Зная площадь ромба и диагональ, можно вычислить вторую диагональ, используя формулу площади, полученную из прямоугольных треугольников, образованных диагоналями. (рис.115.а)
S=(d_1 d_2)/2
d_2=2S/d_1
В тех же прямоугольных треугольниках половины диагоналей являются катетами, а сторона ромба – гипотенузой, поэтому ее можно найти по теореме Пифагора, подставив вместо второй диагонали удвоенную площадь, деленную на первую диагональ.
a^2=〖d_1〗^2/4+〖d_2〗^2/4
a^2=〖d_1〗^2/4+(4S^2)/(4〖d_1〗^2 )
a^2=(〖d_1〗^4+4S^2)/(4〖d_1〗^2 )
a=√(〖d_1〗^4+4S^2 )/(2〖d_1〗^2 )
Чтобы вычислить периметр ромба через площадь и диагональ, нужно умножить полученное для стороны выражение на 4 и сократить дробь.
P=4a=(2√(〖d_1〗^4+4S^2 ))/〖d_1〗^2
Чтобы найти углы α и β у ромба, необходимо вернуться к прямоугольному треугольнику с диагоналями и стороной. Тангенс половины угла α будет равен отношению половины первой диагонали к половине второй диагонали. Угол β можно найти аналогичным путем, или отняв от 180 градусов угол α.
tan〖α/2〗=d_1/2:d_2/2=d_1/d_2 =〖d_1〗^2/2S
tan〖β/2〗=2S/〖d_1〗^2
Высота ромба связана с его стороной и углом α в прямоугольном треугольнике отношением синуса. Подставив вместо стороны ромба выражение через площадь и диагональ, можно рассчитать высоту ромба по следующей формуле. (Рис.115.1)
h=sinα √(〖d_1〗^4+4S^2 )/(2〖d_1〗^2 )
Радиус окружности, вписанной в ромб, повторяет формулу высоты ромба через его площадь и диагональ, увеличивая коэффициент в знаменателе в два раза.
r=sinα √(〖d_1〗^4+4S^2 )/(4〖d_1〗^2 )
Учебник
Геометрия, 11 класс
Ромб: Свойства, Формулы. Задачи
Ромб — это параллелограмм, у которого все стороны равны.
- «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
- Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
- Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».
Свойства ромба:
- Ромб симметричен относительно точки O — пересечения диагоналей. O — центр симметрии.
- Ромб симметричен относительно любой из диагоналей. Диагональ — ось симметрии.
- У ромба, по определению, Стороны равны $AB=BC=CD=DA=a$.
- Противолежащие углы равны $angle A=angle C$ , $angle B=angle D$ . Прилежащие $angle A+angle B=180^o$ , $angle A+angle D=180^o$.
- Диагонали ромба пересекаются и точкой пересечения делятся пополам $AO=OC=frac{AC}{2}$ и $BO=OD=frac{BD}{2}$.
- Диагонали ромба взаимно перпендикулярны и образуют прямоугольные $bigtriangleup$ треугольники.
- Диагонали ромба со сторонами ромба образуют равнобедренные $bigtriangleup$ треугольники.
- Диагонали ромба являются биссектрисами углов — делят углы пополам.
- Диагонали ромба со сторонами образуют равные накрест лежащие углы.
- Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
- Меньшая диагональ $AC^2=a^2+b^2-2cdot acdot bcdotcos D$ , большая — $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
- Сумма {Цвет:Red квадратов диагоналей ромба равна $AC^2+BD^2=4cdot a^2$ четырежды квадрат стороны.
- Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
Формулы Площади ромба:
- Площадь ромба равна произведению основания на высоту $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
- Площадь ромба равна через синус угла: $S=a^2cdotsin A$ , квадрат стороны на синус .
- Площадь ромба через диагонали: $S=frac{ACcdot BD}{2}$ . — половина произведения диагоналей
Вписанная окружность в ромб:
- В четырехугольник можно вписать окружность только если … суммы противоположных сторон равны.
- Вписать окружность можно в ромб и квадрат, ;
- Если вписывается, то площадь $S=pcdot r$, $p=2cdot a$ $S=2cdot a cdot r$.
- Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.
Задача 1: Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.
- Решение: «Односторонние углы»: В параллелограмме сумма углов, прилежащих к одной стороне, равна $180^o$ .
- Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
- Как найти все углы ромба. Кем является Диагональ в ромбе для угла? Ответ: $22^o30’$ , $67^o30’$
Задача 2: Найти площадь ромба $ABCD$, если его высота $EB=12$ , а меньшая диагональ $BD=13$.
