объектов или значений). А вот относительная частота характеризует отношение количества конкретного числа в наборе данных. Другими словами, относительная частота – это отношение количества определенного числа к общему количеству чисел в наборе данных. Имейте в виду, что вычислить относительную частоту достаточно легко.

  1. Изображение с названием Calculate Relative Frequency Step 1

    1

    Соберите данные. Если вы решаете математическую задачу, в ее условии должен быть дан набор данных (чисел). В противном случае проведите эксперимент или исследование и соберите необходимые данные. Подумайте, в какой форме записать исходные данные.

    • Например, нужно собрать данные о возрасте людей, которые посмотрели определенный фильм. Конечно, можно записать точный возраст каждого человека, но в этом случае вы получите довольно большой набор данных с 60-70 числами в пределах от 10 до 70 или 80. Поэтому лучше сгруппировать данные по категориям, таким как «Моложе 20», «20-29», «30-39» «40-49», «50-59» и «Старше 60». Получится упорядоченный набор данных с шестью группами чисел.
    • Другой пример: врач собирает данные о температуре пациентов в определенный день. Если записать округленные числа, например, 37, 38, 39, то результат будет не слишком точным, поэтому здесь данные нужно представить в виде десятичных дробей.
  2. Изображение с названием Calculate Relative Frequency Step 2

    2

    Упорядочьте данные. Когда вы соберете данные, у вас, скорее всего, получится хаотичный набор чисел, например, такой: 1, 2, 5, 4, 6, 4, 3, 7, 1, 5, 6, 5, 3, 4, 5, 1. Такая запись кажется практически бессмысленной и с ней сложно работать. Поэтому упорядочьте числа по возрастанию (от меньшего к большему), например, так: 1,1,1,2,3,3,4,4,4,5,5,5,5,6,6,7.[1]

    • Упорядочивая данные, будьте внимательны, чтобы не пропустить ни одного числа. Посчитайте общее количество чисел в наборе данных, чтобы убедиться, что вы записали все числа.
  3. Изображение с названием Calculate Relative Frequency Step 3

    3

    Создайте таблицу с данными. Собранные данные можно организовать в виде таблицы. Такая таблица будет включать три столбца и использоваться для вычисления относительной частоты. Столбцы обозначьте следующим образом:[2]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 5

    1

    Найдите количество чисел в наборе данных. Относительная частота характеризует, сколько раз конкретное число содержится в имеющемся наборе данных по отношению к общему количеству чисел. Чтобы найти относительную частоту, нужно посчитать общее количество чисел в наборе данных. Общее количество чисел станет знаменателем дроби, с помощью которой будет вычислена относительная частота.[3]

    • В нашем примере набор данных содержит 16 чисел.
  2. Изображение с названием Calculate Relative Frequency Step 5

    2

    Найдите количество определенного числа. То есть посчитайте, сколько раз конкретное число встречается в наборе данных. Это можно сделать как для одного числа, так и для всех чисел из набора данных.[4]

    • Например, в нашем примере число 4 встречается в наборе данных три раза.
  3. Изображение с названием Calculate Relative Frequency Step 6

    3

    Разделите количество конкретного числа на общее количество чисел. Так вы найдете относительную частоту для определенного числа. Вычисление можно представить в виде дроби или воспользоваться калькулятором или электронной таблицей, чтобы разделить два числа.[5]

    Реклама

  1. Изображение с названием Calculate Relative Frequency Step 7

    1

    Результаты вычислений запишите в созданную ранее таблицу. Она позволит представить результаты в наглядной форме. По мере вычисления относительной частоты результаты записывайте в таблицу напротив соответствующего числа. Как правило, значение относительной частоты можно округлить до второго знака после десятичной запятой, но это на ваше усмотрение (в зависимости от требований задачи или исследования). Помните, что округленный результат не равен точному ответу.[6]

    • В нашем примере таблица относительных частот будет выглядеть следующим образом:
    • x : n(x) : P(x)
    • 1 : 3 : 0,19
    • 2 : 1 : 0,06
    • 3 : 2 : 0,13
    • 4 : 3 : 0,19
    • 5 : 4 : 0,25
    • 6 : 2 : 0,13
    • 7 : 1 : 0,06
    • Итого : 16 : 1,01
  2. Изображение с названием Calculate Relative Frequency Step 8

    2

    Представьте числа (элементы), которых нет в наборе данных. Иногда представление чисел с нулевой частотой так же важно, как и представление чисел с ненулевой частотой. Обратите внимание на собранные данные; если между данными имеются пробелы, их нужно заполнить нулями.

