Равнобедренный треугольник описанный окружностью как найти радиус

Радиус описанной окружности равнобедренного треугольника можно найти по одной из общих формул радиуса окружности, описанной около треугольника.

Используя свойства равнобедренного треугольника, можно также получить дополнительные формулы.

I. Радиус описанной около треугольника окружности можно найти по формуле

    [R = frac{{abc}}{{4S}}]

Площадь равнобедренного треугольника через длину основание a и боковую сторону b можно найти по формуле 

    [S = frac{a}{2}sqrt {{b^2} - frac{{{a^2}}}{4}} ,]

соответственно, формула для нахождения радиуса описанной окружности для равнобедренного треугольника принимает вид:

    [R = frac{{a{b^2}}}{{4 cdot frac{a}{2}sqrt {{b^2} - frac{{{a^2}}}{4}} }},]

отсюда

    [R = frac{{{b^2}}}{{2sqrt {{b^2} - frac{{{a^2}}}{4}} }}]

    [R = frac{{{b^2}}}{{sqrt {4{b^2} - {a^2}} }}.]

II. Формула — следствие из теоремы синусов

    [R = frac{a}{{2sin alpha }} = frac{b}{{2sin beta }} = frac{c}{{2sin gamma }}]

верна и для равнобедренного треугольника.

Радиус описанной около равнобедренного треугольника окружности:

    [R = frac{a}{{2sin alpha }} = frac{b}{{2sin beta }},]

где a — основание, b — боковая сторона, α — угол при вершине, β — угол при основании.

III. Радиус описанной окружности в равнобедренном треугольнике можно найти непосредственно, без использования общих формул.

Radius opisannoy okruzhnosti ravnobedrennogo treugolnika

Например, в прямоугольном треугольнике AOF AO=R, AF=b/2, ∠FAO=α/2. Отсюда

    [cos angle FAO = frac{{AF}}{{AO}},]

    [ Rightarrow R = frac{b}{{2cos frac{alpha }{2}}}.]

radius opisannoy okruzhnosti ravnobedrennyiy treugolnik

IV. В равнобедренном тупоугольном треугольнике центр описанной окружности лежит вне треугольника, напротив его вершины.

Радиус находят по тем же формулам, что и для остроугольного треугольника.

V. В равнобедренном прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, радиус равен половине гипотенузы (то есть половине основания треугольника).

Radius opisannoy okruzhnosti v ravnobedrennom treugolnike

    [R = frac{{BC}}{2}]

Если AB=a,

    [R = frac{a}{2}.]

радиус описанной окружности треугольника

a , b , c blue    —  стороны треугольника

s12 black  — полупериметр

s (abc)2

O black  — центр окружности

Формула радиуса описанной окружности треугольника ( R  ) :

Формула радиуса описанной окружности треугольника

радиус описанной окружности равностороннего треугольника

сторона — сторона треугольника

высота — высота

радиус — радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через сторону

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Формула радиуса описанной окружности равностороннего треугольника через высоту

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

радиус описанной окружности равнобедренного треугольника

a, b — стороны треугольника

Формула радиуса описанной окружности равнобедренного треугольника(R):

Формула радиуса описанной окружности равнобедренного треугольника

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

радиус описанной окружности прямоугольного треугольника

a, b — катеты прямоугольного треугольника

c — гипотенуза

Формула радиуса описанной окружности прямоугольного треугольника (R):

Формула радиуса описанной окружности прямоугольного треугольника

Радиус описанной окружности трапеции

a — боковые стороны трапеции

c — нижнее основание

b — верхнее основание

d — диагональ

p — полупериметр треугольника DBC

p = (a+d+c)/2

Формула радиуса описанной окружности равнобокой трапеции, (R)

Формула радиуса описанной окружности равнобокой трапеции

Радиус описанной окружности квадрата равен половине его диагонали

радиус описанной окружности около квадрата

a — сторона квадрата

d — диагональ

Формула радиуса описанной окружности квадрата (R):

Формула радиуса описанной окружности квадрата

Радиус описанной окружности прямоугольника равен половине его диагонали

Радиус описанной окружности прямоугольника

a, b — стороны прямоугольника

d — диагональ

Формула радиуса описанной окружности прямоугольника (R):

