Касательная к окружности
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.
Расскажем подробнее, что такое касательная и секущая.
Напомним, что расстояние от точки до прямой — это длина перпендикуляра, опущенного из точки на прямую.
Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая является касательной к окружности. В этом случае она имеет с окружностью ровно одну общую точку. Такую прямую называют касательной к окружности.
Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая пересекает окружность в двух точках. Такую прямую называют секущей.
Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая не имеет с окружностью общих точек.
Запишем основные теоремы о касательных. Они помогут нам при решении задач ЕГЭ и ОГЭ.
Теорема 1.
Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.
На рисунке радиус OA перпендикулярен прямой m.
Теорема 2. Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Доказательство:
Дана окружность с центром O.
Прямые AB и AC — касательные, точки B и C — точки касания. Докажем, что
AB = AC и
Проведем радиусы OB и OC в точки касания.
По свойству касательной, и .
В прямоугольных треугольниках AOB и AOC катеты OB и OC равны как радиусы одной окружности, AO — общая гипотенуза. Следовательно, треугольники AOB и AOC равны по гипотенузе и катету. Отсюда AB = AC и
Теорема 3. Отрезки касательных, проведенных к окружности из одной точки, равны.
Доказательство:
Пусть из точки A к окружности проведены касательные AB и AC. Соединим точку A с центром окружности точкой O. Треугольники AOB и AOC равны по гипотенузе и катету, следовательно, AB = AC.
Теорема 4. Угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.
Угол ACМ на рисунке равен половине угловой величины дуги AC.
Доказательство теоремы здесь.
Теорема 5, о секущей и касательной.
Если из одной точки к окружности проведены секущая и касательная, то произведение всей секущей на ее внешнюю часть равно квадрату отрезка касательной.
Доказательство теоремы смотрите здесь.
Разберем задачи ЕГЭ и ОГЭ по теме: Касательная к окружности.
Задача 1.
Угол ACO равен , где O — центр окружности. Его сторона CA касается окружности. Найдите величину меньшей дуги AB окружности, заключенной внутри этого угла. Ответ дайте в градусах.
Решение:
Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол CAO — прямой. Из треугольника ACO получим, что угол AOC равен 62 градуса. Bеличина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги AB— тоже 62 градуса.
Ответ: 62.
Задача 2.
Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, а большая дуга AD окружности, заключенная внутри этого угла, равна . Ответ дайте в градусах.
Решение:
Это чуть более сложная задача. Центральный угол AOD опирается на дугу AD, следовательно, он равен 116 градусов. Тогда угол AOC равен Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол OAC — прямой. Тогда угол ACO равен
Ответ: 26.
Задача 3.
Хорда AB стягивает дугу окружности в Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.
Решение:
Проведем радиус OB в точку касания, а также радиус OA. Угол OBC равен Треугольник BOA — равнобедренный. Нетрудно найти, что угол OBA равен 44 градуса, и тогда угол CBA равен 46 градусов, то есть половине угловой величины дуги AB.
Мы могли также воспользоваться теоремой: Угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.
Задача 4.
К окружности, вписанной в треугольник ABC, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника.
Решение:
Вспомним еще одно важное свойство касательных к окружности:
Отрезки касательных, проведенных из одной точки, равны.
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника ABC складывается из периметров отсеченных треугольников.
Ответ: 24.
Вот более сложная задача из вариантов ЕГЭ:
Задача 5.
Около окружности описан многоугольник, площадь которого равна 5. Его периметр равен 10. Найдите радиус этой окружности.
Решение:
Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку O — и проведите перпендикулярные сторонам радиусы в точки касания.
Соедините точку O с вершинами A, B, C, D, E. Получились треугольники AOB, BOC, COD, DOE и EOA.
Очевидно, что площадь многоугольника
Треугольники АОВ, ВОС, COD, DOE и ЕОА имеют равные высоты, причем все эти высоты равны радиусу окружности.
где p — полупериметр многоугольника.
