Всего: 116 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Тип 17 № 65
i
Найдите площадь параллелограмма, изображённого на рисунке.
Тип 17 № 91
i
Найдите площадь параллелограмма, изображённого на рисунке.
Найдите площадь параллелограмма, изображённого на рисунке.
Одна из сторон параллелограмма равна 12, а опущенная на нее высота равна 10. Найдите площадь параллелограмма.
Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов — 45°. Найдите площадь параллелограмма, делённую на
Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов — 60°. Найдите площадь параллелограмма, делённую на
Одна из сторон параллелограмма равна 12, другая равна 5, а синус одного из углов равен Найдите площадь параллелограмма.
Одна из сторон параллелограмма равна 12, другая равна 5, а косинус одного из углов равен Найдите площадь параллелограмма.
Одна из сторон параллелограмма равна 12, другая равна 5, а тангенс одного из углов равен Найдите площадь параллелограмма.
Источник: 9 класс. Математика. Краевая диагностическая работа. Краснодар (вар. 1)
Источник: 9 класс. Математика. Краевая диагностическая работа. Краснодар (вар.5)
В трапеции проведен отрезок, параллельный основаниям и делящий ее на две трапеции одинаковой площади. Найдите длину этого отрезка, если основания трапеции равны см и см.
Источник: ГИА-2012. Математика. Диагностическая работа №2 (2 вар.)
Найдите площадь выпуклого четырёхугольника с диагоналями 3 и 4, если отрезки, соединяющие середины его противоположных сторон, равны.
Источник: Тренировочные работы. Иркутск — 2013, вариант 1.
Найдите площадь выпуклого четырёхугольника с диагоналями 8 и 5, если отрезки, соединяющие середины его противоположных сторон, равны.
Источник: Тренировочные работы. Иркутск — 2013, вариант 3.
Найдите площадь параллелограмма, изображённого на рисунке.
Найдите площадь параллелограмма, изображённого на рисунке.
Площадь параллелограмма ABCD равна 56. Точка E — середина стороны CD. Найдите площадь трапеции AECB.
Источник: Банк заданий ФИПИ
Найдите площадь параллелограмма, изображённого на рисунке.
Источник: Банк заданий ФИПИ
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60° , сторона AB равна 4. Найдите площадь трапеции.
Источник: Банк заданий ФИПИ
Найдите площадь параллелограмма, изображённого на рисунке.
Источник: Банк заданий ФИПИ
Всего: 116 1–20 | 21–40 | 41–60 | 61–80 …
Всего: 94 1–20 | 21–40 | 41–60 | 61–80 | 81–94
Добавить в вариант
Площадь параллелограмма ABCD равна 6. Точка E — середина стороны AB. Найдите площадь трапеции EBCD.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC = 19, а расстояние от точки K до стороны AB равно 7.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 1 и HD = 28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.
На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Параллелограмм», равна 0,2. Вероятность того, что это окажется задача по теме «Площадь», равна 0,1. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 1 и HD = 63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.
Площадь параллелограмма ABCD равна 12. Точка E — середина стороны AB. Найдите площадь трапеции EBCD.
Площадь параллелограмма ABCD равна 136. Точка E — середина стороны AB. Найдите площадь трапеции EBCD.
Площадь параллелограмма ABCD равна 5. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.
На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 4 и HD = 65. Диагональ параллелограмма BD равна 97. Найдите площадь параллелограмма.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 5 и HD = 15. Диагональ параллелограмма BD равна 17. Найдите площадь параллелограмма.
Площадь параллелограмма ABCD равна 8. Точка E — середина стороны CD. Найдите площадь трапеции ABED.
Площадь параллелограмма ABCD равна 124. Точка E — середина стороны AB. Найдите площадь трапеции EBCD.
Площадь параллелограмма ABCD равна 24. Точка E — середина стороны CD. Найдите площадь трапеции ABED.
Площадь параллелограмма ABCD равна 66. Точка E — середина стороны AB. Найдите площадь трапеции EBCD.
На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.
На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 14 и 7. Найдите площадь параллелограмма ABCD.