    • В нашем примере набор данных включает все числа от 1 до 7. Но предположим, что числа 3 нет в наборе. Возможно, это немаловажный факт, поэтому нужно записать, что относительная частота числа 3 равна 0.
  3. Изображение с названием Calculate Relative Frequency Step 9

    3

    Выразите результаты в процентах. Иногда результаты вычислений нужно преобразовать из десятичных дробей в проценты. Это общепринятая практика, потому что относительная частота характеризует процент случаев появления определенного числа в наборе данных. Чтобы преобразовать десятичную дробь в проценты, нужно десятичную запятую передвинуть на две позиции вправо и приписать символ процента.

    • Например, десятичная дробь 0,13 равна 13%.
    • Десятичная дробь 0,06 равна 6% (обратите внимание, что перед 6 стоит 0).

    Реклама

Советы

  • Относительная частота характеризует наличие или возникновение определенного события в наборе событий.
  • Если сложить относительные частоты всех чисел из набора данных, вы получите единицу. Помните, что при сложении округленных результатов сумма не будет равна 1,0.
  • Если набор данных слишком большой, чтобы обработать его вручную, воспользуйтесь программой MS Excel или MATLAB; это позволит избежать ошибок в процессе вычисления.

Реклама

Источники

Об этой статье

Эту страницу просматривали 145 557 раз.

Была ли эта статья полезной?

Интервальный вариационный ряд и его характеристики

  1. Построение интервального вариационного ряда по данным эксперимента
  2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения
  3. Выборочная средняя, мода и медиана. Симметрия ряда
  4. Выборочная дисперсия и СКО
  5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации
  6. Алгоритм исследования интервального вариационного ряда
  7. Примеры

п.1. Построение интервального вариационного ряда по данным эксперимента

Интервальный вариационный ряд – это ряд распределения, в котором однородные группы составлены по признаку, меняющемуся непрерывно или принимающему слишком много значений.

Общий вид интервального вариационного ряда

Интервалы, (left.left[a_{i-1},a_iright.right)) (left.left[a_{0},a_1right.right)) (left.left[a_{1},a_2right.right)) (left.left[a_{k-1},a_kright.right))
Частоты, (f_i) (f_1) (f_2) (f_k)

Здесь k — число интервалов, на которые разбивается ряд.

Размах вариации – это длина интервала, в пределах которой изменяется исследуемый признак: $$ F=x_{max}-x_{min} $$

Правило Стерджеса
Эмпирическое правило определения оптимального количества интервалов k, на которые следует разбить ряд из N чисел: $$ k=1+lfloorlog_2 Nrfloor $$ или, через десятичный логарифм: $$ k=1+lfloor 3,322cdotlg Nrfloor $$

Скобка (lfloor rfloor) означает целую часть (округление вниз до целого числа).

Шаг интервального ряда – это отношение размаха вариации к количеству интервалов, округленное вверх до определенной точности: $$ h=leftlceilfrac Rkrightrceil $$

Скобка (lceil rceil) означает округление вверх, в данном случае не обязательно до целого числа.

Алгоритм построения интервального ряда
На входе: все значения признака (left{x_jright}, j=overline{1,N})
Шаг 1. Найти размах вариации (R=x_{max}-x_{min})
Шаг 2. Найти оптимальное количество интервалов (k=1+lfloorlog_2 Nrfloor)
Шаг 3. Найти шаг интервального ряда (h=leftlceilfrac{R}{k}rightrceil)
Шаг 4. Найти узлы ряда: $$ a_0=x_{min}, a_i=1_0+ih, i=overline{1,k} $$ Шаг 5. Найти частоты (f_i) – число попаданий значений признака в каждый из интервалов (left.left[a_{i-1},a_iright.right)).
На выходе: интервальный ряд с интервалами (left.left[a_{i-1},a_iright.right)) и частотами (f_i, i=overline{1,k})

Заметим, что поскольку шаг h находится с округлением вверх, последний узел (a_kgeq x_{max}).