По условию, P = 10, S = 5, тогда
Ответ: 1
Задачи ЕГЭ
1. Угол ACO равен , где O — центр окружности. Его сторона CA касается окружности. Сторона CO пересекает окружность в точке B . Найдите величину меньшей дуги AB окружности. Ответ дайте в градусах.
Решение:
По условию, CA — касательная, A — точка касания.
. Треугольник ACO — прямоугольный, .
Угол — центральный, и он равен угловой величине дуги AB, на которую опирается. Значит, градусная мера дуги AB равна . Это меньшая дуга AB, а большая — с другой стороны от точек A и B, и она больше 180 градусов.
Ответ: 63.
2. Через концы A и B дуги окружности с центром O проведены касательные AC и BC. Меньшая дуга AB равна . Найдите угол ACB. Ответ дайте в градусах.
Решение:
Центральный угол AOB равен угловой величине дуги, на которую он опирается, то есть
AC и BC — касательные, поэтому , поскольку касательная перпендикулярна радиусу, проведенному в точку касания.
Сумма углов четырехугольника ACBO равна
Ответ: 122.
3. Хорда AB стягивает дугу окружности в . Найдите угол ABC между этой хордой и касательной к окружности, проведенной через точку B. Ответ дайте в градусах.
Решение:
Применим теорему об угле между касательной и хордой.
Угол между касательной и хордой равен половине угловой величины дуги, заключённой между ними.
Значит, угол ABC равен .
Ответ: 46.
4. Через концы A и B дуги окружности с центром О проведены касательные AC и BC. Угол CAB равен . Найдите угол AOB. Ответ дайте в градусах.
Угол между касательной и хордой равен половине угловой величины дуги, заключённой между ними.
Поэтому меньшая дуга AB окружности равна . Центральный угол равен угловой величине дуги, на которую он опирается, значит, угол AOB равен .
Мы могли бы решить задачу и по-другому, рассматривая четырехугольник ACBO, как в задаче 2.
Ответ: 64.
5. Через концы A, B дуги окружности в проведены касательные AC и BC. Найдите угол ACB. Ответ дайте в градусах.
Решение:
Угол между касательной и хордой равен половине угловой величины дуги, заключенной между ними. В треугольнике ABC:
Ответ: 118.
6. Найдите угол ACO, если его сторона CA касается окружности, O — центр окружности, сторона CO пересекает окружность в точках B и D, а дуга AD окружности, заключенная внутри этого угла, равна . Ответ дайте в градусах.
Решение:
По условию, DB — диаметр окружности, поэтому дуга AВ, не содержащая точки D, равна . На эту дугу опирается центральный угол AOB, он равен . Треугольник AOC прямоугольный, так как касательная CA перпендикулярна радиусу ОA, проведенному в точку касания.
Ответ: 26.
Задачи ОГЭ по теме: Касательная к окружности
1. К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.
Решение:
Отрезок OB — радиус, проведённый в точку касания, поэтому AB и OB перпендикулярны, треугольник AOB — прямоугольный. По теореме Пифагора:
Ответ: 5.
2. Прямая касается окружности в точке K. Точка O — центр окружности. Хорда KM образует с касательной угол, равный . Найдите величину угла OMK. Ответ дайте в градусах.
Решение:
Касательная перпендикулярна радиусу, проведенному в точку касания, поэтому угол OКD — прямой. Тогда Треугольник OMK — равнобедренный, его стороны OК и OМ являются радиусами окружности, поэтому
Ответ: 7.
3. Отрезок AB = 40 касается окружности радиуса 75 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Решение:
Касательная перпендикулярна радиусу, проведенному в точку касания, значит, треугольник AOB — прямоугольный. Из прямоугольного треугольника AOB по теореме Пифагора найдём AO:
Ответ: 10.
4. На отрезке AB выбрана точка C так, что AC = 75 и BC = 10. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Решение:
Проведём радиус AH в точку касания. Касательная перпендикулярна радиусу, проведенному в точку касания, поэтому треугольник ABН — прямоугольный. Из прямоугольного треугольника ABH по теореме Пифагора найдём BH:
Ответ: 40.
