Сила упругости как найти начальную длину пружины

Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.

Виды деформации

Деформация – это изменение формы, или размеров тела.

Есть несколько видов деформации:

  • сдвиг;
  • кручение;
  • изгиб;
  • сжатие/растяжение;

Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.

Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.

Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.

Деформация изгиба – а) и кручения – б)

Рис. 1. пластиковая линейка, деформированная изгибом – а) и кручением – б)

В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.

Растяжение пружины

Рассмотрим подробнее деформацию растяжения на примере пружины.

Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина (L_{0}) пружины.

Сравнивая длину свободной пружины и длину пружины нагруженной, можно найти удлинение

Рис. 2. Сравнивая длину свободной пружины с длиной нагруженной, можно найти ее удлинение

Подвесим теперь к пружине груз. Пружина будет иметь длину (L), указанную на рисунке справа.

Сравним длину нагруженной пружины с длиной свободно висящей пружины.

[ large L_{0} + Delta L = L ]

Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину (L_{0}).

[ large boxed{ Delta L = L — L_{0} }]

( L_{0} left(text{м} right) )  – начальная длина пружины;

( L left(text{м} right) )  – конечная длина растянутой пружины;

( Delta L left(text{м} right) )  – кусочек длины, на который растянули пружину;

Величину ( Delta L ) называют удлинением пружины.

Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.

Примечание: Отношение – это дробь. Относительное – значит, дробное.

[ large boxed{ frac{Delta L }{ L_{0}} = frac{ L — L_{0}}{L_{0} } = varepsilon } ]

( varepsilon ) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.

Расчет силы упругости

Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.

Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.

Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.

Пластмассовая пружина-игрушка слабо сопротивляется растяжению

Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо

Закон Гука

Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал ( F_{text{упр}} ) силой упругости.

[ large boxed{ F_{text{упр}} = k cdot Delta L }]

Эту формулу назвали законом упругости Гука.

( F_{text{упр}} left( H right) ) – сила упругости;

( Delta L left(text{м} right) )  – удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) )  – коэффициент жесткости (упругости).

Какие деформации называют малыми

Закон Гука применяют для малых удлинений (деформаций).

Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.

Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.

Как рассчитать коэффициент жесткости

Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.

Сила упругости равна весу груза, подвешенного на пружине

Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости

Так как силы взаимно компенсируются, в правой части уравнения находится ноль.

[ large F_{text{упр}} — m cdot g = 0 ]

Подставим в это уравнение выражение для силы упругости

[ large k cdot Delta L — m cdot g = 0 ]

Прибавим к обеим частям вес груза и разделим на измеренное изменение длины (Delta L ) пружины. Получим выражение для коэффициента жесткости:

[ large boxed{ k = frac{ m cdot g }{Delta L} }]

(g) – ускорение свободного падения, оно связано с силой тяжести.

Соединяем две одинаковые пружины

В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.

Параллельное соединение пружин

На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину (Delta L). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.

Деформация двух одинаковых пружин, соединенных параллельно, меньше деформации единственной пружины

Рис. 5. Две пружины, соединенные параллельно, деформируются меньше одной такой пружины

Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две параллельные пружины:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{параллел}} cdot frac{1}{2}= k_{1} ]

Умножим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{параллел}} = 2k_{1} } ]

Коэффициент жесткости (k_{text{параллел}}) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной

Последовательное соединение пружин

Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину (Delta L). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.

Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.

На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину (Delta L).

Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений

Общая деформация двух одинаковых пружин, соединенных последовательно, больше деформации единственной пружины

Рис. 6. Система, состоящая из двух одинаковых пружин, соединенных последовательно, деформируются больше одной пружины

Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две последовательные пружины:

[ large k_{text{послед}} cdot Delta L cdot 2 = m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{послед}} cdot Delta L cdot 2 = k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{послед}} cdot 2 = k_{1} ]

Разделим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{послед}} = frac{k_{1}}{2} } ]

Коэффициент жесткости (k_{text{послед}}) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной

Потенциальная энергия сжатой или растянутой пружины

Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину (Delta L ) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу,  например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.