Например:
Проведено 100 измерений роста учеников старших классов.
Минимальный рост составляет 142 см, максимальный – 197 см.
Найдем узлы для построения соответствующего интервального ряда.
По условию: (N=100, x_{min}=142 см, x_{max}=197 см).
Размах вариации: (R=197-142=55) (см)
Оптимальное число интервалов: (k=1+lfloor 3,322cdotlg ⁡100rfloor=1+lfloor 6,644rfloor=1+6=7)
Шаг интервального ряда: (h=lceilfrac{55}{5}rceil=lceil 7,85rceil=8) (см)
Получаем узлы ряда: $$ a_0=x_{min}=142, a_i=142+icdot 8, i=overline{1,7} $$

(left.left[a_{i-1},a_iright.right)) cм (left.left[142;150right.right)) (left.left[150;158right.right)) (left.left[158;166right.right)) (left.left[166;174right.right)) (left.left[174;182right.right)) (left.left[182;190right.right)) (left[190;198right])

п.2. Гистограмма и полигон относительных частот, кумулята и эмпирическая функция распределения

Относительная частота интервала (left.left[a_{i-1},a_iright.right)) — это отношение частоты (f_i) к общему количеству исходов: $$ w_i=frac{f_i}{N}, i=overline{1,k} $$

Гистограмма относительных частот интервального ряда – это фигура, состоящая из прямоугольников, ширина которых равна шагу ряда, а высота – относительным частотам каждого из интервалов.
Площадь гистограммы равна 1 (с точностью до округлений), и она является эмпирическим законом распределения исследуемого признака.

Полигон относительных частот интервального ряда – это ломаная, соединяющая точки ((x_i,w_i)), где (x_i) — середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).

Накопленные относительные частоты – это суммы: $$ S_1=w_1, S_i=S_{i-1}+w_i, i=overline{2,k} $$ Ступенчатая кривая (F(x)), состоящая из прямоугольников, ширина которых равна шагу ряда, а высота – накопленным относительным частотам, является эмпирической функцией распределения исследуемого признака.
Кумулята – это ломаная, которая соединяет точки ((x_i,S_i)), где (x_i) — середины интервалов.

Например:
Продолжим анализ распределения учеников по росту.
Выше мы уже нашли узлы интервалов. Пусть, после распределения всех 100 измерений по этим интервалам, мы получили следующий интервальный ряд:

i 1 2 3 4 5 6 7
(left.left[a_{i-1},a_iright.right)) cм (left.left[142;150right.right)) (left.left[150;158right.right)) (left.left[158;166right.right)) (left.left[166;174right.right)) (left.left[174;182right.right)) (left.left[182;190right.right)) (left[190;198right])
(f_i) 4 7 11 34 33 8 3

Найдем середины интервалов, относительные частоты и накопленные относительные частоты:

(x_i) 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03
(S_i) 0,04 0,11 0,22 0,56 0,89 0,97 1

Построим гистограмму и полигон:
Гистограмма
Полигон
Построим кумуляту и эмпирическую функцию распределения:
Кумулята
Эмпирическая функция распределения
Эмпирическая функция распределения (относительно середин интервалов): $$ F(x)= begin{cases} 0, xleq 146\ 0,04, 146lt xleq 154\ 0,11, 154lt xleq 162\ 0,22, 162lt xleq 170\ 0,56, 170lt xleq 178\ 0,89, 178lt xleq 186\ 0,97, 186lt xleq 194\ 1, xgt 194 end{cases} $$

п.3. Выборочная средняя, мода и медиана. Симметрия ряда

Выборочная средняя интервального вариационного ряда определяется как средняя взвешенная по частотам: $$ X_{cp}=frac{x_1f_1+x_2f_2+…+x_kf_k}{N}=frac1Nsum_{i=1}^k x_if_i $$ где (x_i) — середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).
Или, через относительные частоты: $$ X_{cp}=sum_{i=1}^k x_iw_i $$

Модальным интервалом называют интервал с максимальной частотой: $$ f_m=max f_i $$ Мода интервального вариационного ряда определяется по формуле: $$ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h $$ где
(h) – шаг интервального ряда;
(x_o) — нижняя граница модального интервала;
(f_m,f_{m-1},f_{m+1}) — соответственно, частоты модального интервала, интервала слева от модального и интервала справа.

