Площадь ромба как найти вторую диагональ

Зная площадь ромба и диагональ, можно вычислить вторую диагональ, используя формулу площади, полученную из прямоугольных треугольников, образованных диагоналями. (рис.115.а)
S=(d_1 d_2)/2
d_2=2S/d_1

В тех же прямоугольных треугольниках половины диагоналей являются катетами, а сторона ромба – гипотенузой, поэтому ее можно найти по теореме Пифагора, подставив вместо второй диагонали удвоенную площадь, деленную на первую диагональ.
a^2=〖d_1〗^2/4+〖d_2〗^2/4
a^2=〖d_1〗^2/4+(4S^2)/(4〖d_1〗^2 )
a^2=(〖d_1〗^4+4S^2)/(4〖d_1〗^2 )
a=√(〖d_1〗^4+4S^2 )/(2〖d_1〗^2 )

Чтобы вычислить периметр ромба через площадь и диагональ, нужно умножить полученное для стороны выражение на 4 и сократить дробь.
P=4a=(2√(〖d_1〗^4+4S^2 ))/〖d_1〗^2

Чтобы найти углы α и β у ромба, необходимо вернуться к прямоугольному треугольнику с диагоналями и стороной. Тангенс половины угла α будет равен отношению половины первой диагонали к половине второй диагонали. Угол β можно найти аналогичным путем, или отняв от 180 градусов угол α.
tan⁡〖α/2〗=d_1/2:d_2/2=d_1/d_2 =〖d_1〗^2/2S
tan⁡〖β/2〗=2S/〖d_1〗^2

Высота ромба связана с его стороной и углом α в прямоугольном треугольнике отношением синуса. Подставив вместо стороны ромба выражение через площадь и диагональ, можно рассчитать высоту ромба по следующей формуле. (Рис.115.1)
h=sin⁡α √(〖d_1〗^4+4S^2 )/(2〖d_1〗^2 )

Радиус окружности, вписанной в ромб, повторяет формулу высоты ромба через его площадь и диагональ, увеличивая коэффициент в знаменателе в два раза.
r=sin⁡α √(〖d_1〗^4+4S^2 )/(4〖d_1〗^2 )

Учебник

Геометрия, 11 класс

Ромб: Свойства, Формулы. Задачи

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторонами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
  • Меньшая диагональ   $AC^2=a^2+b^2-2cdot acdot bcdotcos D$     ,      большая    $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
  • Сумма   {Цвет:Red квадратов диагоналей ромба равна    $AC^2+BD^2=4cdot a^2$     четырежды квадрат стороны.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Формулы Площади ромба:

  • Площадь   ромба   равна    произведению   основания на высоту      $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
  • Площадь   ромба   равна   через синус угла:        $S=a^2cdotsin A$     ,          квадрат стороны на синус .
  • Площадь   ромба   через диагонали:    $S=frac{ACcdot BD}{2}$ .      половина произведения диагоналей

Вписанная окружность в ромб:

  • В четырехугольник   можно   вписать   окружность только если … суммы противоположных сторон   равны.
  • Вписать окружность можно в ромб и квадрат, ;
  • Если   вписывается, то площадь     $S=pcdot r$,     $p=2cdot a$       $S=2cdot a cdot r$.
  • Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.

Задача 1:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

Задача 2:         Найти площадь ромба   $ABCD$,   если его высота   $EB=12$   , а меньшая диагональ $BD=13$.

  • Решение:          Проведем высоту   из той же вершины, из которой   проведена   меньшая диагональ.       
  • Получили прямоугольный треугольник $BED$ .    Он   подобен тем треугольникам, на которые ромб делится диагоналями:     
  • $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$    . Все прямоугольные и есть равные углы.
  • например   $alpha$.     Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
  • Для угла   $alpha$   в   $bigtriangleup EBD$   мы знаем гипотенузу и противолежащий катет   $Rightarrow$     $sinalpha=frac{BE}{BD}=frac{12}{13}$
  • Перейдем к   $bigtriangleup OCD$ : в нем прилежащий катет    $OD=frac{1}{2}BD=6,5$.    Чтобы найти второй катет, нам нужен тангенс,
  • а чтобы найти   гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
  • $sin^2alpha+cos^2alpha=1$ .   Тогда косинус:   $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
  • Угол   $alpha$   острый,   так как он входит в прямоугольный треугольник,   т. е. принадлежит первой четверти.
  • Следовательно, косинус положительный и мы останавливаемся на одном значении:   $cosalpha = frac{5}{13}$
  • Тогда:   $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$             $Rightarrow$        $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
  • Площадь ромба равна произведению основания на высоту:    Ответ:    $S=16,9cdot12=202,8$