Сжатая или растянутая пружина обладает потенциальной энергией

Рис. 7. Деформированная — сжатая или растянутая пружина обладает потенциальной энергией

Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).

Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:

[ large boxed{ E_{p} = frac{k}{2} cdot  left( Delta L right)^{2} }]

( E_{p} left( text{Дж} right)) – потенциальная энергия сжатой или растянутой пружины;

( Delta L left(text{м} right) )  – удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) )  – коэффициент жесткости (упругости) пружины.

Выводы

  1. Упругие тела – такие, которые сопротивляются деформации;
  2. Во время деформации в упругих телах возникает сила, она препятствует деформации, ее называют силой упругости;
  3. Деформация – изменение формы, или размеров тела;
  4. Есть несколько видов деформации: изгиб, кручение, сдвиг, растяжение/сжатие;
  5. Удлинение пружины – это разность ее конечной и начальной длин;
  6. Сжатая или растянутая пружина обладает потенциальной энергией (вообще, любое упруго деформированное тело обладает потенциальной энергией);
  7. Система, состоящая из нескольких одинаковых пружин, будет иметь коэффициент жесткости, отличный от жесткости единственной пружины;
  8. Если пружины соединяют параллельно – коэффициент жесткости системы увеличивается;
  9. А если соединить пружины последовательно – коэффициент жесткости системы уменьшится.

Задачи на силу упругости с решениями

Формулы, используемые на уроке «ЗАДАЧИ на силу упругости с решениями»

Название величины

Обозначение

Единицы измерения

Формула

Сила упругости

Fупр

H

Fупр = –kx
Fупр = k•Δl

Коэффициент упругости (жесткость)

k

H/м,

кг/с2

k = ES/L

Модуль Юнга (модуль упругости)

E

Н/м2

E = σ/ε

Тренировочные задания для подготовки к контрольным, самостоятельным, проверочным и диагностическим работам.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
Под действием груза в 200 Н пружина динамометра удлинилась на 0,5 см. Каково удлинение пружины под действием груза в 700 Н?

ОТВЕТ: 1,75 см.


Задача № 2.
Под действием силы давления вагона 50 кН буферные пружины между вагонами сжимаются на 1 см. С какой силой давит вагон, если пружины сжались на 4 см?

ОТВЕТ: 200 кН.


Задача № 3.
Резиновая лента удлинилась на 10 см под действием силы 10 Н. Какова ее жесткость?

ОТВЕТ: 100 Н/м.


Задача № 4.
Пружина без нагрузки длиной 20 см имеет коэффициент жесткости 20 Н/м. Какой станет длина пружины под действием силы 2 Н?

ОТВЕТ: на 0,1 м.


Задача № 5.
На сколько удлинится пружина под нагрузкой 12,5 Н, если под нагрузкой в 10 Н пружина удлинилась на 4 см?

ОТВЕТ: на 5 см.

ЗАДАЧИ на силу упругости с решениями

Задачи на силу упругости


Задача № 6.
Какой груз нужно подвесить к пружине, жесткость которой 1000 Н/м, чтобы растянуть ее на 10 см?

ОТВЕТ: m ≈ 10 кг.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ


Задача № 7.
Грузовик взял на буксир легковой автомобиль «Волга» массой m = 2 т и, двигаясь равноускоренно, за 50 с проехал путь 400 м. На сколько удлинился при этом трос, соединяющий автомобили, если его жесткость 2 • 106 Н/м? Трением пренебречь.

ОТВЕТ: на 0,32 мм.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

ЗАДАЧИ на силу упругости № 3


Задача № 8.
На рисунке приведен график зависимости удлинения резинового жгута от модуля приложенной к нему силы. Найти жесткость жгута.

ОТВЕТ: 10 Н/м.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ


Задача № 9.
Две пружины равной длины, скрепленные одними концами, растягивают за свободные концы руками. Пружина жесткостью 200 Н/м удлинилась на 4 см. Какова жесткость второй пружины, если ее удлинение равно 2 мм?

ОТВЕТ: 4000 Н/м.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ


Краткая теория к теме
«Задачи на силу упругости»

В физике упругость — это свойство твёрдых материалов возвращаться в свою первоначальную форму и размер после устранения сил, которые применялись при деформации. Виды упругих деформаций: растяжение, сжатие, кручение, изгиб, сдвиг, срез.