Источник: Банк заданий ФИПИ
Всего: 94 1–20 | 21–40 | 41–60 | 61–80 | 81–94
Задания по ОГЭ математика на вычисление площади параллелограмма. Ряд задач при сдаче ОГЭ будет связан с вычислением площади параллелограмма. Некоторые из задач прям нам кажутся простыми и очевидными, но есть и посложнее, которые требуют определенных знаний не связанных с обычными формулами вычисления площади. как основание умноженное на высоту. Ведь площадь придется вычислять по косвенным признакам, извлекая из них уже факты.
Ну что уж поделаешь, такой уровень задач по геометрии и такие порой высокие требования предъявляют для сдачи экзамена ОГЭ по геометрии. Все что остается тем, кто готовится к этому экзамену, так это решать и пополнять свой багаж знаний не только формулами, но и опытом решения. Ведь порой опыт имеет куда более значимый фактор при решении, так как здесь можно идти уже не по логике решения, которая порой не дается так быстро как хотелось бы, а именно по памяти как надо сделать, чтобы получить правильный ответ.
Среди задач на вычисление площади параллелограмма из открытого банка ФИПИ есть и е, на которые достаточно краткого ответа, и с развернутым ответом. И те, и другие, перед вами. Любое из них может вам попасться на экзамене в этом году.
Задания по ОГЭ математика на вычисление площади параллелограмма
Вспоминаем, что площадь параллелограмма равна произведению длины основания на высоту:
S = ah
Реальные задания по геометрии из банка ФИПИ
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+7) * 4 = 40Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 40
E8FC9F
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+4) * 4 = 28Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 28
5AEBBA
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+2) * 4 = 20Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 20
460490
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+8) * 4 = 44Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 44
29D63A
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (12+3) * 5 = 75Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 75
D97D85
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+5) * 12 = 96Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 96
B08979
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (12+8) * 5 = 100Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 100
956EDE
Найдите площадь параллелограмма, изображённого на рисунке.
Решение:
Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (5+5) * 12 = 120Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.
Ответ: 120
66228A
Задания второй части ОГЭ с расширенным решением
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{25-9}$ = 4
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 4.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{4+4+2BM+2MC}2ast3=3ast(4+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(3+4)ast(BM+MC)=7ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{7ast(BM+MC)}2=3;ast;(;4;+;B;M;+;M;C)\7ast(BM+MC);=;6;ast;(;4;+;B;M;+;M;C)\7ast(BM+MC);=;24;+;6;ast;(B;M;+;M;C)\7ast(BM+MC);-;6;ast;(B;M;+;M;C);=;24\B;M;+;M;C;=;24\\\$
То есть основание BC = 24.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(3+4)*24=168Ответ: 168
701E1F
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 6 и 5. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(6+5)ast(BM+MC)=11ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{11ast(BM+MC)}2=5ast(12+BM+MC)\11ast(BM+MC);=;10ast(12+BM+MC)\11ast(BM+MC);=;120;+;10ast(BM+MC)\11ast(BM+MC);-;10;(BM+MC);=;120\B;M+M;C;=;120\\\$
То есть основание BC = 120.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(5+6)*120=1320Ответ: 1320
B520E8
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 7 и 5. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(7+5)ast(BM+MC)=12ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{12ast(BM+MC)}2=5ast(12+BM+MC)\12ast(BM+MC);=;10ast(12+BM+MC)\12ast(BM+MC);=;120;+;10ast(BM+MC)\12ast(BM+MC);-;10;(BM+MC);=;120\2ast(BM+MC);=;120\BM+MC;=;60\\\\$
То есть основание BC = 60.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(7+5)*60=720Ответ: 720
7AFAA8
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 8 и 5. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(8+5)ast(BM+MC)=13ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{13ast(BM+MC)}2=5ast(12+BM+MC)\13ast(BM+MC);=;10ast(12+BM+MC)\13ast(BM+MC);=;120;+;10ast(BM+MC)\13ast(BM+MC);-;10;(BM+MC);=;120\3ast(BM+MC);=;120\BM+MC;=;40\\\\$
То есть основание BC = 40.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(5+8)*40=520Ответ: 520
15838B
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(9+5)ast(BM+MC)=14ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{14ast(BM+MC)}2=5ast(12+BM+MC)\14ast(BM+MC);=;10ast(12+BM+MC)\14ast(BM+MC);=;120;+;10ast(BM+MC)\14ast(BM+MC);-;10;(BM+MC);=;120\4ast(BM+MC);=;120\BM+MC;=;30\\\\$
То есть основание BC = 30.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(5+9)*30=420Ответ: 420
221DAD
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(13+7)ast(BM+MC)=20ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{20ast(BM+MC)}2=7ast(24+BM+MC)\20ast(BM+MC);=;14ast(24+BM+MC)\20ast(BM+MC);=;336;+;14ast(BM+MC)\20ast(BM+MC);-;14;(BM+MC);=;336\6ast(BM+MC);=;336\BM+MC;=;56\\\\$