Медианным интервалом называют первый интервал слева, на котором кумулята превысила значение 0,5. Медиана интервального вариационного ряда определяется по формуле: $$ M_e=x_o+frac{0,5-S_{me-1}}{w_{me}}h $$ где
(h) – шаг интервального ряда;
(x_o) — нижняя граница медианного интервала;
(S_{me-1}) накопленная относительная частота для интервала слева от медианного;
(w_{me}) относительная частота медианного интервала.

Расположение выборочной средней, моды и медианы в зависимости от симметрии ряда аналогично их расположению в дискретном ряду (см. §65 данного справочника).

Например:
Для распределения учеников по росту получаем:

(x_i) 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03 1
(x_iw_i) 5,84 10,78 17,82 57,80 58,74 14,88 5,82 171,68

$$ X_{cp}=sum_{i=1}^k x_iw_i=171,68approx 171,7 text{(см)} $$ На гистограмме (или полигоне) относительных частот максимальная частота приходится на 4й интервал [166;174). Это модальный интервал.
Данные для расчета моды: begin{gather*} x_o=166, f_m=34, f_{m-1}=11, f_{m+1}=33, h=8\ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h=\ =166+frac{34-11}{(34-11)+(34-33)}cdot 8approx 173,7 text{(см)} end{gather*} На кумуляте значение 0,5 пересекается на 4м интервале. Это – медианный интервал.
Данные для расчета медианы: begin{gather*} x_o=166, w_m=0,34, S_{me-1}=0,22, h=8\ \ M_e=x_o+frac{0,5-S_{me-1}}{w_me}h=166+frac{0,5-0,22}{0,34}cdot 8approx 172,6 text{(см)} end{gather*} begin{gather*} \ X_{cp}=171,7; M_o=173,7; M_e=172,6\ X_{cp}lt M_elt M_o end{gather*} Ряд асимметричный с левосторонней асимметрией.
При этом (frac{|M_o-X_{cp}|}{|M_e-X_{cp}|}=frac{2,0}{0,9}approx 2,2lt 3), т.е. распределение умеренно асимметрично.

п.4. Выборочная дисперсия и СКО

Выборочная дисперсия интервального вариационного ряда определяется как средняя взвешенная для квадрата отклонения от средней: begin{gather*} D=frac1Nsum_{i=1}^k(x_i-X_{cp})^2 f_i=frac1Nsum_{i=1}^k x_i^2 f_i-X_{cp}^2 end{gather*} где (x_i) — середины интервалов: (x_i=frac{a_{i-1}+a_i}{2}, i=overline{1,k}).
Или, через относительные частоты: $$ D=sum_{i=1}^k(x_i-X_{cp})^2 w_i=sum_{i=1}^k x_i^2 w_i-X_{cp}^2 $$

Выборочное среднее квадратичное отклонение (СКО) определяется как корень квадратный из выборочной дисперсии: $$ sigma=sqrt{D} $$

Например:
Для распределения учеников по росту получаем:

$x_i$ 146 154 162 170 178 186 194
(w_i) 0,04 0,07 0,11 0,34 0,33 0,08 0,03 1
(x_iw_i) 5,84 10,78 17,82 57,80 58,74 14,88 5,82 171,68
(x_i^2w_i) — результат 852,64 1660,12 2886,84 9826 10455,72 2767,68 1129,08 29578,08

$$ D=sum_{i=1}^k x_i^2 w_i-X_{cp}^2=29578,08-171,7^2approx 104,1 $$ $$ sigma=sqrt{D}approx 10,2 $$

п.5. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации

Исправленная выборочная дисперсия интервального вариационного ряда определяется как: begin{gather*} S^2=frac{N}{N-1}D end{gather*}

Стандартное отклонение выборки определяется как корень квадратный из исправленной выборочной дисперсии: $$ s=sqrt{S^2} $$

Коэффициент вариации это отношение стандартного отклонения выборки к выборочной средней, выраженное в процентах: $$ V=frac{s}{X_{cp}}cdot 100text{%} $$

Подробней о том, почему и когда нужно «исправлять» дисперсию, и для чего использовать коэффициент вариации – см. §65 данного справочника.

Например:
Для распределения учеников по росту получаем: begin{gather*} S^2=frac{100}{99}cdot 104,1approx 105,1\ sapprox 10,3 end{gather*} Коэффициент вариации: $$ V=frac{10,3}{171,7}cdot 100text{%}approx 6,0text{%}lt 33text{%} $$ Выборка однородна. Найденное значение среднего роста (X_{cp})=171,7 см можно распространить на всю генеральную совокупность (старшеклассников из других школ).