Силы упругости — силы, возникающие при деформации тела и направленные в сторону, противоположную деформации. При небольших деформациях растяжения или сжатия силу упругости можно определить по закону Гука: Fупр = –kx, где x — удлинение/сжатие тела (всегда положительное значение), k — коэффициент пропорциональности (коэффициент упругости), названный жесткостью тела Знак «минус» в законе означает, что сила упругости всегда направлена в сторону, противоположную деформации. Единицы измерения жесткости тела в СИ: 1 Н/м.

В некоторых учебниках и задачниках закон Гука выражают формулой Fупр = k • Δl. В этом случае: Δl — удлинение/сжатие тела (всегда отрицательное значение), k — коэффициент упругости (жесткость) тела.

Иногда, силу упругости, возникающую при деформации опоры, называют силой реакции опоры и обозначают буквой N. Силу упругости, возникающую при деформации нити или каната, называют силой натяжения нити (каната) и обозначают буквой Т.

закон Гука

Модуль Юнга (модуль упругости) — это физическая величина, которая характеризует свойства какого-либо материала сгибаться или растягиваться под воздействием силы; по сути именно от этого зависит жёсткость тела. Низкое значение модуля Юнга означает, что изучаемое твёрдое тело является эластичным. Высокое значение модуля Юнга означает, что изучаемое твёрдое тело является неэластичным или жёстким.


Конспект урока по физике «ЗАДАЧИ на силу упругости». Тренировочные задания для подготовки к контрольным, самостоятельным, проверочным и диагностическим работам. Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по физике для 7-11 классов
  • Найти конспект через Кодификатор ОГЭ по физике
  • Найти конспект через Кодификатор ЕГЭ по физике

Сила упругости пружины


Сила упругости пружины

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.

Сил упругости возникает при деформации физического тела, то есть когда изменяются размеры и форма тела. Эта сила направлена в сторону, противоположную силе, создающей деформацию. На примере пружины выясним как сила упругости связана с величиной деформации. Рассмотрим также причины возникновения упругих сил.

Закон Гука

Пружину можно сжимать, растягивать, изгибать или скручивать. В каждом из этих случаев будут возникать силы упругости, стремящиеся вернуть форму и размеры пружины в начальное состояние. Для понимания основных закономерностей будем рассматривать только линейные сжатия и растяжения (вдоль оси х). Для вычисления сил при деформациях изгибов и скручивании требуется применение более сложного математического аппарата.

Деформации растяжения и сжатия пружины:

Рис. 1. Деформации растяжения и сжатия пружины.

Если начальная длина, ненапряженной пружины, равна L0, то для малых деформаций выполняется закон Гука, открытый экспериментально:

$ F_уп = − k * Δх $ (1),

где, в формуле силы упругости пружины:

Fуп — сила упругости пружины, Н;

k — коэффициент жесткости пружины, Н/м;

Δх —величина деформации (дельта икс), м.

Величина малых деформаций должна быть намного меньше начальной длины пружины:

$ Δх << L0 $ (2),

при Δх > 0 — растяжение, и Δх < 0 — сжатие.

То есть при небольших деформациях сила упругости прямо пропорциональна величине деформации тела и направлена в сторону, обратную направлению сдвига частей тела. Действие этой силы похоже на действие силы Архимеда, которая направлена в сторону, противоположную силе тяжести.

Рис. 2. Портрет Роберта Гука.

Этот фундаментальный закон был открыт английским ученым Робертом Гуком в 1660г. Кроме этого он сделал много других замечательных изобретений и экспериментов:

  • открыл эффект образования цветов тонких пленок, которое в оптике называется явлением интерференции;
  • предложил модель волнообразного распространения света;
  • сформулировал предположение о связи теплоты с движением частиц, из которых состоит тело;
  • изобрел спиральную пружину для регулировки часов, усовершенствовал барометр, гигрометр, анемометр.

