Пример как найти нод двух натуральных чисел

В данной статье мы рассмотрим определение наибольшего общего делителя, научимся его находить для двух или нескольких чисел, а также разберем практические примеры для закрепления изложенного материала.

  • Определение наибольшего общего делителя

  • Нахождение НОД

    • Для двух (или небольших) чисел

    • Для нескольких (или больших) чисел

Определение наибольшего общего делителя

Делитель натурального числа a – это такое натуральное число b, которое делит a нацело (без остатка). Обозначается буквой Д. Например Д(6) означает “делитель числа 6”.

Если у числа больше двух делителей, его называют составным.

Примеры делителей:

  • Число 12 имеет следующие делители: 1, 2, 3, 4, 6.
  • Число 15 имеет следующие делители: 1, 3, 5.

В отличие от кратных, количество делителей числа ограничено.

Общий делитель двух натуральных чисел – это такое число, на которое оба этих числа делятся без остатка.

Наибольший общий делитель двух натуральных чисел – наибольшее число из общих делителей данных чисел. Обозначается как НОД.

Например, НОД (12, 24) – это наибольший общий делитель чисел 12 и 24.

Нахождение НОД

Чтобы найти наибольший общий делитель, можно применить один из способов ниже.

Для двух (или небольших) чисел

  1. Записываем в ряд все делители для каждого числа (по возрастанию).
  2. Находим наибольшее значение, встречающееся в обоих рядах. Это и есть НОД.

Пример
Найдем наибольший делитель чисел 18 и 30.

Решение
Д(18): 1, 2, 3, 6, 9.
Д(30): 1, 2, 3, 5, 6, 10, 15.

Таким образом, НОД (18, 30) = 6.

Для нескольких (или больших) чисел

Этот метод обычно применяется, если приходится иметь дело с большим числами, или нужно найти НОД для нескольких чисел.

  1. Для начала раскладываем числа на простые множители – простые числа, которые делят число без остатка.
  2. Отмечаем одинаковые простые множители, встречающиеся в обоих раскладках.
  3. Произведение найденных простых множителей и есть НОД.

Пример
Найдем НОД (16, 24, 40).

Решение
Разложим эти числа на простые множители.

Разложение чисел на простые множители для нахождения НОД

Для всех трех чисел одинаковыми являются три множителя – это три двойки.

Следовательно, НОД (16, 24, 40) = 2 ⋅ 2 ⋅ 2 = 8.

Как найти НОД

  • Нахождение путём разложения на множители
  • Алгоритм Евклида

Рассмотрим два способа нахождения наибольшего общего делителя.

Нахождение путём разложения на множители

Первый способ заключается в нахождении наибольшего общего делителя путём разложения данных чисел на простые множители.

Чтобы найти НОД нескольких чисел, достаточно, разложить их на простые множители и перемножить между собой те из них, которые являются общими для всех данных чисел.

Пример 1. Найти НОД (84, 90).

Решение: Раскладываем числа  84  и  90  на простые множители:

как найти наибольший общий делитель

Итак, мы подчеркнули все общие простые множители, осталось перемножить их между собой:

2 · 3 = 6.

Таким образом, НОД (84, 90) = 6.

Пример 2. Найти НОД (15, 28).

Решение: Раскладываем  15  и  28  на простые множители:

наибольший общий делитель двух чисел

Числа  15  и  28  являются взаимно простыми, так как их наибольший общий делитель — единица.

НОД (15, 28) = 1.

Алгоритм Евклида

Второй способ (иначе его называют способом Евклида) заключается в нахождении НОД путём последовательного деления.

Сначала мы рассмотрим этот способ в применении только к двум данным числам, а затем разберёмся в том, как его применять к трём и более числам.

Если большее из двух данных чисел делится на меньшее, то число, которое меньше и будет их наибольшим общим делителем.

Пример 1. Возьмём два числа  27  и  9.  Так как  27  делится на  9  и  9  делится на  9,  значит,  9  является общим делителем чисел  27  и  9.  Этот делитель является в тоже время и наибольшим, потому что  9  не может делиться ни на какое число, большее  9.  Следовательно:

НОД (27, 9) = 9.