п.6. Алгоритм исследования интервального вариационного ряда

На входе: все значения признака (left{x_jright}, j=overline{1,N})
Шаг 1. Построить интервальный ряд с интервалами (left.right[a_{i-1}, a_ileft.right)) и частотами (f_i, i=overline{1,k}) (см. алгоритм выше).
Шаг 2. Составить расчетную таблицу. Найти (x_i,w_i,S_i,x_iw_i,x_i^2w_i)
Шаг 3. Построить гистограмму (и/или полигон) относительных частот, эмпирическую функцию распределения (и/или кумуляту). Записать эмпирическую функцию распределения.
Шаг 4. Найти выборочную среднюю, моду и медиану. Проанализировать симметрию распределения.
Шаг 5. Найти выборочную дисперсию и СКО.
Шаг 6. Найти исправленную выборочную дисперсию, стандартное отклонение и коэффициент вариации. Сделать вывод об однородности выборки.

п.7. Примеры

Пример 1. При изучении возраста пользователей коворкинга выбрали 30 человек.
Получили следующий набор данных:
18,38,28,29,26,38,34,22,28,30,22,23,35,33,27,24,30,32,28,25,29,26,31,24,29,27,32,24,29,29
Постройте интервальный ряд и исследуйте его.

1) Построим интервальный ряд. В наборе данных: $$ x_{min}=18, x_{max}=38, N=30 $$ Размах вариации: (R=38-18=20)
Оптимальное число интервалов: (k=1+lfloorlog_2⁡ 30rfloor=1+4=5)
Шаг интервального ряда: (h=lceilfrac{20}{5}rceil=4)
Получаем узлы ряда: $$ a_0=x_{min}=18, a_i=18+icdot 4, i=overline{1,5} $$

(left.left[a_{i-1},a_iright.right)) лет (left.left[18;22right.right)) (left.left[22;26right.right)) (left.left[26;30right.right)) (left.left[30;34right.right)) (left.left[34;38right.right))

Считаем частоты для каждого интервала. Получаем интервальный ряд:

(left.left[a_{i-1},a_iright.right)) лет (left.left[18;22right.right)) (left.left[22;26right.right)) (left.left[26;30right.right)) (left.left[30;34right.right)) (left.left[34;38right.right))
(f_i) 1 7 12 6 4

2) Составляем расчетную таблицу:

(x_i) 20 24 28 32 36
(f_i) 1 7 12 6 4 30
(w_i) 0,033 0,233 0,4 0,2 0,133 1
(S_i) 0,033 0,267 0,667 0,867 1
(x_iw_i) 0,667 5,6 11,2 6,4 4,8 28,67
(x_i^2w_i) 13,333 134,4 313,6 204,8 172,8 838,93

3) Строим полигон и кумуляту
Пример 1
Пример 1
Эмпирическая функция распределения: $$ F(x)= begin{cases} 0, xleq 20\ 0,033, 20lt xleq 24\ 0,267, 24lt xleq 28\ 0,667, 28lt xleq 32\ 0,867, 32lt xleq 36\ 1, xgt 36 end{cases} $$ 4) Находим выборочную среднюю, моду и медиану $$ X_{cp}=sum_{i=1}^k x_iw_iapprox 28,7 text{(лет)} $$ На полигоне модальным является 3й интервал (самая высокая точка).
Данные для расчета моды: begin{gather*} x_0=26, f_m=12, f_{m-1}=7, f_{m+1}=6, h=4\ M_o=x_o+frac{f_m-f_{m-1}}{(f_m-f_{m-1})+(f_m+f_{m+1})}h=\ =26+frac{12-7}{(12-7)+(12-6)}cdot 4approx 27,8 text{(лет)} end{gather*}
На кумуляте медианным является 3й интервал (преодолевает уровень 0,5).
Данные для расчета медианы: begin{gather*} x_0=26, w_m=0,4, S_{me-1}=0,267, h=4\ M_e=x_o+frac{0,5-S_{me-1}}{w_{me}}h=26+frac{0,5-0,4}{0,267}cdot 4approx 28,3 text{(лет)} end{gather*} Получаем: begin{gather*} X_{cp}=28,7; M_o=27,8; M_e=28,6\ X_{cp}gt M_egt M_0 end{gather*} Ряд асимметричный с правосторонней асимметрией.
При этом (frac{|M_o-X_{cp}|}{|M_e-X_{cp}|} =frac{0,9}{0,1}=9gt 3), т.е. распределение сильно асимметрично.