- Решение: Проведем высоту из той же вершины, из которой проведена меньшая диагональ.
- Получили прямоугольный треугольник $BED$ . Он подобен тем треугольникам, на которые ромб делится диагоналями:
- $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$ . Все прямоугольные и есть равные углы.
- например $alpha$. Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
- Для угла $alpha$ в $bigtriangleup EBD$ мы знаем гипотенузу и противолежащий катет $Rightarrow$ $sinalpha=frac{BE}{BD}=frac{12}{13}$
- Перейдем к $bigtriangleup OCD$ : в нем прилежащий катет $OD=frac{1}{2}BD=6,5$. Чтобы найти второй катет, нам нужен тангенс,
- а чтобы найти гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
- $sin^2alpha+cos^2alpha=1$ . Тогда косинус: $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
- Угол $alpha$ острый, так как он входит в прямоугольный треугольник, т. е. принадлежит первой четверти.
- Следовательно, косинус положительный и мы останавливаемся на одном значении: $cosalpha = frac{5}{13}$
- Тогда: $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$ $Rightarrow$ $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
- Площадь ромба равна произведению основания на высоту: Ответ: $S=16,9cdot12=202,8$
Задача 3: В Ромбе $ABCD$ точка $K$ делит сторону $CD$ в соотношении $2:7$, а $M$ делит $1:3$ сторону $BC$. $MN$ параллельна $AB$, $O$ — пересечение $MN$ и $BK$. Найти площадь трапеции $ABON$, если площадь $ABCD=420$.
Решение: пробa Анализ рисунка:
- $AB$, $MN$, $CD$ — параллельные. Какие углы равные?
- Треугольники $BMO$ и $BKC$ подобные. Коэффициент подобия $1:3$.
- Отношение площадей $BMO$ и $BKC$ равен $1:9$ — квадрату коэффициента подобия.
- (по формулам) Площади $BKC$ и $BCD$ относятся как $CK$ и $CD$, т.е. $5:7$.
- Площадь $BCD$ равен половине площади $ABCD$, т.е. $S_{BCD}=210$.
- $S_{ABMN}:S_{ABCD}=1:3$ $Rightarrow$ $S_{ABMN}=140$ .
- Из складываемости площадей: площадь $ABON$ = разности площадей $ABMN$ и $BOM$.
Упражнения:
Ромб — это параллелограмм, у которого все стороны равны.
- «Чтоб Выучить, распознать нечто стоящее — узнать его в движении, при изменениях»
- Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
- Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
- Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.
Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».
Свойства ромба:
- Ромб симметричен относительно точки O — пересечения диагоналей. O — центр симметрии.
- Ромб симметричен относительно любой из диагоналей. Диагональ — ось симметрии.
- У ромба, по определению, Стороны равны $AB=BC=CD=DA=a$.
- Противолежащие углы равны $angle A=angle C$ , $angle B=angle D$ . Прилежащие $angle A+angle B=180^o$ , $angle A+angle D=180^o$.
- Диагонали ромба пересекаются и точкой пересечения делятся пополам $AO=OC=frac{AC}{2}$ и $BO=OD=frac{BD}{2}$.
- Диагонали ромба взаимно перпендикулярны и образуют прямоугольные $bigtriangleup$ треугольники.
- Диагонали ромба со сторонами ромба образуют равнобедренные $bigtriangleup$ треугольники.
- Диагонали ромба являются биссектрисами углов — делят углы пополам.
- Диагонали ромба со сторанами образуют равные накрест лежащие углы.
- Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
- Меньшая диагональ $AC^2=a^2+b^2-2cdot acdot bcdotcos D$ , большая — $BD^2=a^2+b^2+2cdot acdot bcdotcos D$ .
- Сумма {Цвет:Red квадратов диагоналей ромба равна $AC^2+BD^2=4cdot a^2$ четырежды квадрат стороны.
- Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
Формулы Площади ромба:
- Площадь ромба равна произведению основания на высоту $S_{ABCD}=ADcdot CH$ , $S=acdot h$ ;
- Площадь ромба равна через синус угла: $S=a^2cdotsin A$ , квадрат стороны на синус .
- Площадь ромба через диагонали: $S=frac{ACcdot BD}{2}$ . — половина произведения диагоналей
Вписанная окружность в ромб:
- В четырехугольник можно вписать окружность только если … суммы противоположных сторон равны.
- Вписать окружность можно в ромб и квадрат, ;
- Если вписывается, то площадь $S=pcdot r$, $p=2cdot a$ $S=2cdot a cdot r$.
- Центр Вписанной окружности находится на пересечении диагоналей. Диагонали — суть биссектрисы углов.