Задача 3:          В Ромбе   $ABCD$    точка $K$ делит сторону   $CD$ в соотношении   $2:7$, а    $M$ делит   $1:3$ сторону   $BC$.       $MN$   параллельна   $AB$,   $O$ — пересечение $MN$ и   $BK$.    Найти площадь трапеции   $ABON$, если площадь   $ABCD=420$.

Решение:    пробa    Анализ рисунка:    

  • $AB$, $MN$,   $CD$ — параллельные.   Какие углы равные?
  • Треугольники   $BMO$ и    $BKC$ подобные.   Коэффициент подобия   $1:3$.
  • Отношение площадей    $BMO$   и   $BKC$ равен    $1:9$ — квадрату коэффициента подобия.
  • (по формулам) Площади   $BKC$   и    $BCD$ относятся как    $CK$ и   $CD$, т.е.   $5:7$.
  • Площадь   $BCD$   равен половине площади   $ABCD$,   т.е. $S_{BCD}=210$.
  • $S_{ABMN}:S_{ABCD}=1:3$        $Rightarrow$       $S_{ABMN}=140$ .   
  • Из складываемости площадей:     площадь $ABON$ =   разности   площадей   $ABMN$   и    $BOM$.

Упражнения:

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
  • Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторанами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
  • Меньшая диагональ   $AC^2=a^2+b^2-2cdot acdot bcdotcos D$     ,      большая    $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
  • Сумма   {Цвет:Red квадратов диагоналей ромба равна    $AC^2+BD^2=4cdot a^2$     четырежды квадрат стороны.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Формулы Площади ромба:

  • Площадь   ромба   равна    произведению   основания на высоту      $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
  • Площадь   ромба   равна   через синус угла:        $S=a^2cdotsin A$     ,          квадрат стороны на синус .
  • Площадь   ромба   через диагонали:    $S=frac{ACcdot BD}{2}$ .      половина произведения диагоналей

Вписанная окружность в ромб:

  • В четырехугольник   можно   вписать   окружность только если … суммы противоположных сторон   равны.
  • Вписать окружность можно в ромб и квадрат, ;
  • Если   вписывается, то площадь     $S=pcdot r$,     $p=2cdot a$       $S=2cdot a cdot r$.
  • Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.

Задача 1:        Найти периметр ромба   $ABCD$, в котором    $angle C=60^o$ , а меньшая диагональ равна    $10,5$ см.

  • Решение:          Рассмотрим   $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков   данный   треугольник?             
  • По условию,   угол $bigtriangleup BCD$ у вершине   $angle B=60^o$   , тогда как два других угла?
  • Каков все-таки этот   треугольник?   Чему равны стороны ромба. А сумма сторон? Ответ:     $p=42$ см.

Задача 2:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

Задача 3:         Найти площадь ромба   $ABCD$,   если его высота   $EB=12$   , а меньшая диагональ $BD=13$.