Формула радиуса описанной окружности прямоугольника

Радиус описанной окружности правильного многоугольника

a — сторона многоугольника

N — количество сторон многоугольника

Формула радиуса описанной окружности правильного многоугольника, (R):

Формула радиуса описанной окружности правильного многоугольника

a — сторона шестиугольника

d — диагональ шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Радиус описанной окружности около равнобедренного треугольника онлайн

С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Содержание

  1. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и боковая сторона b=c
  2. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и противолежащий угол A
  3. Радиус окружности описанной около равнобедренного треугольника, если известны боковая сторона b=c треугольника и угол между боковыми сторонами A
  4. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и прилежащий угол B=C

1. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и боковая сторона b=c

Пусть известны основание a равнобедренного треугольника и боковая сторона b=c. Найдем радиус описанной окружности около равнобедренного треугольника. На странице Радиус окружности описанной около треугольника онлайн была выведена формула вычисления радиуса R описанной около любого треугольника окружности:

где p вычисляется из формулы:

Учитывая, что у нас треугольник равнобедренный, т.е. b=c, имеем:

Подставляя (3)−(5) в (1) и учитывая, что b=c, получим:

то есть

Пример 1. Известны основание ( small a=7 ) и боковая сторона ( small b=frac{9}{2} ) равнобедренного треугольника. Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (6).

Подставим значения ( small a=7 ) и ( small b=frac{9}{2} ) в (6):

Ответ:

2. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и противолежащий угол A

Пусть известны сторона a и противолежащий угол A. Формула для нахождения радиуса окружности описанной около равнобедренного треугольника по основанию и противолежащему углу аналогична формуле для нахождения радиуса окружности описанной около произвольного треугольника:

Пример 2. Сторона основание равнобедренного треугольника равна:( small a=21 ) а противолежащий угол ( small angle A=60°.) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (7). Подставим значения ( small a=21 ) и ( small angle A=60° ) в (7):

Ответ:

3. Радиус окружности описанной около равнобедренного треугольника, если известны боковая сторона b=c треугольника и угол между боковыми сторонами A

Пусть известны боковая сторона b=c равнобедренного треугольника и угол между боковыми сторонами A. Найдем радиус описанной окружности около равнобедренного треугольника.

На странице Радиус описанной окружности около треугольника онлайн была выведена формула для нахождения радиуса описанной окружности около треугольника при известных сторонах и углу между ними:

Подставляя в (8) c=b, получим:

то есть

Пример 3. Известны основание ( small a=21 ) равнобедренного треугольника и угол между боковыми сторонами: ( small angle A=70°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (9). Подставим значения ( small a=21; ) и ( small angle A=70° ) в (9):

Ответ:

4. Радиус окружности описанной около равнобедренного треугольника, если известны основание a и прилежащий угол B=C

Пусть известны основание a равнобедренного треугольника и прилежащие к ней угол B=C. Найдем радиус описанной окружности около треугольника. На странице Радиус описанной окружности около треугольника онлайн была выведена формула для нахождения радиуса описанной окружности около треугольника при известной стороне и прилежащим двум углам:

Подставляя ( small C=B ) в (10), получим требуемую формулу:

Пример 4. Известны основание равнобедренного треугольника ( small a=14 ) и прилежащий к ней угол: ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (11). Подставим значения ( small a=14 ) и ( small angle B=25° ) в (11):

Ответ:

Смотрите также:

  • Радиус описанной окружности около треугольника онлайн
  • Радиус описанной окружности около равностороннего треугольника онлайн
  • Радиус описанной окружности около прямоугольного треугольника онлайн

ВИДЕОУРОК

Описанная окружность
равнобедренного треугольника.

Для того, чтобы найти
радиус описанной окружности равнобедренного треугольника можно воспользоваться
следующей формулой:

ЗАДАЧА:

Основание равнобедренного тупоугольного треугольника
равно 
18
см, а радиус описанной вокруг него окружности –
15
см. Найдите боковую сторону треугольника.