5) Находим выборочную дисперсию и СКО: begin{gather*} D=sum_{i=1}^k x_i^2w_i-X_{cp}^2=838,93-28,7^2approx 17,2\ sigma=sqrt{D}approx 4,1 end{gather*}
6) Исправленная выборочная дисперсия: $$ S^2=frac{N}{N-1}D=frac{30}{29}cdot 17,2approx 17,7 $$ Стандартное отклонение (s=sqrt{S^2}approx 4,2)
Коэффициент вариации: (V=frac{4,2}{28,7}cdot 100text{%}approx 14,7text{%}lt 33text{%})
Выборка однородна. Найденное значение среднего возраста (X_{cp}=28,7) лет можно распространить на всю генеральную совокупность (пользователей коворкинга).

Интервальное статистическое распределение

Если признак может
принимать любые значения из некоторого
промежутка, т.е. является непрерывной
случайной величиной, то необходимо
промежуток между наименьшим и наибольшим
значениями признака в выборке разбить
на несколько интервалов одинаковой
(или разной) длины. При
этом количество интервалов k
не должно
быть меньше 6 – 10 и больше 20 – 25 (выбор
числа интервалов зависит от объема
выборки n).

При подборе
количества интервалов можно пользоваться
приближенной формулой, которую предложил
американский статистик Sturgess
(Стерджесс):


– целая часть
числа х.

Затем определяем
длину частичного интервала группировки:

,
где R
=

размах выборки.

Находим границы
каждого из непересекающихся частичных
интервалов
:

a1
= xmin

;
b1
= a1
+ h;

a2
= b1;
b2
= a2
+ h
и т.д.

Далее
каждому интервалу требуется поставить
в соответствие число выборочных значений
признака, попавших в этот интервал. В
результате получим интервальное
статистическое распределение
:

Таблица
3.3

Интервалы

[a1;
b1)

[a2;
b2)

[a3;
b3)

[ak;
bk)

Частоты

m1

m2

m3

mk

Используя
интервальное статистическое распределение,
можно вычислить относительную частоту,
накопленную частоту, эмпирическую
функцию распределения, так же как и для
дискретного статистического распределения.

Если
в интервальном распределении каждый
интервал

заменить числом, лежащим в его середине
(ai
+
bi)/2,
то получим дискретное статистическое
распределение. Такая замена вполне
естественна, так как, например, при
измерении размера детали с точностью
до одного миллиметра, всем размерам из
промежутка [49,5 мм; 50,5 мм) будет
соответствовать одно число, равное 50.

Для графического
изображения интервального распределения
используется гистограмма.
Для ее построения в прямоугольной
системе координат по оси абсцисс
откладываем границы интервалов
группировки и на этих интервалах как
на основаниях строим прямоугольники,
высоты которых откладываются на оси
ординат. Различают:

а) гистограмму
абсолютных частот
,
когда высота прямоугольника равна
;

б) гистограмму
относительных частот
,
когда высота прямоугольника равна
.

Гистограмма
является выборочным
аналогом графика плотности вероятности
.
Площадь на интервале (aj;
am)
можно интерпретировать как приближенное
значение вероятности попадания случайной
величины Х
в этот интервал, т.е.
.

Основное свойство
гистограммы
:
ее площадь для абсолютных частот равна
n,
а для относительных частот равна
единице
.

Отношение
относительной частоты к длине частичного
интервала h
называют плотностью
распределения частоты

на интервале


(рис. 3.5).

Рис. 3.5. Гистограмма
относительных частот

При построении
графика эмпирической функции распределения
для интервального ряда необходимо
учитывать, что функция определена только
на концах интервалов.

Таким образом,
статистическое распределение выборки
можно рассматривать как статистический
аналог для распределения генеральной
совокупности. Из-за случайных колебаний
эти два распределения, как правило, не
будут совпадать, но можно ожидать, что
при большом объеме выборки ее распределение
будет служить приближением для генеральной
совокупности, т.е.

,
если
.

Пример
2.