  • Решение:          Проведем высоту   из той же вершины, из которой   проведена   меньшая диагональ.       
  • Получили прямоугольный треугольник $BED$ .    Он   подобен тем треугольникам, на которые ромб делится диагоналями:     
  • $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$    . Все прямоугольные и есть равные углы.
  • например   $alpha$.     Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
  • Для угла   $alpha$   в   $bigtriangleup EBD$   мы знаем гипотенузу и противолежащий катет   $Rightarrow$     $sinalpha=frac{BE}{BD}=frac{12}{13}$
  • Перейдем к   $bigtriangleup OCD$ : в нем прилежащий катет    $OD=frac{1}{2}BD=6,5$.    Чтобы найти второй катет, нам нужен тангенс,
  • а чтобы найти   гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
  • $sin^2alpha+cos^2alpha=1$ .   Тогда косинус:   $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
  • Угол   $alpha$   острый,   так как он входит в прямоугольный треугольник,   т. е. принадлежит первой четверти.
  • Следовательно, косинус положительный и мы останавливаемся на одном значении:   $cosalpha = frac{5}{13}$
  • Тогда:   $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$             $Rightarrow$        $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
  • Площадь ромба равна произведению основания на высоту:    Ответ:    $S=16,9cdot12=202,8$

Задача 4:          В Ромбе   $ABCD$    точка $K$ делит сторону   $CD$ в соотношении   $2:7$, а    $M$ делит   $1:3$ сторону   $BC$.       $MN$   параллельна   $AB$,   $O$ — пересечение $MN$ и   $BK$.    Найти площадь трапеции   $ABON$, если площадь   $ABCD=420$.

Решение:    пробa    Анализ рисунка:    

  • $AB$, $MN$,   $CD$ — параллельные.   Какие углы равные?
  • Треугольники   $BMO$ и    $BKC$ подобные.   Коэффициент подобия   $1:3$.
  • Отношение площадей    $BMO$   и   $BKC$ равен    $1:9$ — квадрату коэффициента подобия.
  • (по формулам) Площади   $BKC$   и    $BCD$ относятся как    $CK$ и   $CD$, т.е.   $5:7$.
  • Площадь   $BCD$   равен половине площади   $ABCD$,   т.е. $S_{BCD}=210$.
  • $S_{ABMN}:S_{ABCD}=1:3$        $Rightarrow$       $S_{ABMN}=140$ .   
  • Из складываемости площадей:     площадь $ABON$ =   разности   площадей   $ABMN$   и    $BOM$.

Упражнения:

Ромб — это параллелограмм, у которого все стороны равны.

  • «Чтоб Выучить, распознать нечто неподвижное — узнать его в движении, при изменениях»
  • Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
  • Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
  • Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.

Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».

Свойства ромба:

  • Ромб симметричен относительно точки O — пересечения диагоналей.      O — центр симметрии.
  • Ромб симметричен относительно любой из диагоналей.       Диагональ — ось симметрии.
  • У ромба, по определению, Стороны   равны     $AB=BC=CD=DA=a$.
  • Противолежащие углы    равны   $angle A=angle C$ ,   $angle B=angle D$ . Прилежащие       $angle A+angle B=180^o$   ,    $angle A+angle D=180^o$.
  • Диагонали ромба пересекаются и точкой пересечения делятся пополам      $AO=OC=frac{AC}{2}$     и     $BO=OD=frac{BD}{2}$.
  • Диагонали ромба взаимно перпендикулярны    и   образуют   прямоугольные   $bigtriangleup$ треугольники.
  • Диагонали ромба со сторонами ромба образуют равнобедренные   $bigtriangleup$ треугольники.
  • Диагонали ромба являются    биссектрисами углов — делят углы пополам.
  • Диагонали ромба со сторонами образуют равные    накрест лежащие углы.
  • Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.

      

Квадратодновременно прямоугольник, ромб, параллелограмм. Диагонали квадрата    равны между собой и делятся пополам.

Задача 1:        Найти периметр ромба   $ABCD$, в котором    $angle C=60^o$ , а меньшая диагональ равна    $10,5$ см.

  • Решение:          Рассмотрим   $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков   данный   треугольник?             
  • По условию,   угол $bigtriangleup BCD$ у вершины   $angle B=60^o$   , тогда как два других угла?
  • Каков все-таки этот   треугольник?   Чему равны стороны ромба. А сумма сторон? Ответ:     $p=42$ см.

Задача 2:        Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.