РЕШЕНИЕ:

В четырёхугольнике 
АОВС

АО = ВО = СО = 15 см

как радиусы описанной окружности.

В равнобедренном треугольнике  АВС


АС = ВС


основание  


АВ = 18 см.



Высота  СD  лежит на
серединном перпендикуляре основания 
АВ, поэтому

АD = ВD = 0,5АВ 
= 0,5 × 18 = 9 см.

В треугольнике  ОВD  согласно теореме Пифагора:

СD = СО – DО =
= 15 – 12 = 3 (см).

В треугольнике  С  согласно теореме Пифагора:

ОТВЕТ:  3√͞͞͞͞͞10
см

ЗАДАЧА:

Высота равнобедренного тупоугольного треугольника,
опущенная на его основание, равна 
8 см, а радиус описанной вокруг неё окружности – 13 см. Найдите боковую сторону треугольника.

РЕШЕНИЕ:

Начертим чертёж.

ОА = ОВ = ОС = R = 13 см.

ОН = 13 – 8 = 5
(см).

Вписанная окружность
равнобедренного треугольника.


Для того, чтобы найти
радиус вписанной окружности равнобедренного треугольника можно воспользоваться
следующей формулой:

Радиус вписанной в равнобедренный треугольник
окружности, выраженный через боковую сторону и высоту, опущенную на основание, выражается
следующей формулой:

ЗАДАЧА:

Высота равнобедренного треугольника равна  18
см, а радиус вписанной в него окружности – 8 см. Найдите периметр данного треугольника.

РЕШЕНИЕ:

В треугольнику  АВС 

АВ = ВС,

отрезок  ВD – высота,

ВD =
18
см, точка  О – центр вписанной окружности.

Так как  ∆ АВС – равнобедренный, то точка  О  принадлежит его высоте и биссектрисе  ВD,
а отрезок 
ОD – радиус вписанной окружности,

ОD = 8 см. Тогда

ВО = ВD – ОD = 10 см.

Центром окружности, вписанной
в треугольник, будет точка пересечения биссектрис треугольника. Тогда отрезок 
АО – биссектриса
треугольника 
АDВ. Воспользуемся свойством биссектрисы треугольника

Пусть  АВ = 5х
см,
х
˃ 0,

тогда АD
=
см.

Из  ∆ АDВ ( АDВ = 90°):

АВ2АD2 = ВD2,

25х2 – 16х2 = 182,

9х2 = 324, х = 6.

Поэтому,

АВ = 30 см,
АD = 24 см,

АС = 2АD = 48 см.

Тогда

Р = 2АВ + АС = 108 см.

Радиус вписанной и описанной
окружности для равностороннего треугольника выражается следующими формулами:

У равностороннего треугольника центры вписанной
и описанной окружности, центр тяжести и ортоцентр совпадают
, а сумма
радиусов описанной и вписанной окружности равна высоте.

ЗАДАЧА:


Найдите радиус окружности, вписанной в правильный
треугольник со стороною 
12 см
?

РЕШЕНИЕ:

Так как треугольник 
АВС
равносторонний, в котором 
ВD  является биссектрисой, высотой и медианой, то
угол 
DВС будет равен  30°.

Треугольник  ВDС
прямоугольный в котором против угла в 
30°  находится катет,
равный половине гипотенузы. Значит 
DС = 6 см.

По теореме Пифагора находим  ВD.

Тогда


r = 1/3 ВD = 1/3 6√͞͞͞͞͞3 = 2√͞͞͞͞͞3 (см).


ЗАДАЧА:

Определить отношение радиуса вписанной в равносторонний
треугольник окружности к радиусу описанной окружности.

РЕШЕНИЕ:

В равностороннем  АВС  его три медианы,
биссектрисы и высоты совпадают и пересекаются в одной точке – центре
треугольника. Радиусом описанной окружности будет отрезок, соединяющий
центр 
О  с одной из вершин треугольника.

