Решу огэ как найти площадь параллелограмма

Всего: 116    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Тип 17 № 65

i

Найдите площадь параллелограмма, изображённого на рисунке.


Тип 17 № 91

i

Найдите площадь параллелограмма, изображённого на рисунке.


Найдите площадь параллелограмма, изображённого на рисунке.


Одна из сторон параллелограмма равна 12, а опущенная на нее высота равна 10. Найдите площадь параллелограмма.


Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов  — 45°. Найдите площадь параллелограмма, делённую на  корень из 2 .


Одна из сторон параллелограмма равна 12, другая равна 5, а один из углов  — 60°. Найдите площадь параллелограмма, делённую на  корень из 3 .


Одна из сторон параллелограмма равна 12, другая равна 5, а синус одного из углов равен  дробь: числитель: 1, знаменатель: 3 конец дроби . Найдите площадь параллелограмма.


Одна из сторон параллелограмма равна 12, другая равна 5, а косинус одного из углов равен  дробь: числитель: 2 корень из: начало аргумента: 2 конец аргумента , знаменатель: 3 конец дроби . Найдите площадь параллелограмма.


Одна из сторон параллелограмма равна 12, другая равна 5, а тангенс одного из углов равен  дробь: числитель: корень из: начало аргумента: 2 конец аргумента , знаменатель: 4 конец дроби . Найдите площадь параллелограмма.


Источник: 9 класс. Ма­те­ма­ти­ка. Кра­е­вая ди­а­гно­сти­че­ская ра­бо­та. Крас­но­дар (вар. 1)


Источник: 9 класс. Ма­те­ма­ти­ка. Кра­е­вая ди­а­гно­сти­че­ская ра­бо­та. Крас­но­дар (вар.5)


В трапеции проведен отрезок, параллельный основаниям и делящий ее на две трапеции одинаковой площади. Найдите длину этого отрезка, если основания трапеции равны 24 корень из: начало аргумента: 2 конец аргумента см и 7 корень из: начало аргумента: 2 конец аргумента см.

Источник: ГИА-2012. Ма­те­ма­ти­ка. Ди­а­гно­сти­че­ская ра­бо­та №2 (2 вар.)


Найдите площадь выпуклого четырёхугольника с диагоналями 3 и 4, если отрезки, соединяющие середины его противоположных сторон, равны.

Источник: Тре­ни­ро­воч­ные ра­бо­ты. Ир­кутск  — 2013, ва­ри­ант 1.


Найдите площадь выпуклого четырёхугольника с диагоналями 8 и 5, если отрезки, соединяющие середины его противоположных сторон, равны.

Источник: Тре­ни­ро­воч­ные ра­бо­ты. Ир­кутск  — 2013, ва­ри­ант 3.


Найдите площадь параллелограмма, изображённого на рисунке.


Найдите площадь параллелограмма, изображённого на рисунке.


Площадь параллелограмма ABCD равна 56. Точка E  — середина стороны CD. Найдите площадь трапеции AECB.

Источник: Банк за­да­ний ФИПИ


Найдите площадь параллелограмма, изображённого на рисунке.

Источник: Банк за­да­ний ФИПИ


В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60° , сторона AB равна 4. Найдите площадь трапеции.

Источник: Банк за­да­ний ФИПИ


Найдите площадь параллелограмма, изображённого на рисунке.

Источник: Банк за­да­ний ФИПИ

Всего: 116    1–20 | 21–40 | 41–60 | 61–80 …

Всего: 94    1–20 | 21–40 | 41–60 | 61–80 | 81–94

Добавить в вариант

Площадь параллелограмма ABCD равна 6. Точка E  — середина стороны AB. Найдите площадь трапеции EBCD.


Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC  =  19, а расстояние от точки K до стороны AB равно 7.


В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.


Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH  =  1 и HD  =  28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.


На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Параллелограмм», равна 0,2. Вероятность того, что это окажется задача по теме «Площадь», равна 0,1. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем.


Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH  =  1 и HD  =  63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.


Площадь параллелограмма ABCD равна 12. Точка E  — середина стороны AB. Найдите площадь трапеции EBCD.


Площадь параллелограмма ABCD равна 136. Точка E  — середина стороны AB. Найдите площадь трапеции EBCD.