Задача 1: Найти периметр ромба $ABCD$, в котором $angle C=60^o$ , а меньшая диагональ равна $10,5$ см.
- Решение: Рассмотрим $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков данный треугольник?
- По условию, угол $bigtriangleup BCD$ у вершине $angle B=60^o$ , тогда как два других угла?
- Каков все-таки этот треугольник? Чему равны стороны ромба. А сумма сторон? Ответ: $p=42$ см.
Задача 2: Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.
- Решение: «Односторонние углы»: В параллелограмме сумма углов, прилежащих к одной стороне, равна $180^o$ .
- Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
- Как найти все углы ромба. Кем является Диагональ в ромбе для угла? Ответ: $22^o30’$ , $67^o30’$
Задача 3: Найти площадь ромба $ABCD$, если его высота $EB=12$ , а меньшая диагональ $BD=13$.
- Решение: Проведем высоту из той же вершины, из которой проведена меньшая диагональ.
- Получили прямоугольный треугольник $BED$ . Он подобен тем треугольникам, на которые ромб делится диагоналями:
- $bigtriangleup BED sim bigtriangleup AOD=bigtriangleup AOB=bigtriangleup COB=bigtriangleup COD$ . Все прямоугольные и есть равные углы.
- например $alpha$. Для нахождения площади нам нужно найти или сторону ромба, или его вторую диагональ.
- Для угла $alpha$ в $bigtriangleup EBD$ мы знаем гипотенузу и противолежащий катет $Rightarrow$ $sinalpha=frac{BE}{BD}=frac{12}{13}$
- Перейдем к $bigtriangleup OCD$ : в нем прилежащий катет $OD=frac{1}{2}BD=6,5$. Чтобы найти второй катет, нам нужен тангенс,
- а чтобы найти гипотенузу, т. е. сторону ромба, – косинус. Найдем их через основное тригонометрическое тождество :
- $sin^2alpha+cos^2alpha=1$ . Тогда косинус: $cosalpha=pmsqrt{1-sin^2alpha}=pmsqrt{1-frac{144}{169}}=pmsqrt{frac{25}{169}}=pmfrac{5}{13}$
- Угол $alpha$ острый, так как он входит в прямоугольный треугольник, т. е. принадлежит первой четверти.
- Следовательно, косинус положительный и мы останавливаемся на одном значении: $cosalpha = frac{5}{13}$
- Тогда: $frac{DO}{DC}=frac{6,5}{DC}=cosalpha=frac{5}{13}$ $Rightarrow$ $DC=frac{6,5cdot13}{5}=frac{13cdot13}{10}=16,9$
- Площадь ромба равна произведению основания на высоту: Ответ: $S=16,9cdot12=202,8$
Задача 4: В Ромбе $ABCD$ точка $K$ делит сторону $CD$ в соотношении $2:7$, а $M$ делит $1:3$ сторону $BC$. $MN$ параллельна $AB$, $O$ — пересечение $MN$ и $BK$. Найти площадь трапеции $ABON$, если площадь $ABCD=420$.
Решение: пробa Анализ рисунка:
- $AB$, $MN$, $CD$ — параллельные. Какие углы равные?
- Треугольники $BMO$ и $BKC$ подобные. Коэффициент подобия $1:3$.
- Отношение площадей $BMO$ и $BKC$ равен $1:9$ — квадрату коэффициента подобия.
- (по формулам) Площади $BKC$ и $BCD$ относятся как $CK$ и $CD$, т.е. $5:7$.
- Площадь $BCD$ равен половине площади $ABCD$, т.е. $S_{BCD}=210$.
- $S_{ABMN}:S_{ABCD}=1:3$ $Rightarrow$ $S_{ABMN}=140$ .
- Из складываемости площадей: площадь $ABON$ = разности площадей $ABMN$ и $BOM$.
Упражнения:
Ромб — это параллелограмм, у которого все стороны равны.
- «Чтоб Выучить, распознать нечто неподвижное — узнать его в движении, при изменениях»
- Ромб провернем на 180 градусов вокруг точки пересечения диагоналей — ромб совместится с самим собой. Симметрия.
- Отразим ромб зеркально по диагонали — новый ромб совпадет с прежним. Симметрия.
- Отразим ромб зеркально по другой диагонали — ромб совпадает с самим собой. Симметрия.
Замечание: Если «зряче видим» центральную и осевые симметрии ромба, то все его свойства у нас «в кармане».
Свойства ромба:
- Ромб симметричен относительно точки O — пересечения диагоналей. O — центр симметрии.
- Ромб симметричен относительно любой из диагоналей. Диагональ — ось симметрии.