5. Касательные в точках A и B к окружности с центром O пересекаются под углом . Найдите угол ABO. Ответ дайте в градусах.
Решение:
Касательные, проведённые к окружности из одной точки, равны, поэтому AC=BC и треугольник ABC — равнобедренный.
Угол между касательной и хордой равен половине угловой величины дуги, заключенной между ними, значит, дуга AB равна . Угол AOB — центральный, он равен дуге, на которую опирается, то есть . Треугольник AOB равнобедренный,
Ответ: 36.
6. Из точки A проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен , а расстояние от точки A до точки O равно 8.
Решение:
Проведём радиусы OB и OC в точки касания. Треугольники AOB и AOC — прямоугольные. Эти треугольники равны по катету и гипотенузе.
OB — OC как радиусы окружности, гипотенуза общая. Значит,
Из треугольника AOB найдём OB, то есть радиус окружности.
Ответ: 4.
7. Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB = 2, AC = 8. Найдите AK.
Решение:
По теореме о секущей и касательной,
Ответ: 4.
8. На окружности отмечены точки A и B так, что меньшая дуга AB равна . Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Решение:
Угол между касательной и хордой равен половине угловой величины дуги, заключенной между ними.
Ответ: 36.
Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Касательная к окружности» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023
Угол между касательной и хордой
Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.
Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги», написано в теме «Окружность. Вписанный угол».
Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу.
То есть «градусная мера дуги» – это «сколько градусов в центральном угле» – и всё!
Ну вот, как говорит Карлсон, продолжаем разговор. Рисуем ещё раз теорему об угле между касательной и хордой.
Смотри, хорда ( displaystyle AB) разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла ( displaystyle BAC), а другая дуга – внутри угла ( displaystyle BAD).
И теорема об угле между касательной и хордой говорит, что ( displaystyle angle CAB) равен ПОЛОВИНЕ угла ( displaystyle AOB), ( displaystyle angle DAB) равен ПОЛОВИНЕ большего (на рисунке — зеленого) угла ( displaystyle AOB).
При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?
Сейчас и увидим. ( displaystyle OA) – радиус, ( displaystyle AC) – касательная.
Значит, ( displaystyle angle OAC=90{}^circ ).
Поэтому:( displaystyle angle 1=90{}^circ -angle 4).
Но ( displaystyle angle 2=angle 1) (( displaystyle OA) и ( displaystyle OB) – радиусы)( displaystyle angle 2=90{}^circ -angle 4).
И осталось вспомнить, что сумма углов треугольника ( displaystyle AOB) равна ( displaystyle 180{}^circ ).
Пишем:
Короче:
Здорово, правда? И самым главным оказалось то, что ( displaystyle angle OAC=90{}^circ ).
Равенство отрезков касательных
Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:
А ещё более удивительный факт состоит в том, что:
Отрезки касательных, проведённых из одной точки к одной окружности, равны.
То есть, на нашем рисунке, ( displaystyle AB=AC).
И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.
Вот, убедись.
Проведём радиусы ( displaystyle OB) и ( displaystyle OC) и соединим ( displaystyle O) и ( displaystyle A).
( displaystyle OB) – радиус.
( displaystyle AB) – касательная, значит, ( displaystyle OBbot AB).
Ну, и так же ( displaystyle OCbot AC).
Получилось два прямоугольных треугольника ( displaystyle AOB) и ( displaystyle AOC), у которых:
- ( displaystyle OB=OC) — равные катеты
- ( displaystyle OA) — общая гипотенуза
( displaystyle Rightarrow Delta AOB = Delta AOC)
(заглядываем в тему «Прямоугольный треугольник«, если не помним, когда бывают равны прямоугольные треугольники).
Но раз ( displaystyle Delta AOB=Delta AOC,) то( displaystyle AB=AC). УРА!
И ещё раз повторим – этот факт тоже очень важный:
Отрезки касательных, проведённых из одной точки, – равны.
И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.
Для любой прямой ( displaystyle AD), пересекающей окружность,( displaystyle ADcdot AC=A{{B}^{2}}), где ( displaystyle AB) – отрезок касательной.