  • Решение:      «Односторонние углы»:     В параллелограмме   сумма углов, прилежащих к одной стороне, равна   $180^o$    .       
  • Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
  • Как найти все углы ромба. Кем является Диагональ в ромбе для угла?     Ответ:     $22^o30’$   ,   $67^o30’$

           

  • Полезные напоминания: «В равностороннем треугольнике все углы равны    60    градусов.
  • Если в равнобренном треугольнике один из углов 60, то это равносторонный треугольник — стороны равны, углы тоже.
  • В прямоугольном треугольнике катет напротив угла 30 градусов равен половине гипотенузы.

Упражнения:

Задачи из сайта https://resh.edu.ru :

Задача 11: В ромбе АВСD ∠А = 140°, диагонали пересекаются в точке O. Найдите угол CBO.

Задача 12:    В ромбе ABCD ∠С = 50°. Точка O – точка пересечения диагоналей ромба. Найдите угол OBC.

Задача 13: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.

Задача 14: ???? В любом ромбе равны…      Противолежащие углы равны, сумма соседних углов равна 180 градусов:(?) Ромб, у которого все углы равны, это… (?)    Диагонали пересекаются и точкой пересечения делятся пополам. (?)   Диагонали взаимно перпендикулярны. (?)

Задача 15: Отрезки AB и CD пересекаются в их общей середине. В образовавшемся четырёхугольнике ∠CAD = ∠ADB. Найдите ∠BCA.

Задача 16: На диагонали квадрата как на стороне построен новый квадрат. Чему равна его диагональ, если сторона исходного квадрата равна 6 см?

Задача 17: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.

Как найти вторую диагональ ромба

Ромбом можно назвать параллелограмм, диагонали которого делят пополам углы, лежащие в вершинах фигуры. Кроме этого свойства диагонали ромба примечательны тем, что являются осями симметрии многоугольника, пересекаются только под прямым углом, а единственная общая точка делит каждую из них на два равных отрезка. Эти свойства позволяют легко рассчитать длину одной из диагоналей, если известна длина другой и еще какой-нибудь параметр фигуры — размер стороны, угол в одной из вершин, площадь и т.д.Как найти вторую диагональ ромба

Если кроме длины одной из диагоналей (l) о рассматриваемом четырехугольнике известно, что он является частным случаем ромба — квадратом, никаких расчетов производить не придется. В этом случае длины обеих диагоналей одинаковы — просто приравняйте искомую величину (L) к известной: L=l.

Знание длины стороны ромба (a) в дополнение к длине одной из диагоналей (l) позволит рассчитать длину другой (L) по теореме Пифагора. Это возможно потому, что две половины пересекающихся диагоналей образуют со стороной ромба прямоугольный треугольник. Половины диагоналей в нем являются катетами, а сторона — гипотенузой, поэтому равенство, вытекающее из теоремы Пифагора можно записать так: a² = (l/2)² + (L/2)². Для использования в расчетах преобразуйте его к такому виду: L = √(4*a²-l²).

При известной величине одного из углов (α) ромба и длине одной из диагоналей (l) для нахождения величины другой (L) рассмотрите тот же прямоугольный треугольник. Тангенс половины известного угла в нем будет равен отношению длины противолежащего катета — половины диагонали l — к прилежащему — половине диагонали L: tg(α/2) = (l/2)/(L/2) = l/L. Поэтому для вычисления искомой величины используйте формулу L = l/tg(α/2).

Если в условиях задачи приведена длина периметра (P) ромба и размер его диагонали (l), формулу вычисления длины второй (L) можно свести к равенству, использованному во втором шаге. Для этого разделите периметр на четверку и замените этим выражением длину стороны в формуле: L = √(4*(P/4)²-l²) = √(P²/4-l²).

В исходных условиях кроме длины одной из диагоналей (l) может быть приведена и площадь (S) фигуры. Тогда для вычисления длины второй диагонали ромба (L) используйте очень простой алгоритм — удвойте площадь и разделите полученное значение на длину известной диагонали: L = 2*S/l.

Каким способом высчитать диагональ:

Способ расчёта

Введите размеры:

Результат:

Решение:

Скопировать

Ссылка на страницу с результатом:

# Теория

Ромб — это параллелограмм у которого все стороны равны.