- У ромба, по определению, Стороны равны $AB=BC=CD=DA=a$.
- Противолежащие углы равны $angle A=angle C$ , $angle B=angle D$ . Прилежащие $angle A+angle B=180^o$ , $angle A+angle D=180^o$.
- Диагонали ромба пересекаются и точкой пересечения делятся пополам $AO=OC=frac{AC}{2}$ и $BO=OD=frac{BD}{2}$.
- Диагонали ромба взаимно перпендикулярны и образуют прямоугольные $bigtriangleup$ треугольники.
- Диагонали ромба со сторонами ромба образуют равнобедренные $bigtriangleup$ треугольники.
- Диагонали ромба являются биссектрисами углов — делят углы пополам.
- Диагонали ромба со сторонами образуют равные накрест лежащие углы.
- Угол между высотами ромба, проведенными из вершины тупого угла, равен острому углу ромба.
Квадрат — одновременно прямоугольник, ромб, параллелограмм. Диагонали квадрата равны между собой и делятся пополам.
Задача 1: Найти периметр ромба $ABCD$, в котором $angle C=60^o$ , а меньшая диагональ равна $10,5$ см.
- Решение: Рассмотрим $bigtriangleup BCD$. Что в нём равного? $Rightarrow$ каков данный треугольник?
- По условию, угол $bigtriangleup BCD$ у вершины $angle B=60^o$ , тогда как два других угла?
- Каков все-таки этот треугольник? Чему равны стороны ромба. А сумма сторон? Ответ: $p=42$ см.
Задача 2: Найдите углы, которые образуют диагонали ромба с его сторонами, если один из углов ромба равен $45^o$.
- Решение: «Односторонние углы»: В параллелограмме сумма углов, прилежащих к одной стороне, равна $180^o$ .
- Противоположные стороны ромба параллельны, их пересекает диагональ (секущая). Какие накрест лежащие углы равны?
- Как найти все углы ромба. Кем является Диагональ в ромбе для угла? Ответ: $22^o30’$ , $67^o30’$
- Полезные напоминания: «В равностороннем треугольнике все углы равны 60 градусов.
- Если в равнобренном треугольнике один из углов 60, то это равносторонный треугольник — стороны равны, углы тоже.
- В прямоугольном треугольнике катет напротив угла 30 градусов равен половине гипотенузы.
Упражнения:
Задачи из сайта https://resh.edu.ru :
Задача 11: В ромбе АВСD ∠А = 140°, диагонали пересекаются в точке O. Найдите угол CBO.
Задача 12: В ромбе ABCD ∠С = 50°. Точка O – точка пересечения диагоналей ромба. Найдите угол OBC.
Задача 13: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.
Задача 14: ???? В любом ромбе равны… Противолежащие углы равны, сумма соседних углов равна 180 градусов:(?) Ромб, у которого все углы равны, это… (?) Диагонали пересекаются и точкой пересечения делятся пополам. (?) Диагонали взаимно перпендикулярны. (?)
Задача 15: Отрезки AB и CD пересекаются в их общей середине. В образовавшемся четырёхугольнике ∠CAD = ∠ADB. Найдите ∠BCA.
Задача 16: На диагонали квадрата как на стороне построен новый квадрат. Чему равна его диагональ, если сторона исходного квадрата равна 6 см?
Задача 17: Одна из диагоналей ромба образует с его стороной угол 65°. Найдите больший угол ромба.
Как найти вторую диагональ ромба
Ромбом можно назвать параллелограмм, диагонали которого делят пополам углы, лежащие в вершинах фигуры. Кроме этого свойства диагонали ромба примечательны тем, что являются осями симметрии многоугольника, пересекаются только под прямым углом, а единственная общая точка делит каждую из них на два равных отрезка. Эти свойства позволяют легко рассчитать длину одной из диагоналей, если известна длина другой и еще какой-нибудь параметр фигуры — размер стороны, угол в одной из вершин, площадь и т.д.
Если кроме длины одной из диагоналей (l) о рассматриваемом четырехугольнике известно, что он является частным случаем ромба — квадратом, никаких расчетов производить не придется. В этом случае длины обеих диагоналей одинаковы — просто приравняйте искомую величину (L) к известной: L=l.
Знание длины стороны ромба (a) в дополнение к длине одной из диагоналей (l) позволит рассчитать длину другой (L) по теореме Пифагора. Это возможно потому, что две половины пересекающихся диагоналей образуют со стороной ромба прямоугольный треугольник. Половины диагоналей в нем являются катетами, а сторона — гипотенузой, поэтому равенство, вытекающее из теоремы Пифагора можно записать так: a² = (l/2)² + (L/2)². Для использования в расчетах преобразуйте его к такому виду: L = √(4*a²-l²).