То есть основание BC = 56.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(13+7)*56=1120Ответ: 1120
716CE8
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 14 и 7. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(14+7)ast(BM+MC)=21ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{21ast(BM+MC)}2=7ast(24+BM+MC)\21ast(BM+MC);=;14ast(24+BM+MC)\21ast(BM+MC);=;336;+;14ast(BM+MC)\21ast(BM+MC);-;14;(BM+MC);=;336\7ast(BM+MC);=;336\BM+MC;=;48\\\\$
То есть основание BC = 48.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(14+7)*48=1008Ответ: 1008
A4192E
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 15 и 7. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(15+7)ast(BM+MC)=22ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{22ast(BM+MC)}2=7ast(24+BM+MC)\22ast(BM+MC);=;14ast(24+BM+MC)\22ast(BM+MC);=;336;+;14ast(BM+MC)\22ast(BM+MC);-;14;(BM+MC);=;336\8ast(BM+MC);=;336\BM+MC;=;42\\\\$
То есть основание BC = 42.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(15+7)*42=924Ответ: 924
2E555E
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 17 и 7. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(17+7)ast(BM+MC)=24ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{24ast(BM+MC)}2=7ast(24+BM+MC)\24ast(BM+MC);=;14ast(24+BM+MC)\24ast(BM+MC);=;336;+;14ast(BM+MC)\24ast(BM+MC);-;14;(BM+MC);=;336\10ast(BM+MC);=;336\BM+MC;=;33,6\\\\$
То есть основание BC = 33,6.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(17+7)*33,6=806,4Ответ: 806,4
DFC86B
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 19 и 7. Найдите площадь параллелограмма ABCD.
Решение:
Сделаем построения и введём обозначения, как показано на рисунке. O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому AO,BO,CO — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24
Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
Аналогично из равенства треугольников BOL и BOM — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$
* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:
$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(19+7)ast(BM+MC)=26ast(BM+MC)$
Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:
$frac{26ast(BM+MC)}2=7ast(24+BM+MC)\26ast(BM+MC);=;14ast(24+BM+MC)\26ast(BM+MC);=;336;+;14ast(BM+MC)\26ast(BM+MC);-;14;(BM+MC);=;336\12ast(BM+MC);=;336\BM+MC;=28\\\\$
То есть основание BC = 28.
Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(19+7)*28=728Ответ: 728
1D6569
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 7.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=7.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=7.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =19*(7+7)=19*14=266.
Ответ: 266
97C87B
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=11, а расстояние от точки K до стороны AB равно 3.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=3.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=3.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =11*(3+3)=11*6=66.
Ответ: 66
F8A0E6
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=9.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=9.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =12*(9+9)=12*18=216.
Ответ: 216
67503F
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 10.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=10.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=10.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =19*(10+10)=19*20=380.
Ответ: 380
D60F99
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=17, а расстояние от точки K до стороны AB равно 10.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=10.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=10.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =17*(10+10)=17*20=340.
Ответ: 340.
B435D4
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=18, а расстояние от точки K до стороны AB равно 1.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=1.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=1.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =18*(1+1)=18*2=36.
Ответ: 36
E097F7
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=7, а расстояние от точки K до стороны AB равно 4.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=4.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=4.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =7*(4+4)=7*8=56.
Ответ: 56
80A169
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 8.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=8.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=8.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =2*(8+8)=2*16=32.
Ответ: 32
569075
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=6, а расстояние от точки K до стороны AB равно 6.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=6.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=6.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =6*(6+6)=6*12=72.
Ответ: 72
FD6657
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.
Решение:
Введём обозначения, как показано на рисунке. Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК — биссектриса угла А. Во-вторых, сторона AK — общая. Тогда KN=KH=1.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=1.