Свойства ромба:
  • Диагонали ромба делят его углы пополам.
  • Cумма углов прилежащих к одной стороне равна 180°.
  • Диагонали ромба пересекаются под прямым углом (90°).
  • Диагонали ромба в точке пересечения делятся попалам.
  • Диагонали ромба являются биссектрисами его углов.

Диагональ — это отрезок, соединяющий несмежные вершины многоугольника или многогранника.

Формулы расчёта диагонали ромба

  Длину диагоналей ромба можно посчитать несколькими способами. В зависимости от известных данных, для расчёта применяют следующие формулы:

Через сторону и другую диагональ

D
d
a
a
a
a

D = sqrt{4a^2 — d^2}

d = sqrt{4a^2 — D^2}

  • D — большая диагональ ромба
  • d — меньшая диагональ ромба
  • a — сторона ромба

Через сторону и угол

D
d
a
a
a
a

α

β

  • D — большая диагональ
  • d — меньшая диагональ ромба
  • a — сторона ромба
  • α — острый угол ромба (от 0° до 90°)
  • β — тупой угол ромба (от 90° до 180°)

D = a sqrt{2 + 2 cdot cos alpha}

D = a sqrt{2 — 2 cdot cos beta}

d = a sqrt{2 — 2 cdot cos alpha}

d = a sqrt{2 + 2 cdot cos beta}


Через угол и вторую диагональ

D = d cdot tg ( dfrac{beta}{2} )

d = D cdot tg ( dfrac{alpha}{2} )

  • D — большая диагональ ромба
  • d — меньшая диагональ ромба
  • α — острый угол ромба (от 0° до 90°)
  • β — тупой угол ромба (от 90° до 180°)

Через площадь и вторую диагональ

D = dfrac{2 cdot S}{d}

d = dfrac{2 cdot S}{D}

  • D — большая диагональ ромба
  • d — меньшая диагональ ромба
  • S — площадь ромба

Похожие калькуляторы:

Войдите чтобы писать комментарии

Начнем с того что у ромба две диагонали.

текст при наведении

Одна большая D, а другая маленькая d.

Рассмотрим способы нахождения большой диагонали D.

  1. D=a*sqrt(2-2*cos(?)=a*sqrt(2+2*cos(?);
  2. D=sqrt(4*sqr(a)-sqr(d));

Также D находится по площади ромба и малой диагонали:

D=(2*S)/d;

Рассмотрим способы нахождения меньшей диагонали d.

  1. d=a*sqrt(2-2*cos(?))=a*sqrt(2+2*cos(?);
  2. D=sqrt(4*sqr(a)-sqr(D));

Малую диагональ d тоже можно найти через площадь ромба и большую диагональ:

d=(2*S)/D;

автор вопроса выбрал этот ответ лучшим

Alexs­andr8­2
[21.4K]

6 лет назад 

У ромба есть две диаганали: большая (d1) и малая (d2), а также углы а — острый угол ромба (в ромбе два острых угла и оба равны между собой), и b — тупой угол (их тоже два и они тоже равны). Если нам известна сторона ромба (x) и один из углов то мы можем найти любую диагональ по формулам:

d1 = 2x*cos(a/2)

d2 = 2x*sin(a/2)

Или

d1 = 2x*sin(b/2)

d2 = 2x*cos(b/2)

Кроме этого если нам извесна площадь ромба и одна из диагоналей мы можем найти вторую диагональ по формулам:

d1 = 2S/d2

d2 = 2S/d1

Если нам дан радус вписанной в ромб окружности и любой из углов мы также можем рассчитать диагональ ромба:

d1 = 2r/sin(a/2)

d2 = 2r/sin(b/2)

Где r — радиус вписанной окружности.

Знаете ответ?

Понравилась статья? Поделить с друзьями:
  • Cubase как найти плагины
  • Как составить ком предложение по грузоперевозкам
  • Родословное древо как составить фото
  • Как найти место на полке
  • Ломкие ногти как исправить