А вписанной – апофема 
ОD.
Но так как 
АО  ещё и биссектриса,
то  



ОАD = 30°


а  ∆ АOD – прямоугольный, следовательно,

ЗАДАЧА:

Окружность касается одного из катетов равнобедренного
прямоугольного треугольника и проходит через вершину противоположного острого угла.
Найдите радиус окружности, если её центр находится на гипотенузе треугольника,
а катет треугольника равен 
10 см.

РЕШЕНИЕ:

Пусть   АВС – заданный прямоугольный треугольник  (А
=
90°),

АВ = АС = 10 см.

О ВС
центр
окружности, которая проходит через
точку 
С.

Е
– точка
касания
окружности
до катета 
АВ.

В
треугольнику  АВС

В = С = 45° 
і 

АВ = АС = 10 (см).

Пусть  ОС = ОЕ = х (см).

Из
треугольника 

ОЕВ (Е = 90°, В = 45°) 

ОВ = √͞͞͞͞͞ ОЕ = √͞͞͞͞͞2
х
(см).

Так как
 
ВС = ОВ + ОС,

то имеем: 

10√͞͞͞͞͞2 = √͞͞͞͞͞2 х + х

откуда

ОТВЕТ:  10(2 – √͞͞͞͞͞2) см

Задания к уроку 16

  • Задание 1
  • Задание 2
  • Задание 3

Другие уроки:

  • Урок 1. Точка и прямая
  • Урок 2. Угол
  • Урок 3. Параллельные и перпендикулярные прямые
  • Урок 4. Окружность
  • Урок 5. Угол и окружность
  • Урок 6. Треугольник (1)
  • Урок 7. Треугольник (2)
  • Урок 8. Прямоугольный треугольник (1)
  • Урок 9. Прямоугольный треугольник (2)
  • Урок 10. Равнобедренный треугольник (1)
  • Урок 11. Равнобедренный треугольник (2)
  • Урок 12. Периметр треугольника
  • Урок 13. Периметр равнобедренного (равностороннего) треугольника
  • Урок 14. Треугольник и окружность
  • Урок 15. Прямоугольный треугольник и окружность
  • Урок 17. Четырёхугольники
  • Урок 18. Параллелограмм
  • Урок 19. Периметр параллелограмма
  • Урок 20. Прямоугольник
  • Урок 21. Периметр прямоугольника
  • Урок 22. Квадрат
  • Урок 23. Ромб
  • Урок 24. Периметр ромба
  • Урок 25. Трапеция
  • Урок 26. Равнобедренная трапеция
  • Урок 27. Периметр трапеции
  • Урок 28. Четырёхугольник и окружность (1)
  • Урок 29. Четырёхугольник и окружность (2)
  • Урок 30. Многоугольник
  • Урок 31. Правильный многоугольник
  • Урок 32. Осевая и центральная симметрии

Радиус описанной около треугольника окружности

Определение

Треугольник является геометрической фигурой на плоскости, которая включает три стороны в виде отрезков, образованных с помощью соединения трех точек, не лежащих на одной прямой.

Обозначают данную геометрическую фигуру символом △.

Точками A, B и C обычно обозначают вершины треугольника. Отрезки AB, BC и AC определяют стороны треугольника, которые, как правило, обозначают с помощью латинской буквы. К примеру, AB = a, BC = b, AC = c.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Внутренность треугольника представляет собой часть плоскости, которая ограничена сторонами треугольника. Стороны треугольника в вершинах формируют три угла, которые обычно обозначают, используя греческие буквы – (alpha, beta, gamma) и другие. По этой причине треугольник получил название многоугольника с тремя углами. Для обозначения углов также применяют символ ∠, к примеру:

  • (alpha )∠BAC или ∠CAB;
  • (beta) ∠ABC или ∠CBA;
  • (gamma )∠ACB или ∠BCA.

Треугольники различают по величине углов или количеству равных сторон:

  • остроугольный, в котором все три угла острые, то есть меньше (90^{0});
  • тупоугольный, обладает один из углов больше (90^{0}), а два остальных угла являются острыми;
  • прямоугольный с одним прямым углом в (90^{0}), двумя сторонами, образующими прямой угол, которые называют катетами, третьей стороной, расположенной напротив прямого угла в виде гипотенузы;
  • разносторонний, со сторонами разной длины;
  • равнобедренный, с двумя одинаковыми боковыми сторонами и третьей стороной в виде основания, углы при котором равны;
  • равносторонний (правильный) обладает тремя сторонами с одинаковой длиной и углами, равными по (60^{0}).