В остальных случаях, чтобы найти наибольший общий делитель двух чисел используется следующий порядок действий:

  1. Из двух данных чисел большее число делят на меньшее.
  2. Затем, меньшее число делят на остаток, получившийся от деления большего числа на меньшее.
  3. Далее, первый остаток делят на второй остаток, который получился от деления меньшего числа на первый остаток.
  4. Второй остаток делят на третий, который получился от деления первого остатка на второй и т. д.
  5. Таким образом деление продолжается до тех пор, пока в остатке не получится нуль. Последний делитель как раз и будет наибольшим общим делителем.

Пример 2. Найдём наибольший общий делитель чисел  140  и  96:

1) 140 : 96 = 1 (остаток 44)

2) 96 : 44 = 2 (остаток 8)

3) 44 : 8 = 5 (остаток 4)

4) 8 : 4 = 2

Последний делитель равен  4  — это значит:

НОД (140, 96) = 4.

Последовательное деление так же можно записывать столбиком:

как найти нод чисел

Чтобы найти наибольший общий делитель трёх и более данных чисел, используем следующий порядок действий:

  1. Сперва находим наибольший общий делитель любых двух чисел из нескольких данных.
  2. Затем находим НОД найденного делителя и какого-нибудь третьего данного числа.
  3. Затем находим НОД последнего найденного делителя и четвёртого данного числа и так далее.

Пример 3. Найдём наибольший общий делитель чисел  140,  96  и  48.  НОД чисел  140  и  96  мы уже нашли в предыдущем примере (это число  4).  Осталось найти наибольший общий делитель числа  4  и третьего данного числа —  48:

48 : 4 = 12

48  делится на  4  без остатка. Таким образом:

НОД (140, 96, 48) = 4.

Наибольшим общим делителем (НОД) двух целых чисел называется наибольший из их общих делителей. К примеру для чисел 12 и 8, наибольшим общим делителем будет 4.

Как найти НОД?

Способов найти НОД несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОД при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители (подробнее о разложении чисел на простые множители смотрите тут);
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Примеры нахождения наибольшего общего делителя

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОД 12 и 8

1. Раскладываем 12 и 8 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 2 и 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (8; 12) = 2 · 2 = 4.

Пример 2: найти НОД 75 и 150

Этот пример, как и предыдущий с легкостью можно высчитать в уме и вывести ответ 75, но для лучшего понимания работы алгоритма, проделаем все шаги:

1. Раскладываем 75 и 150 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 3, 5 и 5

3. Перемножаем эти множители и получаем: 3 · 5 · 5 = 75

Ответ: НОД (75; 150) = 3 · 5 · 5 = 75.

Частный случай или взаимно простые числа

Нередко встречаются ситуации, когда оба числа взаимно простые, т.е. общий делитель равен единице. В этом случае, алгоритм будет выглядеть следующим образом:

Пример 3: найти НОД 9 и 5

1. Раскладываем 5 и 9 на простые множители:

Видим, что одинаковых множителей нет, а значит, что это частный случай (взаимно простые числа). Общий делитель — единица.

Нахождение НОК и НОД двух натуральных чисел

Содержание:

  • Что такое НОК и НОД двух натуральных чисел
  • Особенности вычисления, алгоритм Евклида
  • Правило нахождения наибольшего общего делителя (НОД)
  • Правило нахождения наименьшего общего кратного (НОК)

Что такое НОК и НОД двух натуральных чисел

Натуральными числами называют числа, которые используются при счете – 1, 2, 3, 16, 25, 101, 2560 и далее до бесконечности. Ноль, отрицательные и дробные или нецелые числа не относятся к натуральным.

Наименьшее общее кратное (НОК) двух натуральных чисел a и b – это наименьшее число, которое делится без остатка на каждое из рассматриваемых чисел.

Наибольший общий делитель (НОД) двух натуральных чисел a и b – это наибольшее число, на которое делится без остатка каждое рассматриваемое число.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Свойства НОК и НОД для натуральных чисел a и b

  • (НОД (a, b) = НОД (b, a);)
  • (НОК (a, b) = НОК (b, a);)
  • (НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.)

Особенности вычисления, алгоритм Евклида

Рассмотрим два способа определения НОД и НОК с помощью алгоритма Евклида:

  • Способ деления.

При делении целых чисел с остатком, где a — делимое, b – делитель (b не равно 0) находят целые числа q и r согласно равенству (a=btimes) q+r, в котором q – неполное частное, r – остаток при делении (не отрицательное, по модулю меньше делителя).