Хитроумными словами об этом говорят так:
«Квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».
Страшно? Не бойся, помни только, что в буквах это:
Что такое касательная к окружности
8 июля 2018
- Домашняя работа
- Ответы и решения
Определение. Касательная к окружности — это прямая на плоскости, имеющая ровно одну общую точку с окружностью.
Вот парочка примеров:
На этом можно было бы закончить, однако практика показывает, что недостаточно просто зазубрить определение — нужно научиться видеть касательные на чертежах, знать их свойства и вдобавок как следует попрактиковаться в применении этих свойств, решая реальные задачи. Всем этим всем мы сегодня и займёмся.
Основные свойства касательных
Для того, чтобы решать любые задачи, нужно знать четыре ключевых свойства. Два из них описаны в любом справочнике / учебнике, а вот последние два — про них как-то забывают, а зря.
1. Отрезки касательных, проведённых из одной точки, равны
Чуть выше мы уже говорили про две касательных, проведённых из одной точки M. Так вот:
Отрезки касательных к окружности, проведённых из одной точки, равны.
2. Касательная перпендикулярна радиусу, проведённому в точку касания
Ещё раз посмотрим на картинку, представленную выше. Проведём радиусы OAи OB, после чего обнаружим, что углы OAMи OBM — прямые.
Радиус, проведённый в точку касания, перпендикулярен касательной.
Этот факт можно использовать без доказательства в любой задаче:
Кстати, заметьте: если провести отрезок OM, то мы получим два равных треугольника: OAM и OBM.
3. Соотношение между касательной и секущей
А вот это уже факт посерьёзнее, и большинство школьников его не знают. Рассмотрим касательную и секущую, которые проходят через одну и ту же общую точку M. Естественно, секущая даст нам два отрезка: внутри окружности (отрезок BC — его ещё называют хордой) и снаружи (его так и называют — внешняя часть MC).
Произведение всей секущей на её внешнюю часть равно квадрату отрезка касательной
4. Угол между касательной и хордой
Ещё более продвинутый факт, который часто используется для решения сложных задач. Очень рекомендую взять на вооружение.
Угол между касательной и хордой равен вписанному углу, опирающемуся на эту хорду.
Откуда берётся точка B? В реальных задачах она обычно «всплывает» где-то в условии. Поэтому важно научиться распознавать данную конфигурацию на чертежах.
Смотрите также:
- Вписанный угол в геометрии
- Задачи B12, сводящиеся к линейным уравнениям
- Геометрическая вероятность
- Задача 18: метод симметричных корней
- Задача B2 про комиссию в терминале
- Значение тригонометрических функций
Общие сведения
Важно знать терминологию, соотношения и теоремы для решения задач этого класса. Касательной к окружности называется прямая, которая имеет с ней только одну точку соприкосновения. Прямая — это линия, не имеющая границ, т. е. она ничем не ограничена. Окружностью называется геометрическое место точек, удаленных от центра на одинаковые расстояния.
Следует отметить, что касательные бывают внешними и внутренними. Внешней называет прямая линия, проходящая с внешней стороны окружности. Внутренние касательные пересекают отрезок, который соединяет центры двух окружностей. Последний тип прямых не существует, когда два круга пересекаются. Касательные нужно уметь правильно строить, поскольку от этого зависит правильность решения задачи.
Построение касательных
Для построения касательной к окружности следует на последней отметить произвольную точку. Затем необходимо через нее провести прямую. Нужно отметить, что у круга может быть несколько таких прямых. Когда даны две окружности, тогда можно проводить не только внешние, но и внутренние. Существует определенный алгоритм, по которому можно построить первый тип:
- Начертить 2 окружности с центрами в точках О1 и О2. При этом должно соблюдаться условие r1 > r2, где r1 и r2 — радиусы I и II соответственно.
- Нарисовать III окружность с центром в О1 и радиусом r3 = r1 — r2.
- Провести 2 касательные из точки О2 к III. Они параллельны искомым, поскольку радиусы I и II уменьшаются на r2.