Получены данные о выработке продукции
30-ю рабочими в отчетном месяце в процентах
к предыдущему месяцу

n

Х
– выработка продукции, %

1-10

125

91

82

93

101

111

109

103

121

90

11-20

79

105

115

95

84

130

104

117

127

107

21-30

85

76

98

104

126

113

98

84

113

123

Необходимо:

  1. составить
    интервальное статистическое распределение;

  2. построить
    гистограмму относительных частот.

Решение

1. Определим величину
частичных интервалов:

Построим 6
непересекающихся интервалов:

[70,5; 81,5), [81,5; 92,5),
[92,5; 103,5),

[103,5; 114,5), [114,5;
125,5), [125,5; 136,5).

Первый интервал
[70,5; 81,5) содержит два значения (76 и 79),
поэтому m1
= 2. Второй
интервал [81,5; 92,5) содержит шесть значений
(82, 84, 84, 85, 90, 91), поэтому m2
= 6 и т.д.
Полученные данные внесем в таблицу
интервального статистического
распределения:

Таблица 3.4

Интервалы

[70,5-

81,5)

[81,5-

92,5)

[92,5-

103,5)

[103,5-

114,5)

[114,5-

125,5)

[125,5-

136,5)

Частоты

2

6

6

8

5

3

2. Для построения
гистограммы вычислим значения
относительных частот wi
и значения плотности распределения
частоты на интервале
:

Таблица 3.5

Интервалы

[70,5-

81,5)

[81,5-

92,5)

[92,5-

103,5)

[103,5-

114,5)

[114,5-

125,5)

[125,5-

136,5)

mi

2

6

6

8

5

3

wi

0,07

0,20

0,20

0,27

0,17

0,10

0,006

0,018

0,018

0,024

0,015

0,009

Изобразим
данные последней строки табл. 3.5 на
графике

(рис. 3.6).

Обведем гистограмму
плавной линией f*(x)
так, чтобы приблизительно были равны
площади, ограниченные гистограммой и
кривой f*(x),
которую называют эмпирической
плотностью распределения относительных
частот
. В
генеральной совокупности ей соответствует
плотность вероятности f(x).

Рис.
3.6. Гистограмма относительных частот

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • Facebook logo
  • Twitter logo
  • LinkedIn logo

© 2023 Prezi Inc.
Terms & Privacy Policy



2.2. Интервальный вариационный ряд

Предпосылкой построения интервального вариационного ряда (ИВР) является тот факт, что исследуемая величина  принимает слишком много различных значений . Зачастую ИВР появляется в результате

изучения непрерывной характеристики объектов. Типично – это время, масса, размеры и другие физические величины.

Вспоминаем Константина, который замерял время на лабораторной работе и Фёдора, который взвешивал помидоры.

В таких ситуациях затруднительно либо невозможно применить тот же подход, что для дискретного ряда. Это связано с тем, что ВСЕ варианты  различны (во многих случаях). И

даже если встречаются совпадающие значения, например, 50 грамм и 50 грамм, то связано это с округлением, а фактически значения

всё равно отличаются хоть какими-то микрограммами.

Поэтому здесь используется другой подход, а именно определяется интервал,
в пределах которого варьируются значения , затем этот интервал делится на частичные интервалы (обычно равной длины

) и по каждому частичному интервалу

подсчитываются частоты  (либо ) – количество вариант, которые в него попали.
Если варианта попала на «стык» интервалов, то её относят к старшему интервалу.

Интервальный вариационный ряд  (ИВР) статистической совокупности  – это

упорядоченное множество смежных интервалов и соответствующие им частоты, в сумме равные

объёму совокупности. Дабы не плодить лишних букв и индексов, я никак не обозначил эти

интервалы. Придирчивый читатель, к слову, наверняка заметил, что через  я обозначаю как исходные варианты, так и значения сгруппированного

ряда.

Следует отметить, что исследуемая характеристика не обязана быть непрерывной, и мы как раз начнём с такой задачи:

Пример 6

По результатам исследования цены некоторого товара в различных торговых точках города, получены следующие данные (в денежных

единицах):

Составить вариационный ряд, построить гистограмму частот, гистограмму и полигон относительных частот + бонус:

эмпирическую функцию распределения.

Решение: очевидно, что перед нами выборочная совокупность

объема , и вопрос номер

один: какой ряд составлять – дискретный или интервальный? Заметьте, что в

вопросе задачи ничего не сказано о характере ряда. Строго говоря, цены дискретны и среди них даже есть одинаковые. Однако они

могут быть округлены, да и разброс цен довольно велик. Поэтому здесь целесообразно провести интервальное разбиение.

