Параллельные хорды как найти диаметр

Вычисление диаметра трубы по хорде

Бывают ситуации, когда необходимо измерить диаметр чего-либо, например, трубопровода, но нет возможности измерить длину окружности (из-за изоляции или температуры).

В этом случае можно применить метод вычисления диаметра по хорде. Для этого метода необходим только штангенциркуль.

  1. Прикладываем его, как показано на рис. 1;
  2. измеряем длину L;
  3. измеряем высоту губок штангенциркуля Н;
  4. вычисляем диаметр по формуле D = (L 2 ⁄ 4H) + H или
  5. вычисляем радиус по формуле r = (L 2 + 4H 2 ) ⁄ 8H

Рисунок 1

Если под рукой только «штангель» с длинными губками или не хватает его измеряемого диапазона можно применить какую-нибудь «проставку». В идеале подойдёт плоскопараллельная концевая мера… ;) Её надо вставить, как показано на рисунке 2, и при вычислении, от длины губок отнять высоту этой «проставки». Н = Н1 — Н2

Рисунок 2

Точность этого метода зависит, только от инструмента, который Вы будете применять.

Сегмент круга

Вычисляет площадь, длину дуги, длину хорды, высоту и периметр сегмента круга. Описывается несколько вариантов расчета по параметрам сегмента — по углу, по хорде, по радиусу, по высоте и длине дуги.

Сегмент круга

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).

На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота

Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:

Формулы вычисления параметров сегмента

Площадь сегмента:
[1]
Длина дуги:

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

Фигура Рисунок Определение и свойства
Окружность
Круг
Радиус
Хорда
Диаметр
Касательная
Секущая
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Радиус

Отрезок, соединяющий центр окружности с любой точкой окружности

Хорда

Отрезок, соединяющий две любые точки окружности

Диаметр

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Касательная

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Секущая

Прямая, пересекающая окружность в двух точках

Свойства хорд и дуг окружности

Фигура Рисунок Свойство
Диаметр, перпендикулярный к хорде Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хорды Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружности Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длины Большая из двух хорд расположена ближе к центру окружности.
Равные дуги У равных дуг равны и хорды.
Параллельные хорды Дуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хорды

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длины

Большая из двух хорд расположена ближе к центру окружности.

Равные дуги

У равных дуг равны и хорды.

Параллельные хорды

Дуги, заключённые между параллельными хордами, равны.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Фигура Рисунок Теорема
Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга
Пересекающиеся хорды

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Касательные, проведённые к окружности из одной точки

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Секущие, проведённые из одной точки вне круга

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Тогда справедливо равенство

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Точка B – точка касания. В силу теоремы 2 справедливы равенства

откуда и вытекает требуемое утверждение.

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Воспользовавшись теоремой 1, получим

Воспользовавшись равенствами (1) и (2), получим

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

источники:

http://planetcalc.ru/1421/

http://www.resolventa.ru/demo/training.htm

643 Составить уравнение диаметра
эллипса
, проходящего через
середину его хорды, отсекаемой на прямой
.
644 Составить
уравнение хорды эллипса
, проходящей
через точку А(1; -2) и делящейся ею пополам.
645 Составить
уравнения двух взаимно сопряженных диаметров
эллипса
, из которых один образует
с осью Ох угол 45
0.
646 Составить
уравнения двух взаимно двух взаимно сопряженных
диаметров эллипса
, из которых один
параллелен прямой
.
647 Составить
уравнения двух взаимно сопряженных диаметров
эллипса
, из которых один
перпендикулярен к прямой
.
648 На чертеже
изображен эллипс. Пользуясь циркулем и линейкой,
построить его центр.
649 Доказать, что оси
эллипса являются единственной парой его главных
диаметров.
650 Пользуясь
свойствами сопряженных диаметров, доказать, что
каждый диаметр окружности является главным.

651
а). В эллипс вписан
равнобедренный треугольник так, что его вершина
совпадает с одной из вершин эллипса. Доказать,
что основание этого треугольника параллельно
одной из осей эллипса; б). Доказать, что стороны
прямоугольника вписанного в эллипс,параллельны
осям этого эллипса; в). На чертеже изображен
эллипс. Пользуясь циркулем и линейкой, построить
его главные диаметры.