При известной величине одного из углов (α) ромба и длине одной из диагоналей (l) для нахождения величины другой (L) рассмотрите тот же прямоугольный треугольник. Тангенс половины известного угла в нем будет равен отношению длины противолежащего катета — половины диагонали l — к прилежащему — половине диагонали L: tg(α/2) = (l/2)/(L/2) = l/L. Поэтому для вычисления искомой величины используйте формулу L = l/tg(α/2).
Если в условиях задачи приведена длина периметра (P) ромба и размер его диагонали (l), формулу вычисления длины второй (L) можно свести к равенству, использованному во втором шаге. Для этого разделите периметр на четверку и замените этим выражением длину стороны в формуле: L = √(4*(P/4)²-l²) = √(P²/4-l²).
В исходных условиях кроме длины одной из диагоналей (l) может быть приведена и площадь (S) фигуры. Тогда для вычисления длины второй диагонали ромба (L) используйте очень простой алгоритм — удвойте площадь и разделите полученное значение на длину известной диагонали: L = 2*S/l.
Каким способом высчитать диагональ:
Способ расчёта
Введите размеры:
Результат:
Решение:
Ссылка на страницу с результатом:
# Теория
Ромб — это параллелограмм у которого все стороны равны.
Свойства ромба:
- Диагонали ромба делят его углы пополам.
- Cумма углов прилежащих к одной стороне равна 180°.
- Диагонали ромба пересекаются под прямым углом (90°).
- Диагонали ромба в точке пересечения делятся попалам.
- Диагонали ромба являются биссектрисами его углов.
Диагональ — это отрезок, соединяющий несмежные вершины многоугольника или многогранника.
Формулы расчёта диагонали ромба
Длину диагоналей ромба можно посчитать несколькими способами. В зависимости от известных данных, для расчёта применяют следующие формулы:
Через сторону и другую диагональ
D
d
a
a
a
a
D = sqrt{4a^2 — d^2}
d = sqrt{4a^2 — D^2}
- D — большая диагональ ромба
- d — меньшая диагональ ромба
- a — сторона ромба
Через сторону и угол
D
d
a
a
a
a
α
β
- D — большая диагональ
- d — меньшая диагональ ромба
- a — сторона ромба
- α — острый угол ромба (от 0° до 90°)
- β — тупой угол ромба (от 90° до 180°)
D = a sqrt{2 + 2 cdot cos alpha}
D = a sqrt{2 — 2 cdot cos beta}
d = a sqrt{2 — 2 cdot cos alpha}
d = a sqrt{2 + 2 cdot cos beta}
Через угол и вторую диагональ
D = d cdot tg ( dfrac{beta}{2} )
d = D cdot tg ( dfrac{alpha}{2} )
- D — большая диагональ ромба
- d — меньшая диагональ ромба
- α — острый угол ромба (от 0° до 90°)
- β — тупой угол ромба (от 90° до 180°)
Через площадь и вторую диагональ
D = dfrac{2 cdot S}{d}
d = dfrac{2 cdot S}{D}
- D — большая диагональ ромба
- d — меньшая диагональ ромба
- S — площадь ромба
Похожие калькуляторы:
Войдите чтобы писать комментарии
Начнем с того что у ромба две диагонали. Одна большая D, а другая маленькая d. Рассмотрим способы нахождения большой диагонали D.
Также D находится по площади ромба и малой диагонали: D=(2*S)/d; Рассмотрим способы нахождения меньшей диагонали d.
Малую диагональ d тоже можно найти через площадь ромба и большую диагональ: d=(2*S)/D; автор вопроса выбрал этот ответ лучшим Alexsandr82 6 лет назад У ромба есть две диаганали: большая (d1) и малая (d2), а также углы а — острый угол ромба (в ромбе два острых угла и оба равны между собой), и b — тупой угол (их тоже два и они тоже равны). Если нам известна сторона ромба (x) и один из углов то мы можем найти любую диагональ по формулам: d1 = 2x*cos(a/2) d2 = 2x*sin(a/2) Или d1 = 2x*sin(b/2) d2 = 2x*cos(b/2) Кроме этого если нам извесна площадь ромба и одна из диагоналей мы можем найти вторую диагональ по формулам: d1 = 2S/d2 d2 = 2S/d1 Если нам дан радус вписанной в ромб окружности и любой из углов мы также можем рассчитать диагональ ромба: d1 = 2r/sin(a/2) d2 = 2r/sin(b/2) Где r — радиус вписанной окружности. Знаете ответ? |