Начнём с экстремальной ситуации, когда у вас под рукой нет Экселя или другого подходящего программного обеспечения. Только

ручка, карандаш, тетрадь и калькулятор.

Тактика действий похожа на работу с дискретным вариационным рядом. Сначала

окидываем взглядом предложенные числа и определяем примерный интервал, в который вписываются эти значения. «Навскидку» все

значения заключены в пределах от 5 до 11. Далее делим этот интервал на удобные подынтервалы, в данном случае

напрашиваются промежутки единичной длины. Записываем их на черновик:

Теперь начинаем вычёркивать числа из исходного списка и записываем их в соответствующие колонки нашей импровизированной

таблицы:

После этого находим самое маленькое число в левой колонке (минимальное значение) и самое большое число – в правой

(максимальное значение). Тут даже ничего искать не пришлось, честное слово, не нарочно получилось:)
  ден. ед. – не забываем указывать

размерность!

Вычислим размах вариации:
 ден. ед. – длина общего

интервала, в пределах которого варьируется цена.

Теперь его нужно разбить на частичные интервалы. Сколько интервалов рассмотреть? По умолчанию на этот счёт

существует формула Стерджеса: 

, где  – десятичный логарифм* от объёма выборки и
 – оптимальное количество

интервалов, при этом результат округляют до ближайшего левого целого значения.

* есть на любом более или менее приличном калькуляторе.

В нашем случае получаем:  интервалов.

Следует отметить, что правило Стерджеса носит рекомендательный, но не обязательный характер. Нередко в условии

задачи прямо сказано, на какое количество интервалов следует проводить разбиение (на 4, 5, 6, 10 и т.д.), и тогда следует

придерживаться именно этого указания.

Длины частичных интервалов могут быть различны, но в большинстве случаев использует равноинтервальную

группировку:
 – длина частичного интервала. В

принципе, здесь можно было не округлять и использовать длину 0,96, но удобнее, ясен день, 1.

И коль скоро мы прибавили 0,04, то по пяти частичным интервалам получается «перебор»: . Посему от самой малой варианты  отмеряем влево 0,1 влево (половину «перебора») и к

значению 5,7 начинаем прибавлять по ,

получая тем самым частичные интервалы. При этом сразу рассчитываем их середины  (например, ) – они требуются почти во всех тематических задачах:

– убеждаемся в том, что самая большая варианта  вписалась в последний частичный интервал и отстоит от его правого конца на

0,1.

Далее подсчитываем частоты по каждому интервалу. Для этого в черновой таблице обводим значения, попавшие в тот или

иной интервал, подсчитываем их количество и вычёркиваем:

Так, значения из 1-го интервала я обвёл овалами (7 штук) и вычеркнул, значения из 2-го интервала – прямоугольниками (11

штук) и вычеркнул и так далее. Варианта  попала на «стык» интервалов и, согласно озвученному выше правилу, её следует

отнести к последующему интервалу .

В результате получаем интервальный вариационный ряд:

при этом обязательно убеждаемся в том, что ничего не потеряно:
, ОК.

…Да, кстати, все ли представили свой любимый товар, чтобы было интереснее разбирать это длинное решение? J

Точно также как и в дискретном случае, интервальный вариационный ряд можно
(и нужно) изобразить графически. И здесь у нас весьма большое разнообразие. Но сначала добавим в таблицу дополнительные

столбцы и продолжим расчёты:

По каждому интервалу рассчитываем (не тушуемся): плотность частот , относительные частоты  (округляем их до 2 знаков после запятой), а также плотность относительных

частот . Поскольку длина частичного

интервала , то вычисления заметно

упрощаются:

Если интервалы имеют разные длины , то

при нахождении плотностей каждую частоту нужно разделить на длину своего интервала: . Но у нас группировка равноинтервальная, да не

абы какая, а с единичным частичным интервалом. Дело за чертежами. Один за другим:

2.2.1. Гистограммы

2.1.2. Эмпирическая функция распределения

| Оглавление |



Понравилась статья? Поделить с друзьями:
  • Рекомендации как составить для приема на работу
  • Пусть говорят как маму нашел
  • Как составить разделительный баланс при выделении пример
  • Как найти вкладки инкогнито
  • Как составить справку об исполнении