Существует более простая модель построения таких прямых. Для этого следует начертить один круг, а затем отметить две произвольные точки на его противоположных сторонах. Далее начертить II круг, превышающий I по радиусу. Отметить на нем точки, воспользовавшись подобием, т. е. они должны быть в тех же местах, что и на I. Затем провести прямые, которые должны соприкасаться с I и II кругами только в одной точке.
Для построения внутренних касательных существует определенная методика. В интернете можно найти много информации. В одних источниках алгоритм построения является сложным, а в других — простым. Однако есть один метод, позволяющий осуществить данную операцию. Специалисты описали его на «понятном» языке для новичков. Суть методики заключается в следующем:
- Необходимо построить два круга, которые не пересекаются, с радиусами r1 и r2. Расстояния между ними должно составлять r1 + r2.
- Соединить их центры (середины) отрезком.
- Отметить на нем среднюю точку, которая делит его на две равные части.
- Через точку, полученную на третьем шаге методики, провести прямую. Она должна иметь только одну точку соприкосновения с I и II окружностями.
- Аналогично провести еще одну прямую.
- Искомые прямые являются внутренними касательными.
Далее нужно рассмотреть некоторые свойства, на основании которых можно решать задачи и доказывать геометрические тождества.
Основные свойства
Свойства — утверждения, полученные в результате доказательства теорем о касательной к окружности. Первые нет необходимости доказывать, поскольку об этом уже позаботились математики. Они выделяют всего 4 свойства касательных к окружности:
- Если провести из одной точки две касательные к некоторой окружности, то отрезки, лежащие на них, будут равны. Искомый угол будет делиться радиусом пополам.
- Любая касательная и радиус, проведенный к ее точке, образуют прямой угол. Справедливо и обратное утверждение: радиус, который проведен в точку касания, перпендикулярен данной прямой.
- Вся секущая, умноженная на свою внешнюю часть, равна квадрату расстояния касательной, которая проведена из общей с ней точки.
- Образованный угол между касательной и секущей, эквивалентен градусной мере угла, который опирается на образованную хорду.
Для рассмотрения I свойства необходимо начертить окружность с центром О1. Затем нужно отметить точку М вне окружности. Из М провести одну прямую, которая соприкасается с кругом в точке А. Такую же операцию следует проделать и для другой касательной. Точку соприкосновения назвать В. Отрезки АМ и ВМ равны между собой.
Если провести радиусы к точкам А и В, то можно сделать вывод, что углы являются прямыми. Чтобы понять третье свойство, необходимо начертить окружность и отметить некоторую точку М за ее пределами. После этого следует из искомой точки провести секущую и касательную. Первой называется прямая, проходящая через окружность и пересекающая ее в двух точках. Для касательной точку соприкосновения необходимо обозначить А. Тогда секущая пересекает круг в точках В (ближняя) и С (дальняя). В результате этого получается такое соотношение: АМ 2 = АВ * МС.
Когда для произвольной окружности существуют касательная и секущая, тогда между ними образуется некоторый угол.
Хорда, полученная в результате прохождения через окружность, образует также угол. Он опирается на искомую хорду и является вписанным. Следовательно, по свойству градусные меры углов равны между собой. Далее нужно разобрать частные случаи, на основании которых можно сделать вывод о количестве касательных.
Когда окружность вписана в ромб, тогда их точки касания нужно рассматривать по первому свойству. Радиус окружности можно найти по следующим формулам:
- Через диагонали (d1, d2) и сторону (a): r = (d1 * d2) / 4а.
- Только по диагоналям: r = (d1 * d2) / [(d1)^2 + (d2)^2]^(½).
Следует отметить, что у ромба две диагонали. Они различаются по размеру. Одна из них больше другой (d1 > d2).
Частные случаи
В некоторых задачах нужно определить количество касательных у двух окружностей. Можно выполнить ряд сложных и трудоемких доказательств. В результате этого будет потрачено много времени, а можно воспользоваться уже готовыми дополнительными свойствами:
- Четыре касательных: круги не соприкасаются, т. е. d > r1 + r2 (значение диаметра больше суммы радиусов r1 и r2).