Площадь параллелограмма ABCD равна 5. Точка E  — середина стороны AD. Найдите площадь трапеции AECB.


На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.


На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.


Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH  =  4 и HD  =  65. Диагональ параллелограмма BD равна 97. Найдите площадь параллелограмма.


Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH  =  5 и HD  =  15. Диагональ параллелограмма BD равна 17. Найдите площадь параллелограмма.


Площадь параллелограмма ABCD равна 8. Точка E  — середина стороны CD. Найдите площадь трапеции ABED.


Площадь параллелограмма ABCD равна 124. Точка E  — середина стороны AB. Найдите площадь трапеции EBCD.


Площадь параллелограмма ABCD равна 24. Точка E  — середина стороны CD. Найдите площадь трапеции ABED.


Площадь параллелограмма ABCD равна 66. Точка E  — середина стороны AB. Найдите площадь трапеции EBCD.


На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.


На клетчатой бумаге с размером клетки 1х1 изображён параллелограмм. Найдите его площадь.


В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 14 и 7. Найдите площадь параллелограмма ABCD.

Источник: Банк за­да­ний ФИПИ

Всего: 94    1–20 | 21–40 | 41–60 | 61–80 | 81–94

 Задания по ОГЭ математика на вычисление площади параллелограмма. Ряд задач при сдаче ОГЭ будет связан с вычислением площади параллелограмма. Некоторые из задач прям нам кажутся простыми и очевидными, но есть и посложнее, которые требуют определенных знаний не связанных с обычными формулами вычисления площади. как основание умноженное на высоту. Ведь площадь придется вычислять по косвенным признакам, извлекая из них уже факты. 
 Ну что уж поделаешь, такой уровень задач по геометрии и такие порой высокие требования предъявляют для сдачи экзамена ОГЭ по геометрии. Все что остается тем, кто готовится к этому экзамену, так это решать и пополнять свой багаж знаний не только формулами, но и опытом решения. Ведь порой опыт имеет куда более значимый фактор при решении, так как здесь можно идти уже не по логике решения, которая порой не дается так быстро как хотелось бы, а именно по памяти как надо сделать, чтобы получить правильный ответ.

 Среди задач на вычисление площади параллелограмма из открытого банка ФИПИ есть и е, на которые достаточно краткого ответа, и с развернутым ответом. И те, и другие, перед вами. Любое из них может вам попасться на экзамене в этом году.

Задания по ОГЭ математика на вычисление площади параллелограмма

Вспоминаем, что площадь параллелограмма равна произведению длины основания на высоту:
S = ah

Реальные задания по геометрии из банка ФИПИ

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+7) * 4 = 40

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 40

E8FC9F

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+4) * 4 = 28

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 28

5AEBBA

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+2) * 4 = 20

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 20

460490

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+8) * 4 = 44

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 44

29D63A

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (12+3) * 5 = 75

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 75

D97D85

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (3+5) * 12 = 96

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 96

B08979

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (12+8) * 5 = 100

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 100

956EDE

Найдите площадь параллелограмма, изображённого на рисунке.

Решение:

Площадь параллелограмма равна произведению длины основания на высоту:
S = ah
S = (5+5) * 12 = 120

Значение длины второй стороны параллелограмма — лишние данные, они не используются в решении.

Ответ: 120

66228A 

Задания второй части ОГЭ с расширенным решением

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{25-9}$ = 4

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 4.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{4+4+2BM+2MC}2ast3=3ast(4+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(3+4)ast(BM+MC)=7ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{7ast(BM+MC)}2=3;ast;(;4;+;B;M;+;M;C)\7ast(BM+MC);=;6;ast;(;4;+;B;M;+;M;C)\7ast(BM+MC);=;24;+;6;ast;(B;M;+;M;C)\7ast(BM+MC);-;6;ast;(B;M;+;M;C);=;24\B;M;+;M;C;=;24\\\$

 То есть основание BC = 24.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(3+4)*24=168

Ответ:  168

701E1F

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 6 и 5. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(6+5)ast(BM+MC)=11ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{11ast(BM+MC)}2=5ast(12+BM+MC)\11ast(BM+MC);=;10ast(12+BM+MC)\11ast(BM+MC);=;120;+;10ast(BM+MC)\11ast(BM+MC);-;10;(BM+MC);=;120\B;M+M;C;=;120\\\$