Источник силы упругости

Происхождение сил упругости связано с электромагнитным взаимодействием молекул и атомов. Когда происходит увеличение размеров пружины (растяжении), то силы взаимного притяжения “пытаются” восстановить начальные размеры. При сжатии пружины начинают работать силы отталкивания. Когда тело не деформировано, расстояние между молекулами соответствует равенству сил притяжения и отталкивания.

Динамометры

Упругие свойства пружин используются в приборах для измерения силы. Обычно динамометр состоит из двух основных частей: пружины (упругий элемент) и шкалы устройства, на которой нанесены цифровые значения силы или массы, если этот прибор предназначен для бытового применения. Измеряемое усилие прикладывается к пружине, которая деформируется и сдвигает стрелку прибора вдоль отсчетной шкалы.

Рис. 3. Пружинные динамометры.

Хотя закон Гука и считается универсальным, но диапазон деформаций в котором он выполняется сильно отличается для разных тел. Например, в металлических проволоках (прямолинейных) и стержнях максимальная величина относительной деформации (отношение Δх к L0), для которой еще будет справедлив закон Гука, составляет не более 1%. При больших деформациях наступают необратимые разрушения материалов.

Заключение

Что мы узнали?

Итак, мы узнали, что сила упругости пружины прямо пропорциональна величине деформации тела и направлена в сторону, обратную направлению сдвига пружины. Силы упругости связаны с электромагнитным взаимодействием молекул и атомов. При сжатии включается механизм отталкивания электрических одноименных зарядов. При растяжении — начинает работать механизм притяжения разноименных зарядов.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Александр Коновалов

    5/5

Оценка доклада

4.7

Средняя оценка: 4.7

Всего получено оценок: 162.


А какая ваша оценка?

Любое тело перестает падать вниз, если его подвесить на крепкий шнурок. На него по-прежнему действует сила тяжести. Но она уравновешивается еще одной величиной – силой упругости шнурка. Как она действует на тело, что нужно для ее преодоления, — вопросы, ответы на которые найдете в материале.

Что такое сила упругости

Любое тело, совершающее заданный полет, в конце концов падает на землю под действием собственной силы тяжести. Исключение составляют предметы, подвешенные кверху либо располагающиеся на опоре. Их падение становится невозможным, поскольку силу тяжести компенсирует упругость подвеса. Опытным путем еще в школьной программе демонстрируется момент: когда две силы равны, предмет «замирает» в воздухе. При этом их направления действия строго противоположны. Явление, препятствующее падению подвешенных либо размещенных на опоре предметов, обусловлено проявлением силы упругости.

Сила упругости — сила, возникающая в теле при его деформации и стремящаяся вернуть его в прежнее состояние.

Чем сильнее растягивается нить, на которой подвешен предмет, и чем больше прогибается доска под грузом, тем значительнее сила упругости, которая в них возникает.

Сила упругости

Источник: yaklass.ru

Нить стремится растягиваться до тех пор, пока две величины не уравновесятся.

Растяжение нити аналогично, например, следующим явлениям:

  • изменению формы мяча при ударе по нему ногой (начинает действовать сила сжатия);
  • противостоянию каната при закручивании его вокруг своей оси (сила кручения);
  • сдвиганию частей одного предмета друг относительно друга (сила сдвига);
  • сложностям согнуть прут в дугу или окружность (сила кручения).

Во всех случаях внешней силе, действующей в определенном направлении, начинает препятствовать другая величина, направленная противоположно и стремящаяся компенсировать ее абсолютное значение.

К такому выводу впервые пришел английский ученый Роберт Гук в 1660 году, отметив, что интенсивность изменения длины тел при их растягивании прямо пропорционально зависит от значения силы упругости.

Сила упругости 2

Источник: questions-physics.ru

Его открытие приобрело статус закона Гука, формула которого выглядит следующим образом:

(Fупр=k*Δl)

(k) – коэффициент пропорциональности, имеющий специальное название «жесткость»;

(Δl) – величина, характеризующая изменение длины тела.

K зависит от свойств материала изготовления тела, его параметров и форм.

В физике закон Гука может применяться только для незначительных деформаций. Если наступает этап, когда предел пропорциональности превышен, взаимосвязь напряжения и изменения формы теряет свою линейность. Существуют среды, для которых закон Гука не работает.