- Две общие внешние и одна внутренняя: окружности соприкасаются только в одной точке (d = r1 + r2).
- Только две внешние: пересечение окружностей в двух точках (|r1 — r2| < d < r1 + r2).
- Одна общая внешняя: окружности касаются внутри друг друга (d = |r1 — r2|).
- Отсутствуют: один круг находится внутри другого (d < |r1 — r2|).
В последнем случае любая касательная будет являться секущей для другой окружности. Существует еще одно положение, когда окружности совпадают. Тогда любая касательная считается общей. В высшей математике разбирается также «отрицательный» радиус. Тогда вышеперечисленные свойства можно править следующим образом:
- Нет касательных: окружности не соприкасаются, и для них выполняется условие d < — (r1 + r2).
- Две внутренние (общие) и одна внешняя: круги соприкасаются в одной точке (d = -r1 — r2).
- Одна пара внутренних: пересечение в 2 точках (|r1 — r2| > d > — r1 — r2).
- Внутренняя общая (одна): соприкасаются внутри (d = |r2 — r1|).
- Четыре: при d > |r1 — r2|.
Когда заданы окружности, радиус одной из которых равен 0, тогда «нулевой» круг эквивалентен двойной точке. Прямая является двойной и проходит через эту точку. В этом случае математики определяют всего две внешних. Если r1 = r2 = 0, то всего 4 внешних общих касательных. Далее для решения задач нужно разобрать доказательства некоторых свойств.
Доказательства утверждений
Очень важно знать доказательства некоторых свойств и теорем, поскольку одним из типов задач считаются упражнения повышенной сложности, требующие логических расчетов в общем виде. Например, нужно доказать, что касательная образует с радиусом, проведенным к точке касания, прямой угол. Существует тип доказательства от противного.
Для этого следует предположить, что искомый угол не равен 90 градусам. Пусть дана некоторая касательная р. Она имеет с кругом общую точку А. Нужно провести к ней перпендикуляр (радиус). Далее нужно провести из центра О отрезок ОВ на р. Образуется прямоугольный треугольник АВО с гипотенузой ОВ. Если опираться на утверждение от противного, то гипотенуза будет меньше катета (d < r). Однако радиус не может быть больше диаметра, поскольку он рассчитывается по следующей формуле: d = 2 * r. Следовательно, утверждение доказано.
Аналогично доказывается и обратное свойство. Его формулировка имеет такой вид: прямая, проходящая под прямым углом через точку, которая образована радиусом, является касательной. В этом случае можно доказывать не от противного. Расстояние от прямой до центра окружности эквивалентно некоторой величине и является радиусом. Из определения следует, что прямая и окружность имеют общую точку, и только одну. Следовательно, она и есть касательная.
Доказательство об отрезках, проведенных из одной точки, тоже нужно разобрать, поскольку такой прием применяется в решении сложных задач. Отрезки равны между собой и образуют с прямой, проведенной к центру круга, эквивалентные углы.
Следует выполнить построение окружности с центром Р. Далее нужно обозначить точку А за ее пределами и провести из нее лучи-касательные к искомой окружности. Они образуют на круге точки А и В. Кроме того, следует доказать равенство углов ОАВ и САО. При построении образовалось два треугольника ОВА и ОСА. Фигуры являются прямоугольными на основании свойства о касательной и радиусе.
Далее необходимо доказать равенство фигур ОВА и ОСА. Это сделать довольно просто: гипотенуза — общая, катеты ОВ и ОС равны (радиусы) и углы АВО = АСО = 90. Следовательно, они равны по первому признаку, а также эквивалентны друг другу стороны АВ и АС. Кроме того, угол ОАВ = САО. Утверждение доказано. Гипотенуза является также и биссектрисой. В некоторых источниках можно встретить доказательство равенства тангенсов углов.
Пример решения задачи
Нужно составить уравнения касательных к окружности (описанной графиком функции х 2 + y 2 = 2x + 6y + 19), проходящих через координаты х =0 у= -14. Для решения задачи следует действовать по такому алгоритму:
- Перенести все слагаемые, кроме 19, в левую сторону: х 2 + y 2 — 2x — 6y = 19.