 То есть основание BC = 120.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(5+6)*120=1320

Ответ:  1320

B520E8

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 7 и 5. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(7+5)ast(BM+MC)=12ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{12ast(BM+MC)}2=5ast(12+BM+MC)\12ast(BM+MC);=;10ast(12+BM+MC)\12ast(BM+MC);=;120;+;10ast(BM+MC)\12ast(BM+MC);-;10;(BM+MC);=;120\2ast(BM+MC);=;120\BM+MC;=;60\\\\$

 То есть основание BC = 60.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(7+5)*60=720

Ответ:  720

7AFAA8

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 8 и 5. Найдите площадь параллелограмма ABCD.

Решение:


 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(8+5)ast(BM+MC)=13ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{13ast(BM+MC)}2=5ast(12+BM+MC)\13ast(BM+MC);=;10ast(12+BM+MC)\13ast(BM+MC);=;120;+;10ast(BM+MC)\13ast(BM+MC);-;10;(BM+MC);=;120\3ast(BM+MC);=;120\BM+MC;=;40\\\\$

 То есть основание BC = 40.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(5+8)*40=520

Ответ:  520

15838B

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{169-25}$ = 12

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 12.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{12+12+2BM+2MC}2ast5=5ast(12+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(9+5)ast(BM+MC)=14ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{14ast(BM+MC)}2=5ast(12+BM+MC)\14ast(BM+MC);=;10ast(12+BM+MC)\14ast(BM+MC);=;120;+;10ast(BM+MC)\14ast(BM+MC);-;10;(BM+MC);=;120\4ast(BM+MC);=;120\BM+MC;=;30\\\\$

 То есть основание BC = 30.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(5+9)*30=420

Ответ:  420

221DAD

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(13+7)ast(BM+MC)=20ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{20ast(BM+MC)}2=7ast(24+BM+MC)\20ast(BM+MC);=;14ast(24+BM+MC)\20ast(BM+MC);=;336;+;14ast(BM+MC)\20ast(BM+MC);-;14;(BM+MC);=;336\6ast(BM+MC);=;336\BM+MC;=;56\\\\$

 То есть основание BC = 56.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(13+7)*56=1120

Ответ:  1120

716CE8

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 14 и 7. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(14+7)ast(BM+MC)=21ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{21ast(BM+MC)}2=7ast(24+BM+MC)\21ast(BM+MC);=;14ast(24+BM+MC)\21ast(BM+MC);=;336;+;14ast(BM+MC)\21ast(BM+MC);-;14;(BM+MC);=;336\7ast(BM+MC);=;336\BM+MC;=;48\\\\$

 То есть основание BC = 48.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(14+7)*48=1008

Ответ:  1008

A4192E

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 15 и 7. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(15+7)ast(BM+MC)=22ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{22ast(BM+MC)}2=7ast(24+BM+MC)\22ast(BM+MC);=;14ast(24+BM+MC)\22ast(BM+MC);=;336;+;14ast(BM+MC)\22ast(BM+MC);-;14;(BM+MC);=;336\8ast(BM+MC);=;336\BM+MC;=;42\\\\$

 То есть основание BC = 42.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(15+7)*42=924

Ответ:  924

2E555E

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 17 и 7. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(17+7)ast(BM+MC)=24ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{24ast(BM+MC)}2=7ast(24+BM+MC)\24ast(BM+MC);=;14ast(24+BM+MC)\24ast(BM+MC);=;336;+;14ast(BM+MC)\24ast(BM+MC);-;14;(BM+MC);=;336\10ast(BM+MC);=;336\BM+MC;=;33,6\\\\$

 То есть основание BC = 33,6.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(17+7)*33,6=806,4

Ответ:  806,4

DFC86B

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 19 и 7. Найдите площадь параллелограмма ABCD.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
 Сделаем построения и введём обозначения, как показано на рисунке. O  — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности  — это точка пересечения биссектрис, поэтому AO,BO,CO  — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём AK:

AK=$sqrt{AO^2+ОК^2}=;sqrt{625-49}$ = 24

Рассмотрим треугольники ALO и AOK, они прямоугольные, так как радиусы перпендикулярны касательным сторонам по свойству о касательных, а углы LAO и OAK равны, так как АО биссектриса. AO  — общая сторона, а следовательно, треугольники равны, откуда AL=AK= 24.
 Аналогично из равенства треугольников COM и COK (общая сторона, и два угла) получаем MC = CK
 Аналогично из равенства треугольников BOL и BOM  — BL=BM.
Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

$Sabc=frac{AB+BC+CA}2ast OK=frac{AL+LB+BM+MC+CK+KA}2ast OK=frac{24+24+2BM+2MC}2ast7=7ast(24+BM+MC)$

* из этой площади нам неизвестно BM и MC, которые составляют основание. При этом площадь параллелограмма равна произведению высоты на основание:

$Sabcd=MHast BC=(MO+OH)ast(BM+MC)=(19+7)ast(BM+MC)=26ast(BM+MC)$

Мы знаем, что диагональ в параллелограмме делит его на два равных треугольника (равны две стороны и угол между ними). В итоге получается, что площадь любого из этих треугольников равна половине площади самого параллелограмма. То есть получаем уравнение:

$frac{26ast(BM+MC)}2=7ast(24+BM+MC)\26ast(BM+MC);=;14ast(24+BM+MC)\26ast(BM+MC);=;336;+;14ast(BM+MC)\26ast(BM+MC);-;14;(BM+MC);=;336\12ast(BM+MC);=;336\BM+MC;=28\\\\$

 То есть основание BC = 28.

Площадь параллелограмма после принятия к вычислению всех известных величин равна:
Sabcd= MH * BC =(19+7)*28=728

Ответ:  728

1D6569


Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 7.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=7.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=7. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =19*(7+7)=19*14=266.

Ответ: 266

97C87B

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=11, а расстояние от точки K до стороны AB равно 3.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=3.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=3. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =11*(3+3)=11*6=66.

Ответ: 66

F8A0E6

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=9.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=9. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =12*(9+9)=12*18=216.

Ответ: 216

67503F

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=19, а расстояние от точки K до стороны AB равно 10.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=10.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=10. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =19*(10+10)=19*20=380.

Ответ: 380

D60F99

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=17, а расстояние от точки K до стороны AB равно 10.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=10.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=10. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =17*(10+10)=17*20=340.

Ответ: 340.

B435D4

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=18, а расстояние от точки K до стороны AB равно 1.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=1.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=1. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =18*(1+1)=18*2=36.

Ответ: 36

E097F7

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=7, а расстояние от точки K до стороны AB равно 4.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=4.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=4. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =7*(4+4)=7*8=56.

Ответ: 56

80A169

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 8.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=8.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=8. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =2*(8+8)=2*16=32.

Ответ: 32

569075

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=6, а расстояние от точки K до стороны AB равно 6.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=6.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=6. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =6*(6+6)=6*12=72.

Ответ: 72

FD6657

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.

Решение:

Задания по ОГЭ математика на вычисление площади параллелограмма
Введём обозначения, как показано на рисунке. Пусть К  — точка пересечения биссектрис, КН  — высота треугольника АКВ, MN  — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они одинаковые, так как: во-первых, они прямоугольные, углы HAK и KAN равны, так как АК  — биссектриса угла А.  Во-вторых, сторона AK  — общая. Тогда KN=KH=1.
Тоже само можно сказать и о треугольниках BKH и BKM (по общей стороне и двум углам). Значит MK=KH=1. 
Получается что H, то есть высота параллелограмма равна H = MK+KH. Теперь зная высоту и основание из условия, можно найти площадь.

Итак, площадь параллелограмма это произведение высоты на основание:

S=AD*MN=AD*(MK + KN) =2*(1+1)=2*2=4.

Ответ: 4

A7594E

Для получения максимального балла задание нужно оформлять разборчивым почерком с подробным решением. Обязательно должны присутствовать чертёж, дано и решение.

Рис. (1). Чертёж

1) Построим па­рал­ле­ло­грам­м (ABCD), про­ве­дём диа­го­наль (AC), построим окружность, впи­сан­ную в тре­уголь­ник (ABC). Рас­сто­я­ния от точки (O) до точки (A) и пря­мых (AD) и (AC) со­от­вет­ствен­но равны 259 и 7.