Выражение закона Гука возможно и через другую формулу:

(xi;=;x⁄l)

где (xi;) — относительная деформация, 

(sigma=F⁄S)

где (sigma) — напряжение, возникающее в материале,

(S) — площадь поперечного сечения тела,

(varepsilon=1⁄Esigma)

Коэффициент жесткости и модель Юнга имеют существенное различие: если первый зависит от материала, формы и размеров тела, то второй — только от свойств материала.

В каких условиях применяется закон Гука

Универсальным вариантом для применения закона Гука является тонкий стержень. (F) в данном случае выражает ту силу, которая к нему прилагается. Зависит она от разницы длины до и после воздействия, а также коэффициента упругости материала.

(F=kastDelta l)

Как было сказано выше, (k) зависит от качества материала и габаритов. Выражая названую зависимость через площадь сечения и длину, формула для коэффициента получает следующий вид: (F=ES/L). Буквой (Е) здесь обозначается все тот же модуль Юнга – механические свойства материала. Далее следует ввести понятия относительного удлинения:

(xi=Delta l/L)

и напряжения в поперечном сечении:

(sigma=F/S)

Конечная формула закона Гука может выглядеть и так:

(triangle l=FL/ES)

Для понимания того, какие условия необходимы для функционирования закона Гука, достаточно рассмотреть два понятия: среда и сила. В таких средах, как газы, жидкости, особенно вязкие, механические особенности процессов упругости не действуют. В то же время даже очень интенсивная сила не будет работать в ряде сред.

Обязательные условия для ее проявления:

  1. Незначительные изменения формы.
  2. Достаточная упругость материала.
  3. В материале ни при каком воздействии не происходит изменений линейного характера.

Рассмотрим график, отражающий зависимости:

График

Источник: uchim.guru

Нижний левый квадрат демонстрирует линейную зависимость при не интенсивных растяжениях. Затем пунктирная линия демонстрирует потерю этой «линейности». Визуально это проявляется «непослушанием» пружины: она перестает принимать свой первоначальный вид при интенсивном растяжении. Если его вовсе не прекращать, может нарушиться природная структура материала, произойдет полный излом.

Аналогичная картина наблюдается при процессе сжатия. В правом верхнем квадрате отражены следующие особенности:

При небольшом сжатии – связь прямая (красная линия).

При увеличении силы зависимость теряет «линейность» — см. пунктир.

Сильное сжатие заставляет пружину нагреваться, она теряет первичные свойства. Происходит слипание витков и разрушение структуры материала.

Примеры решения задач на силу упругости

 Задания по определению силы упругости часто встречаются в экзаменационных работах и олимпиадах.

Задача 1

Для растяжения пружины прикладывают силу 30 Н (F1). Тогда ее длина составляет 28 см. При ее сжатии с такой же F2, длина уменьшается до 22 см. Найти начальную длину пружины, а также коэффициент ее жесткости.

Решать задачу следует по схеме:

(F1=k(l1-l0))

(F2=k(l0-l2))

Из этих формул вытекает: (l1-l0=l0-l2)

(l0=(l1+l2)/2=(28+22)/2=25)

Определение жесткости пружины нужно произвести по формуле:

(k=F1/(l1-l0)=30/(28-25)*10^{-2 }=1000)

Ответ: 25 см, 1000 Н/м

Задача 2

Пружины соединены способом, изображенным на схеме:

Пружины

Источник: easy-physic.ru

Жесткость каждой составляет 10 Н/м. Определить величину силы, которую нужно приложить ко всей системе, чтобы точка ее приложения стала ниже на 10 см.

Решение происходит по этапам:

1. Растяжение верхней и нижней пружин характеризуются формулой:

(triangle x2=F/k)

2. Поскольку средние пружины подсоединены параллельно, их растяжение происходит в соответствии с формулой:

(triangle x2=F/2k)

Каждая из пружин при этом растянется на: (triangle x1/2)

Следовательно, справедливо математическое выражение: (triangle x2=triangle x1/2)

 Через промежуточные формулы:

(2,5triangle x1=triangle x)

(triangle x1=triangle x/2,5)

(10/2,5=4)

находим конечную формулу для решения задачи:

(F=ktriangle x1=10ast0,04=0,4)

Ответ: сила равна 0,4 Н.