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.Итак, площадь параллелограмма это произведение высоты на основание:
S=AD*MN=AD*(MK + KN) =2*(1+1)=2*2=4.
Ответ: 4
A7594E
Для получения максимального балла задание нужно оформлять разборчивым почерком с подробным решением. Обязательно должны присутствовать чертёж, дано и решение.
Рис. (1). Чертёж
1) Построим параллелограмм (ABCD), проведём диагональ (AC), построим окружность, вписанную в треугольник (ABC). Расстояния от точки (O) до точки (A) и прямых (AD) и (AC) соответственно равны 25, 9 и 7.
2) Сделаем дополнительные построения. Центр вписанной окружности — это точка пересечения биссектрис, поэтому (AO), (BO), (CO) — биссектрисы. Проведём касательные — (OK), (OM), (OL). Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.
3) Из прямоугольного треугольника (AOK) по теореме Пифагора найдём (AK):
AK=AO2−OK2=252−72=625−49=576=24.
4) Отрезки (OK), (OM) и (OL) равны как радиусы вписанной в треугольник (ABC) окружности, то есть
OK=OM=OL=7
. Рассмотрим треугольники (ALO) и (AOK), они прямоугольные, углы (LAO) и (OAK) равны, (AO) — общая, следовательно, треугольники равны, откуда (AL=AK=) 24. Аналогично из равенства треугольников (COM) и (COK) получаем (MC=CK), а из равенства треугольников (BOL) и (BOM) — (BL=BM).
5) Площадь треугольника (ABC) можно найти как произведение радиуса вписанной окружности на полупериметр:
SABC=AB+BC+AC2⋅OK=AL+LB+BM+MC+CK+AK2⋅OK;
так как (AL=AK), (BM=LB), (MC=CK), то
SABC=2⋅AL+2BM+2MC2⋅7=2⋅24+2BM+2MC2⋅7=24+BM+MC⋅7.
6) Площадь параллелограмма равна произведению высоты на основание:
SABCD=MH⋅BC=MO+OH⋅BM+MC=16BM+MC.
7) Рассмотрим треугольники (ABC) и (ACD): (AB) равно (CD), (AD) равно (BC), углы (ABC) и (ADC) равны, следовательно, треугольники (ABC) и (ACD) равны. Поэтому площадь треугольника (ABC) равна половине площади параллелограмма:
7⋅24+BM+MC=12⋅16BM+MC⇔BM+MC=168.
Площадь параллелограмма равна:
SABCD=MH⋅BC=16⋅168=2688.
Ответ: 2688.
Источники:
Рис. 1. Чертёж. © ЯКласс.
0
Задания для подготовке к ОГЭ по теме: «Площадь параллелограмма»
Задания для подготовке к ОГЭ 8 класс Тема: Параллелограмм. Площадь. Вариант 1 |
Задания для подготовке к ОГЭ 8 класс Тема: Параллелограмм. Площадь.. Вариант 2 |
1) Площадь параллелограмма равна 40, а две его стороны равны 5 и 10. Найдите его высоты. В ответе укажите большую высоту. 2) Площадь параллелограмма ABCD равна 60. Точка E — середина стороны AB. Найдите площадь трапеции DAEC. 3) Найдите площадь параллелограмма, изображённого на рисунке. 4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь. 5) Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов — 45°. Найдите площадь параллелограмма, делённую на . 6) Одна из сторон параллелограмма равна 50, другая равна 1, а косинус одного из углов равен. Найдите площадь параллелограмма. 7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 4 и HD = 65. Диагональ параллелограмма BD равна 97. Найдите площадь параллелограмма. Стороны параллелограмма равны 44 и 88. Высота, опущенная на первую сторону, равна 66. Найдите высоту, опущенную на вторую сторону параллелограмма. |
1) Площадь параллелограмма равна 36, а две его стороны равны 6 и 12. Найдите его высоты. В ответе укажите большую высоту. 2) Площадь параллелограмма ABCD равна 68. Точка E — середина стороны AB. Найдите площадь треугольника CBE. 3) Найдите площадь параллелограмма, изображённого на рисунке. 4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь. 5) Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов — 60°. Найдите площадь параллелограмма, делённую на . 6) Одна из сторон параллелограмма равна 4, другая равна 14, а косинус одного из углов равен. Найдите площадь параллелограмма. 7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 5 и HD = 15. Диагональ параллелограмма BD равна 17. Найдите площадь параллелограмма. Стороны параллелограмма равны 5 и 10. Высота, опущенная на первую сторону, равна 3. Найдите высоту, опущенную на вторую сторону параллелограмма. |