Определение

Окружностью называют замкнутую плоскую прямую, каждая точка которой равноудалена от данной точки или центра, лежащей в той же плоскости, что и кривая.

Примечание

Окружность, описанная около треугольника, является окружностью, проходящей через все три вершины рассматриваемого треугольника.

Радиус окружности, описанной около треугольника, определяется с помощью специальных формул, подкрепленных соответствующими доказательствами. Первая закономерность позволяет рассчитать его согласно расширенной теореме синусов: 

  • радиус R окружности, описанной около треугольника, равен отношению стороны треугольника к удвоенному синусу противолежащего угла.

Формула для нахождения радиуса:

(R=frac{AB}{2sin angle C} =frac{AC}{2sin angle B} =frac{BC}{2sin angle A})

Теореме синусов

 

Вторую формулу для определения радиуса описанной около треугольника окружности записывают таким образом:

(R=frac{AB*BC*AC}{4S_{ABC}})

Общий вид:

(R=frac{abc}{4S})

Таким образом, для определения радиуса окружности, которая описана около треугольника, требуется произведение длины сторон этой геометрической фигуры разделить на четыре площади треугольника.

Площадь треугольника можно рассчитать, используя формулу Герона:

(S=sqrt{p(p-a)(p-b)(p-c)})

В данном случае р обозначает полупериметр и определяется по формуле:

(p=frac{a+b+c}{2})

В результате преобразованная формула для определения радиуса описанной около треугольника окружности примет следующий вид:

(R=frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}})

Представленные закономерности справедливы в случае любого треугольника, независимо от его вида. При расчетах необходимо учитывать расположение центра описанной окружности.

формулу Герона

 

Расположение центра окружности, описанной около треугольника:

  • остроугольный треугольник – во внутренней области;
  • прямоугольный треугольник – на середине гипотенузы;
  • тупоугольный треугольник – вне геометрической фигуры, напротив тупого угла.

Вычисление радиуса через стороны

Выше были рассмотрены формулы, с помощью которых можно определить радиус окружности, описанной вокруг треугольника, зная его стороны. Кроме того, при решении задач можно использовать некоторые закономерности, предусмотренные для треугольников определенного типа.

Формула для равнобедренного треугольника

Обладая информацией о длине сторон равнобедренного треугольника, можно определить радиус окружности, описанной вокруг этого треугольника.

Формула для равнобедренного треугольника

 

(R=frac{a^{2}}{sqrt{4a^{2}-b^{2}}})

где a и b являются сторонами треугольника.  

Формула для равностороннего треугольника

Такое выражение подходит для расчета радиуса окружности, описанной около любого правильного многоугольника. Формула имеет вид:

(R=frac{a}{2sin frac{180^{0}}{n}})

Здесь а является длиной стороны многоугольника, n – определяет количество его сторон.

Частным случаем правильного многоугольника является правильный треугольник. Тогда данную формулу можно применить для расчета радиуса окружности, описанной около правильного треугольника.

Формула для равностороннего треугольника

 

Формула радиуса описанной окружности для правильного треугольника:

(R=frac{a}{sqrt{3}})

Исключая иррациональность в знаменателе, получим:

(R=frac{asqrt{3}}{3})

Следует заметить, что в случае правильного треугольника радиус описанной окружности в два раза превышает радиус вписанной окружности:

R=2r

Формула для произвольного треугольника

Как правило, при решении задач по геометрии необходимо вычислить радиус окружности, описанной около произвольного треугольника. В этом случае целесообразно воспользоваться формулой:

(R=frac{abc}{4S})

Формула для произвольного треугольника

 

Справедливо следующее равенство:

(R=frac{a}{2sin alpha }=frac{b}{2sin beta }= frac{c}{2sin gamma })

где a, b, c являются длинами сторон треугольника, (alpha, beta, gamma) определяются, как противолежащие этим сторонам углы, S представляет собой площадь треугольника.