2) Сделаем дополнительные построения. Центр вписанной окружности — это точка пересечения биссектрис, поэтому (AO), (BO), (CO)  — биссектрисы. Проведём касательные — (OK), (OM), (OL).  Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

3) Из прямоугольного треугольника (AOK) по теореме Пифагора найдём (AK):

AK=AO2−OK2=252−72=625−49=576=24.

4) Отрезки (OK), (OM) и (OL)  равны как радиусы вписанной в треугольник (ABC) окружности, то есть

OK=OM=OL=7

. Рассмотрим треугольники (ALO) и (AOK), они прямоугольные, углы (LAO) и (OAK) равны,  (AO) — общая, следовательно, треугольники равны, откуда (AL=AK=) 24. Аналогично из равенства треугольников (COM) и (COK) получаем (MC=CK), а из равенства треугольников (BOL) и (BOM) — (BL=BM).

5) Площадь треугольника (ABC) можно найти как произведение радиуса вписанной окружности на полупериметр:

SABC=AB+BC+AC2⋅OK=AL+LB+BM+MC+CK+AK2⋅OK;

так как (AL=AK), (BM=LB), (MC=CK), то

SABC=2⋅AL+2BM+2MC2⋅7=2⋅24+2BM+2MC2⋅7=24+BM+MC⋅7.

6) Площадь параллелограмма равна произведению высоты на основание:

SABCD=MH⋅BC=MO+OH⋅BM+MC=16BM+MC.

7) Рассмотрим треугольники (ABC) и (ACD): (AB) равно (CD), (AD) равно (BC), углы (ABC) и (ADC) равны, следовательно, треугольники (ABC) и (ACD) равны. Поэтому площадь треугольника (ABC) равна половине площади параллелограмма:

7⋅24+BM+MC=12⋅16BM+MC⇔BM+MC=168.

8) Площадь параллелограмма равна:

SABCD=MH⋅BC=16⋅168=2688.

Ответ: 2688.

Источники:

Рис. 1. Чертёж. © ЯКласс.

0

Задания для подготовке к ОГЭ по теме: «Площадь параллелограмма»

Задания для подготовке к ОГЭ 8 класс

Тема: Параллелограмм. Площадь.

Вариант 1

Задания для подготовке к ОГЭ 8 класс

Тема: Параллелограмм. Площадь..

Вариант 2

1) Площадь параллелограмма равна 40, а две его стороны равны 5 и 10. Найдите его высоты. В ответе укажите большую высоту.

2) Площадь параллелограмма ABCD равна 60. Точка E  середина стороны AB. Найдите площадь трапеции DAEC.

3) Найдите площадь параллелограмма, изображённого на рисунке.

4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

5) Одна из сто­рон параллелограмма равна 12, дру­гая равна 5, а один из углов — 45°. Най­ди­те площадь параллелограмма, делённую на .

6) Одна из сторон параллелограмма равна 50, другая равна 1, а косинус одного из углов равен. Найдите площадь параллелограмма.

7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 4 и HD = 65. Диагональ параллелограмма BD равна 97. Найдите площадь параллелограмма.

8) Стороны параллелограмма равны 44 и 88. Высота, опущенная на первую сторону, равна 66. Найдите высоту, опущенную на вторую сторону параллелограмма.

1) Площадь параллелограмма равна 36, а две его стороны равны 6 и 12. Найдите его высоты. В ответе укажите большую высоту.

2) Площадь параллелограмма ABCD равна 68. Точка E  середина стороны AB. Найдите площадь треугольника CBE.

3) Найдите площадь параллелограмма, изображённого на рисунке.

4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

5) Одна из сто­рон параллелограмма равна 12, дру­гая равна 5, а один из углов — 60°. Най­ди­те площадь параллелограмма, делённую на .

6) Одна из сторон параллелограмма равна 4, другая равна 14, а косинус одного из углов равен. Найдите площадь параллелограмма.

7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 5 и HD = 15. Диагональ параллелограмма BD равна 17. Найдите площадь параллелограмма.

8) Стороны параллелограмма равны 5 и 10. Высота, опущенная на первую сторону, равна 3. Найдите высоту, опущенную на вторую сторону параллелограмма.