652
Доказать, что хорды
эллипса, соединяющие его произвольную
произвольную точку с концами любого диаметра
этого эллипса, праллельны паре его сопряженных
диаметров.

653
а). Доказать, что
сумма квадратов двух сопряженных полудиаметров
эллипса есть величина постоянная (равная сумме
квадратов его полуосей), б). Доказать, что площадь
параллелограмма, построенного на двух
сопряженных полудиаметрах эллипса, есть
величина постоянная (равная площади
прямоугольника, построенного на его полуосях).

654
Составить
уравнение диаметра гиперболы
, походящего
через середину ее хорды, отсекаемой на прямой
.

655
Дана гипербола . Составить уравнение ее хорды,
которая проходит через точку А(3; -1) и делится
точкой А пополам.

656
Составить
уравнениядвух сопряженных диаметров гиперболы
, из которых один проходит через точку
А(8; 1).

657
Составить
уравнения сопряженных диаметров гиперболы
, угол между которыми равен 450.
658
На чертеже
изображена гипербола. Пользуясь циркулем и
линейкой, построить ее центр.

659
Доказать, что оси
гиперболы являются единственной парой ее
главных диаметров.

660
На чертеже
изображена гипербола. Пользуясь циркулем и
линейкой, построить ее главные диаметры.

661
Составить
уравнение диаметра параболы
, проходящего
через середину ее хорды, отсекаемой на прямой
.

662
Дана парабола . Составить уравнение ее хорды,
которая проходит через точку А(2; 5) и делится
точкой А пополам.

663
Доказать, что ось
параболы является единственной ее главным
диаметром.

664
На чертеже
изображена парабола. Пользуясь циркулем и
линейкой, построить ее главный диаметр.

Рассмотрим
некоторый вектор неасимптотического
направления 

.
Тогда уравнение диаметра, сопряженного
хордам данного направления имеет вид

Из
этого уравнения находим координаты
направляющего вектора этой прямой

Умножая
первое из этих соотношений на 

,
второе на 

 и
складывая получим

Таково
необходимое условие, связывающее
координаты ненулевого вектора 

,
параллельного хордам линии второго
порядка, заданной общим уравнением 

,
и координаты ненулевого вектора 

,
параллельного диаметру, сопряженному
этим хордам. Отметим, что условие 

 и
достаточно, так как из него следует, что

то
есть 

 —
ненулевой вектор, параллельный диаметру 

.

ТЕОРЕМА
12.1.
 Если
диаметр
 

 центральной
кривой второго порядка является
множеством середин хорд, параллельных
диаметру
 

,
то диаметр
 

 является
множеством середин хорд, параллельных
диаметру
 

.

Доказательство. Пусть
диаметр 

 сопряжен
вектору 

,
а диаметр 

 —
вектору 

.
По условию теоремы 

 параллелен
диаметру 

.
Докажем, что 

 параллелен
диаметру 

.
По формуле 

 диаметр 

 имеет
уравнение

Направляющий
вектор этой прямой 

 по
условию коллинеарен вектору 

.
Используя, условие коллинеарности
векторов получаем, что

или
что то же самое

т.е
вектор 

 —
направляющий вектор прямой 

 коллинеарен
вектору 

.
Теорема доказана.

Определение
12.1.
 Два
диаметра центральной кривой второго
порядка называются сопряженными, если
каждый из них делит пополам хорды,
параллельные другому диаметру.

Условие 

 можно
теперь рассматривать как необходимое
и достаточное условие сопряженности
двух диаметров центральной кривой.
Если 

 и 

,
то это условие можно записать в виде

где 

 и 

 —
угловые коэффициенты сопряженных
диаметров.

13 Касательная к линии второго порядка.

Пусть
относительно аффинной системы координат
линия второго порядка задана общим
уравнением 

.

Будем
называть точку 

,
лежащую на этой линии, обыкновенной,
если среди чисел

есть
хотя бы одно, не равное нулю. В противном
случае точка называется особой.