Задача 3

Один из тренажеров в спортивном зале высотой 2 м состоит из двух пружин, которые закреплены на потолке. Их длина одинакова (40 см), а жесткости обозначены k1, k2. При приложении к одной из пружин силы 360 Н (в точке А), нижняя ее часть пружина опустится до самого пола. Потянув в точке В и приложив силу 240 Н, коснется пола сама эта точка. Какова жесткость пружин?

Пружины 2

Источник: easy-physic.ru

Прикладывая усилия к точке А, вызываем растяжение только пружины сверху. Когда ее длина достигнет 1,6 м, нижняя коснется пола. Таким образом, верхняя удлинилась на 1,2 м.

(L+triangle l1=H-L)

(triangle l1=H-2L=1,2)

(k1=F1/triangle l1=360/1,2=300)

Относительно точки В действуют формулы:

(F2/k1+F2/k2=H-2L)

(240/300+240/k2=1,2)

Значит (k2=240/0.4=600)

Ответ: коэффициенты пружин будут равны 300 и 600 Н/м.

Задача 4

Пружина массой 5 кг прикреплена к бруску, который лежит неподвижно на поверхности. Как изменится сила ее натяжения, если угол наклона будет увеличиваться от 30о до 60о?

Задача

 

Как видно из рисунка, брусок испытывает влияние трех сил: тяжести, натяжения пружины, реакции опоры.

Для равновесия бруска необходимо равенство величин:(mg=Fупр=N=0)

Откладывая величины на осях координат, выходим на формулы:

(mgsinalpha-;;Fупр=0)

(N;-;mg;cosalpha;=;0)

Из первого уравнения следует: 

(Fупр=mast gastsinalpha)

Учитывая, что угол наклона поверхности, на которой расположен брусок, меняется, ΔFyпp можно определить по формуле:

(Delta Fyпp;=;mg(sinalpha2;-;sinalpha1);)

Подставляя в формулу значения, высчитывают значение искомой силы:

ΔFyпp=5 * 10 * (0,866 — 0,5) = 18,3 Н

Те, кому нужна практическая или теоретическая помощь в освоении темы по силе упругости, могут обратиться на Феникс.Хелп. Вам всегда помогут.

Сила упругости. Закон Гука

  1. Виды деформаций
  2. Закон Гука
  3. Измерение силы с помощью динамометра
  4. Задачи

п.1. Виды деформаций

Под действием силы все тело или отдельные его части приходят в движение.

При движении одних частей тела относительно других происходит изменение формы и размеров.

Деформация — это изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга под действием приложенной силы, при котором тело изменяет свою форму и размеры.

Деформация К простейшим видам деформации относятся:

  • растяжение;
  • сжатие;
  • сдвиг;
  • изгиб;
  • кручение.

Различают упругие (обратимые) и неупругие (необратимые) деформации.

Деформация является упругой, если, после прекращения действия вызвавших её сил, тело полностью восстанавливает свою форму и размеры.

Например, если немного согнуть школьную линейку, растянуть пружину или надавить на воздушный шарик, после прекращения действия силы линейка выпрямится, пружина сожмется, и шарик опять станет круглым. Эти деформации – упругие, они обратимы.

Если же приложенная сила окажется слишком большой, линейка сломается, пружина так и останется растянутой, а шарик лопнет. Эти деформации – неупругие, они необратимы.

Все здания и сооружения вокруг нас рассчитываются так, чтобы их «нагруженные» части испытывали только упругие деформации; это обеспечивает надёжность и долговечность конструкций.

Восстановление формы и размера тела при упругой деформации происходит под действием силы упругости, которая возникает благодаря межатомным и межмолекулярным взаимодействиям.

Сила упругости

Сила упругости уравновешивает действие внешней силы и направлена в сторону, противоположную смещению частиц.

Например (см. рисунок):

  • при растяжении сила упругости стремится сжать тело;
  • при сжатии сила упругости стремится распрямить тело.