- Выделить полный квадрат для окончательной записи уравнения окружности: х 2 — 2x + 1 — 1 + y 2 — 6y +9 — 9 = (х — 1)^2 + (y — 3)^2 = 29.
- Уравнение прямой, проходящей через (0;-14) в общем виде: y — (-14) = k * (x — 0) или у = кх — 14.
- Составить систему уравнений: (х — 1)^2 + (y — 3)^2 = 29 и у = кх — 14.
- Подставить второе в первое: (х — 1)^2 + (кх — 14 — 3)^2 = 29.
- Упростить выражение: (х — 1)^2 + (кх — 14 — 3)^2 — 29 = х 2 — 2x + 1 +k 2 * x 2 — 34kx + 289 — 29 = (1 + k 2 ) * x 2 — 2 * (17k + 1) + 261.
- Решением уравнения должен быть один корень: D/4 = 0.
- Упростить тождество: D/4 = (-(17k + 1))^2 — 261 (1 + k 2 ) = 289k 2 + 34k + 1 — 261 — 261k 2 = 28k 2 + 34k — 260 = 0.
- Найти значение D: 17 2 — 28 * (-260) = 289 + 7280 = 7569.
- Первый коэффициент к1 = (-17 — 87) / 28 = -26/7.
- Коэффициент к2 = (-17 + 87) / 28 = 5/2.
- Записать уравнения прямых с учетом к1 и к2: у1 = (-26/7) * х — 14 (26х + 7у + 98 = 0) и у2 = (5/2) * х — 14 (5х — 2у — 28 = 0).
Следует отметить, что уравнение окружности с радиусом, равным единице, описывается функцией x2 + y 2 = 1. Эта запись применяется для решения задач в общем виде. Прямая — функция, описанная прямой пропорциональностью у = кх + b. Чтобы связать окружность и касательные, нужно составить систему уравнений. Этот математический ход объясняется тем, что у функций должны быть общие решения (точка на окружности). После решения можно выполнить проверочные вычисления, подставив корни в систему.
Таким образом, для решения задач об окружности и касательной следует знать общие понятия, а также основные свойства и теоремы.
Определение формулы касательной к окружности
Общая формула окружности |
Уравнение касательной в указанной точке |
Касательная к окружности
Если не использовать понятие производной, и взять объяснение из учебников середины прошлого века, то «Касательная к окружности — это прямая пересекающая окружность в двух совпадающих точках»
Окружность на плоскости может быть представлена в виде нескольких исходных данных
1. В виде координат центра окружности (x0,y0) и её радиуса R.
2. В виде общего уравнения
В виде параметрического вида и в полярных координатах мы рассматривать не будем, так как там формулы тоже на базируются на координатах центра окружности и радиусе.
Наша задача, зная параметры окружности и точку принадлежащую этой окружности вычислить параметры касательной к этой окружности.
Эта задача, является частным решением более общего калькулятор касательная к кривой второго порядка
Итак, если окружность выражена формулой
Уравнение касательной к окружности если нам известны параметры общего уравнения таково:
Таким образом, зная все коэффициенты, мы очень легко найдем уравнение касательной в заданной точке.
ВАЖНО: При указании точки, она должна быть обязательно(!!) принадлежать окружности,
и не быть точкой в какой либо стороне. В противном случае, уравнение касательной будет неверным.
Примеры
Вычислить уравнение касательной в точке (13.8, 0) к окружности выраженной формулой
Запишем коэффиценты этой кривой, взглянув на общую формулу
Второй пример:
Через окружность с центром (8.71, -4) и радиусом 7 проходит касательная и касается в точке (4,-4)
Найти уравнение этой прямой.
Раз у нас заданы радиус и коордианты центтра то уравнение имеет вид
раскроем скобки, получим
Отрисовав, полученные линии в GeoGebra мы убедимся что расчет произведен верно.
Формально, используя вышеупомянутую программу, касательную можно провести там проще и быстрее. Смотрите где и как проще.
Удачных расчетов!