Задания для подготовке к ОГЭ 8 класс

Тема: Параллелограмм. Площадь..

Вариант 3

Задания для подготовке к ОГЭ 8 класс

Тема: Параллелограмм. Площадь..

Вариант 4

1) Площадь параллелограмма равна 48, а две его стороны равны 8 и 16. Найдите его высоты. В ответе укажите меньшую высоту.

2) Площадь параллелограмма ABCD равна 84. Точка E  середина стороны AB. Найдите площадь треугольника CBE.

3) Найдите площадь параллелограмма, изображённого на рисунке.

4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

5) Одна из сто­рон параллелограмма равна 12, дру­гая равна 5, а синус од­но­го из углов равен . Най­ди­те площадь параллелограмма.

6) Одна из сторон параллелограмма равна 15, другая равна 6, а тангенс одного из углов равен. Найдите площадь параллелограмма.

7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 2 и HD = 12. Диагональ параллелограмма BD равна 13. Найдите площадь параллелограмма.

8) Стороны параллелограмма равны 10 и 70. Высота, опущенная на первую сторону, равна 42. Найдите высоту, опущенную на вторую сторону параллелограмма.

1) Площадь параллелограмма равна 54, а две его стороны равны 9 и 18. Найдите его высоты. В ответе укажите меньшую высоту.

2) Площадь параллелограмма ABCD равна 76. Точка E  середина стороны AB. Найдите площадь трапеции DAEC.

3) Найдите площадь параллелограмма, изображённого на рисунке.

4) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

5) Одна из сторон параллелограмма равна 18, другая равна 25, а синус одного из углов равен . Найдите площадь параллелограмма.

6) Одна из сторон параллелограмма равна 8, другая равна 18, а тангенс одного из углов равен. Найдите площадь параллелограмма.

7) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 7 и HD = 24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма.

8) Стороны параллелограмма равны 32 и 64. Высота, опущенная на первую сторону, равна 48. Найдите высоту, опущенную на вторую сторону параллелограмма.

 

Задания для подготовки:

1) Площадь параллелограмма равна 32, а две его стороны равны 8 и 16. Найдите его высоты. В ответе укажите большую высоту.

2) Площадь параллелограмма равна 56, а две его стороны равны 7 и 28. Найдите его высоты. В ответе укажите меньшую высоту.

3) Площадь параллелограмма ABCD равна 180. Точка E  середина стороны AB. Найдите площадь трапеции DAEC.

4) Площадь параллелограмма ABCD равна 132. Точка E  середина стороны AB. Найдите площадь треугольника CBE.

5) Найдите площадь параллелограмма, изображённого на рисунке.

6) На клетчатой бумаге с размером клетки 1×1 изображён параллелограмм. Найдите его площадь.

7) Одна из сторон параллелограмма равна 24, другая равна 20, а синус одного из углов равен . Найдите площадь параллелограмма.

8) Одна из сто­рон параллелограмма равна 12, дру­гая равна 5, а ко­си­нус одного из углов равен . Най­ди­те площадь параллелограмма.

9) Одна из сторон параллелограмма равна 20, другая равна 29, а тангенс одного из углов равен. Найдите площадь параллелограмма.

10) Одна из сторон параллелограмма равна 21, другая равна 15, а косинус одного из углов равен. Найдите площадь параллелограмма.

11) Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH = 1 и HD = 63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.

12) Стороны параллелограмма равны 10 и 85. Высота, опущенная на первую сторону, равна 51. Найдите высоту, опущенную на вторую сторону параллелограмма.

ОТВЕТЫ:

 

Вариант 1

Вариант 2

Вариант 3

Вариант 4

1

8

6

3

3

2

45

51

63

57

3

40

28

20

44

4

10

20

28

36

5

30

30

20

200

6

5

14

30

18

7

4968

160

70

1395

8

33

1,5

6

24

Опубликовано 27.06.18 в 04:35

Размер файла: 43.76 Кбайт

Понравилась статья? Поделить с друзьями:
  • Как правильно составить отчет опекуна наглядный образец заполнения
  • Как найти полностью текст
  • Как в диспетчере устройств найти камеру ноутбука
  • Как составить мини словарь
  • Как найти корень слова сочинение