Ясно,
что точка 

,
лежащая на линии 

,
является особой тогда и только тогда,
когда она является центром линии. Таким
образом, среди всех линий второго порядка
имеют особые точки только:

пара
пересекающихся прямых (мнимых или
действительных) и пара совпавших прямых.

Определение
13.1.
 Прямая,
проходящая через обыкновенную точку
линии второго порядка, называется
касательной к этой линии в точке 

,
если она пересекает линию в двух совпавших
точках или целиком содержится в этой
линии.

ТЕОРЕМА
13.1.
 Пусть 

 
обыкновенная точка линии второго
порядка, заданной уравнением
 

.
Тогда уравнение касательной к этой
линии в точке
 

 имеет
вид

или,
что то же самое

Доказательство. Запишем
параметрические уравнения прямой 

,
проходящей через точку 

 и
параллельной вектору

:

Параметры
точек пересечения этой прямой с данной
линией определяются из уравнения 

,
которое в данном случае имеет вид 

,
так как 

 лежит
на линии, и поэтому 

.
По определению, прямая 

 является
касательной тогда и только тогда,
когда 

.
Это означает, что

.

Поскольку
точка 

 —
обыкновенная, то 

 и 

 одновременно
не равны нулю, а значит равенство 

определяет
единственное направление вектора 

.
Следовательно уравнение прямой 

(касательной)
можно записать в виде

или

которое
после очевидных преобразований приводится
в виду

Так
как точка лежит на кривой второго
порядка, то

Следовательно,
окончательно уравнение касательной
имеет вид 

.
Теорема доказана.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Хорда окружности

Хорда в геометрии

Каждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус.

Хорды окружности примеры

Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги.

Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.

Это очень полезная функция, так как не приходится вспоминать различные уравнения и производить сложные расчеты.

Свойства отрезка окружности

Для решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:

Свойства хорды окружности

  1. Это отрезок с наибольшей длиною в окружности это диаметр. Он обязательно будет проходить через центр круга.
  2. Если есть две равные дуги, то их отрезки, которые их стягивают, будут равны.
  3. Хорда, которая перпендикулярна диаметру, будет делить этот отрезок и его дугу на две одинаковые части (справедливо и обратное утверждение).
  4. Самый маленький отрезок в окружности это точка.
  5. Хорды будут равны, если они находятся на одном расстоянии от центра окружности (справедливо и обратное утверждение).
  6. При сравнении двух отрезков в кругу большая из них окажется ближе к центру окружности.
  7. Дуги, которые находятся между двумя параллельными хордами, равны.

Помимо основных свойств отрезка круга, нужно выделить еще одно важное свойство. Оно отражено в теореме о пересекающихся хордах.

Ключевая теорема

 теорема о пересекающихся хордах

Имеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству.

Длина хорды окружности

Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED.

Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности.

Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности.

Касательная и секущая

Существует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы.

 свойства хорды в окружности

Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.

Если возникает ситуация, когда пересекаются касательная и секущая, то в этом случае также можно вывести закономерность. Рассмотрим теорему и докажем, что AB 2 = AD*AC.

 хорда

Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать.

Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD.

Хорда это в геометрии

Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов.

Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.

Если вернутся к треугольникам ABD И CEA, то теперь можно сказать, что они подобны, так как угол А — общий, а углы ECA и BDA — равны. Теперь можно записать соотношение сторон: AB/AE = AD/AC. В итоге получим, что AB*AC = AE*AD.

Решение задач

При решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:

Хорды окружности задачи

  • Найти высоту детали, которая была получена путем сгибания заготовки в дугу. В начальных данных обязательно присутствует хорда и длина дуги.
  • Дана развертка, нужно найти длину части кольца. Задается хорда и диаметр.
  • Также можно находить длину хорды. В случае если заданы уравнения прямой и окружности, которые пересекаются.

Для решения задач с отрезком в окружности удобно использовать схематические рисунки. Их рисуют с помощью линейки и циркуля, и принцип решения задач становится более наглядным.

Понравилась статья? Поделить с друзьями:
  • Как составить запрос претензию
  • Как найти созвездие скорпиона на звездах
  • Как найти удаленного пользователя на компьютере
  • Как найти атомный состав элементов
  • Как найти удельную массу груза