Задания для подготовке к ОГЭ 8 класс Тема: Параллелограмм. Площадь.. Вариант 3 |
Задания для подготовке к ОГЭ 8 класс Тема: Параллелограмм. Площадь.. Вариант 4 |
1) Площадь параллелограмма равна 48, а две его стороны равны 8 и 16. Найдите его высоты. В ответе укажите меньшую высоту. 2) Площадь параллелограмма ABCD равна 84. Точка E — середина стороны AB. Найдите площадь треугольника CBE. 3) Найдите площадь параллелограмма, изображённого на рисунке. 4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь. 5) Одна из сторон параллелограмма равна 12, другая равна 5, а синус одного из углов равен . Найдите площадь параллелограмма. 6) Одна из сторон параллелограмма равна 15, другая равна 6, а тангенс одного из углов равен. Найдите площадь параллелограмма. 7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 2 и HD = 12. Диагональ параллелограмма BD равна 13. Найдите площадь параллелограмма. Стороны параллелограмма равны 10 и 70. Высота, опущенная на первую сторону, равна 42. Найдите высоту, опущенную на вторую сторону параллелограмма. |
1) Площадь параллелограмма равна 54, а две его стороны равны 9 и 18. Найдите его высоты. В ответе укажите меньшую высоту. 2) Площадь параллелограмма ABCD равна 76. Точка E — середина стороны AB. Найдите площадь трапеции DAEC. 3) Найдите площадь параллелограмма, изображённого на рисунке. 4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь. 5) Одна из сторон параллелограмма равна 18, другая равна 25, а синус одного из углов равен . Найдите площадь параллелограмма. 6) Одна из сторон параллелограмма равна 8, другая равна 18, а тангенс одного из углов равен. Найдите площадь параллелограмма. 7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 7 и HD = 24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма. Стороны параллелограмма равны 32 и 64. Высота, опущенная на первую сторону, равна 48. Найдите высоту, опущенную на вторую сторону параллелограмма. |
Задания для подготовки:
1) Площадь параллелограмма равна 32, а две его стороны равны 8 и 16. Найдите его высоты. В ответе укажите большую высоту.
2) Площадь параллелограмма равна 56, а две его стороны равны 7 и 28. Найдите его высоты. В ответе укажите меньшую высоту.
3) Площадь параллелограмма ABCD равна 180. Точка E — середина стороны AB. Найдите площадь трапеции DAEC.
4) Площадь параллелограмма ABCD равна 132. Точка E — середина стороны AB. Найдите площадь треугольника CBE.
5) Найдите площадь параллелограмма, изображённого на рисунке.
6) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.
7) Одна из сторон параллелограмма равна 24, другая равна 20, а синус одного из углов равен . Найдите площадь параллелограмма.
8) Одна из сторон параллелограмма равна 12, другая равна 5, а косинус одного из углов равен . Найдите площадь параллелограмма.
9) Одна из сторон параллелограмма равна 20, другая равна 29, а тангенс одного из углов равен. Найдите площадь параллелограмма.
10) Одна из сторон параллелограмма равна 21, другая равна 15, а косинус одного из углов равен. Найдите площадь параллелограмма.
11) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 1 и HD = 63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.
12) Стороны параллелограмма равны 10 и 85. Высота, опущенная на первую сторону, равна 51. Найдите высоту, опущенную на вторую сторону параллелограмма.
ОТВЕТЫ:
Вариант 1 |
Вариант 2 |
Вариант 3 |
Вариант 4 |
|
1 |
8 |
6 |
3 |
3 |
2 |
45 |
51 |
63 |
57 |
3 |
40 |
28 |
20 |
44 |
4 |
10 |
20 |
28 |
36 |
5 |
30 |
30 |
20 |
200 |
6 |
5 |
14 |
30 |
18 |
7 |
4968 |
160 |
70 |
1395 |
8 |
33 |
1,5 |
6 |
24 |
Опубликовано 27.06.18 в 04:35
Размер файла: 43.76 Кбайт