Формула для прямоугольного треугольника

Радиус описанной около прямоугольного треугольника окружности можно определить по формуле:

(R=frac{AB}{2})

Формула для прямоугольного треугольника

 

Таким образом, в случае прямоугольного треугольника радиус окружности, которая описана около него, равен половине гипотенузы. Как правило, ее обозначают с помощью «с», то есть АВ = с. Поэтому формула принимает следующий вид:

(R=frac{c}{2})

Примеры решения задач

Задача 1

Стороны треугольника равны 4, 6 и 9 см. Необходимо определить радиус окружности, которая описана около данного треугольника.

Решение

В первую очередь нужно рассчитать площадь рассматриваемого треугольника. Зная длины его сторон, ее можно определить с помощью формулы Герона:

(S=sqrt{9.5(9.5-4)*(9.5-6)*(9.5-9)}approx 9.56)

Затем достаточно просто найти радиус окружности:

(R=frac{4*6*9}{4*9.56}approx 5.65)

Ответ: радиус окружности равен 5.65 см

Задача 2

Известно, что катеты прямоугольного треугольника равны 6 и 8 см. Требуется рассчитать радиус окружности, которая описана около данного треугольника.

Решение

Определим гипотенузу рассматриваемого треугольника с помощью теоремы Пифагора:

(c=sqrt{6^{2}+8^{2}}=10)

Известно, что радиус окружности, которая описана около прямоугольного треугольника, соответствует половине его гипотенузы. Таким образом:

(R = 10/2 = 5)

Ответ: радиус окружности равен 5 см.

Задача 3

Необходимо определить радиус описанной окружности около треугольника АВС, стороны которого равны (AB=4sqrt{2}) см,( AC=7 см) и (angle A=45^{circ}.)

Решение

Определить радиус окружности, которая описана около треугольника, можно, как отношение произведения сторон треугольника к его площади, умноженной на 4:

(R=frac{ABcdot BCcdot AC}{4S} )

По теореме косинусов следует рассчитать сторону ВС:

(BC=sqrt{AC^2 +AB^2 -2ACcdot ABcdot cos angle A} =)

(=sqrt{49+32-2cdot 7cdot 4sqrt{2} cdot frac{sqrt{2} }2 } =sqrt{25} =5 cm)

Затем можно определить площадь треугольника АВС:

(S_{ABC} =frac{1}{2} cdot ABcdot ACcdot sin angle A=14 cm^2 )

Зная площадь, легко рассчитать радиус окружности:

(R=frac{ABcdot BCcdot AC}{4S} =frac{4sqrt{2} cdot 5cdot 7}{4cdot 14} =frac{5sqrt{2} }{2} cm)

Ответ: радиус окружности равен (frac{5sqrt{2} }2 см.)

Задача 4

Дан треугольник АВС со сторонами AB=3 см,( AC=sqrt{6} см). Необходимо определить углы этой геометрической фигуры. При этом радиус описанной окружности равен (R=sqrt{3}) см.

Решение

Согласно формуле, радиус описанной окружности равен отношению стороны треугольника к удвоенному синусу противолежащего угла:

(R=frac{AB}{2sin angle C} =frac{AC}{2sin angle B} =frac{BC}{2sin angle A} )

Таким образом, можно вычислить синусы углов треугольника:

(sin angle C=frac{AB}{2R} =frac{3}{2sqrt{3} } =frac{sqrt{3} }{2}, откуда angle C=60^{circ},)

(sin angle B=frac{AC}{2R} =frac{sqrt{6} }{2sqrt{3} } =frac{sqrt{2} }{2}, откуда angle B=45^{circ}.)

Далее следует определить угол А:

(angle A=180^{circ} -60^{circ} -45^{circ} =75^{circ} )

Ответ: (angle A=75^{circ} , angle B=45^{circ} , angle C=60^{circ})

Понравилась статья? Поделить с друзьями:
  • Как найти в роблоксе квадратное тело
  • Как исправить перманентный татуаж на бровях
  • Как составить отзыв об экскурсии
  • Заметки такого как ты я не найду
  • Как составить образовательный план по фгос