Чтобы вычислить НОД, первоначально нужно выбрать наибольшее из двух чисел и поделить его на меньшее. Пока остаток не станет равным нулю, повторяется цикл деления делителя на остаток от деления в соответствии с формулой.

Пример №1

Вычислим НОД для чисел 12 и 20. Делим 20 на 12 и получаем 1 и 8 в остатке. Запишем иначе:

(20=12times1+8), так как остаток не равняется нулю, продолжаем деление. Делим 12 на 8 и получаем 1 и 4 в остатке. Записываем: (12=8times1+4) и по аналогии делим 8 на 4 и получаем 2 и 0 в остатке. НОД равен остатку, предшествующему нулю.

НОД (12;20) = 4

НОК получаем согласно свойству (НОК (a, b) = НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.) Подставляем числовые значения:

НОК (12; 20) = (12times20div4=60)

НОК (12;20) = 60

  • Способ вычитания.

Здесь повторяется цикл вычитания из наибольшего числа меньшего числа до момента, пока разность не станет равна нулю. НОД равен предшествующей нулю разности.

Пример №2

Вычислим НОД для тех же чисел, 12 и 20.

20 – 12 = 8 (разность не равна нулю, продолжаем)

12 – 8 = 4

8 – 4 = 4

4 – 4 = 0

НОД (12;20) = 4

НОК находим также, как и при методе деления.

Правило нахождения наибольшего общего делителя (НОД)

Для нахождения наибольшего общего делителя воспользуемся пошаговым алгоритмом:

  1. Разложить числа на простые множители.
  2. Найти общий множитель одного и другого числа.
  3. Перемножить общие множители, если их несколько, и их произведение будет НОД.

Пример №3

Возьмем натуральные числа 24 и 36.

(24=2times2times2times3)

(36=2times2times3times3)

Правильно записать следующим образом:

(НОД (24;36)=2times3=6)

Примечание

В случае, когда одно или оба числа относятся к простым, т.е. делятся только на единицу и на само себя, то их НОД равняется 1.

Правило нахождения наименьшего общего кратного (НОК)

Для нахождения наименьшего общего кратного воспользуемся подробным алгоритмом:

  1. Наибольшее из чисел, а затем остальные разложить на простые множители.
  2. Выделить те множители, которые отсутствуют у наибольшего.
  3. Перемножить множители п. 2 и множители наибольшего числа, получить НОК.

Пример №4

Возьмем натуральные числа 9 и 12.

(12=2times2times3)

(9=3times3) (видим, что у числа 12 отсутствует одна тройка)

Правильно записать следующим образом:

(НОК (9;12)=2times2times3times3=36)

Насколько полезной была для вас статья?

Рейтинг: 3.00 (Голосов: 4)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Наибольший общий делитель


Наибольший общий делитель

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.

Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

Что такое НОД?

Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

Это значение чаще всего используется для ряда из двух чисел. Просто потому, что сокращаются обычно два числа: числитель и знаменатель дроби. Нахождение НОД для большего количества значений не всегда оправдано, но вырабатывает навык.

Как найти НОД?

Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

  • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
  • Получившийся результат делим на наименьшее из возможных простых чисел.
  • Повторяем деление каждого полученного результата, пока не получим простое число.

Теперь проведем ту же процедуру на практике.

  • 540 : 2=270
  • 270:2=135
  • 135 : 3 =45
  • 45 : 3=15
  • 15 : 5 = 3

Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

Аналогично поступим с числом 252:

  • 252 : 2=126
  • 126: 2=63
  • 63 : 3=21
  • 21 : 3 = 7

Запишем результат: 252=2*2*3*3*7.

В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

НОД=2*2*3*3=36

Как можно это использовать?

Задача: сократить дробь $$252over540$$.

НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

НОД = 36

Сократим числитель и знаменатель дроби на 36 и получим ответ.

$${252over540} ={7over15}$$ – чтобы быстро сократить, достаточно посмотреть на разложение чисел.

Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

Заключение

Что мы узнали?

Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.


А какая ваша оценка?

Понравилась статья? Поделить с друзьями:
  • Как найти клиента для страхового агента
  • Как найти открытые ранее сайты
  • Клавиатура на айпад стала маленькой как исправить
  • Как нашли город аркаим
  • Как найти сервер в зе форесте