п.2. Закон Гука

Закон Гука

Проведем серию опытов с пружиной.

Пусть при действии на пружину силой (F) мы получаем деформацию (удлинение) (Delta l). При этом в пружине возникают силы упругости, стремящиеся вернуть её в исходное положение, (overrightarrow{F_{text{упр}}}=-overrightarrow{F}).

Если приложенную силу увеличить в 2 раза, то деформация также увеличится в 2 раза. Увеличение силы в 3 раза приводит к росту деформации в 3 раза и т.д.

Опыты показывают, что во всех случаях деформация будет прямо пропорциональна приложенной силе.

Следовательно, сила упругости также будет прямо пропорциональна деформации: $$ F_{text{упр}}simDelta l $$

Для каждого тела отношение силы упругости к величине деформации при малых упругих деформациях является постоянной величиной $$ k=frac{F_{text{упр}}}{Delta l}=const $$ которая называется коэффициентом упругости или жесткостью.
Жесткость тела зависит от формы, размеров и материала, из которого оно изготовлено.
В системе СИ жесткость измеряется в ньютонах на метр, (frac{text{Н}}{text{м}}).

Закон Гука
Сила упругости, возникающая во время упругой деформации тела, прямо пропорциональна удлинению (величине деформации): $$ F_{text{упр}}=kDelta l $$ Сила упругости всегда направлена противоположно деформации.

п.3. Измерение силы с помощью динамометра

Динамометр Динамометр– это прибор для измерения силы.

Простейший пружинный динамометр состоит из пружины с крючком и дощечки со шкалой (проградуированной в ньютонах).
Удлинение пружины будет прямо пропорциональным приложенной силе: чем больше сила, тем больше удлинение.
В результате, стрелка прибора перемещается по шкале и показывает значение силы.

В технике используются динамометры более сложных конструкций.

Но принцип действия – использование закона Гука – во многих из них сохраняется.

п.4. Задачи

Задача 1. Резиновая лента удлинилась на 10 см под действием силы 50 Н. Какова жесткость ленты?

Дано:
(Delta l=10 text{см}=0,1 text{м})
(F=50 text{Н})
__________________
(k-?)

Жесткость ленты $$ k=frac{F}{Delta l} $$ $$ k=frac{50}{0,1}=500 left(frac{text{Н}}{text{м}}right) $$ Ответ: 500 Н/м

Задача 2. Под действием силы 300 Н пружина динамометра удлинилась на 0,6 см. Каким будет удлинение пружины под действием силы 700 Н? Ответ запишите в миллиметрах.

Дано:
(F_1=300 text{Н})
(Delta l_1=0,6 text{см}=6cdot 10^{-3} text{м})
(F_2=700 text{Н})
__________________
(Delta l_2-?)

Жесткость пружины begin{gather*} k=frac{F_1}{Delta l_1}=frac{F_2}{Delta l_2}Rightarrow Delta l_2=frac{F_2}{F_1}Delta l_1\[6pt] Delta l_2=frac{700}{300}cdot 6cdot 10^{-3}=14cdot 10^{-3} (text{м})=14 (text{мм}) end{gather*} Ответ: 14 мм

Задача 3. Пружина без груза имеет длину 30 см и коэффициент жесткости 20 Н/м. Найдите длину растянутой пружины, если на нее действует сила 5 Н. Ответ запишите в сантиметрах.

Дано:
(l_0=30 text{cм}=0,3 text{м})
(k=20 text{Н/м})
(F=5 text{Н})
__________________
(l-?)

Удлинение пружины под действием силы: $$ Delta l=frac Fk $$ Длина растянутой пружины begin{gather*} l=l_0+Delta l=l_0+frac Fk\[6pt] l=0,3+frac{5}{20}=0,3+0,25=0,55 (text{м})=55 (text{cм}) end{gather*} Ответ: 55 cм

Задача 4*. Грузовик взял на буксир легковой автомобиль массой 1,5 т с помощью троса. Двигаясь равноускоренно, они проехали путь 600 м за 50 с. На сколько миллиметров удлинился во время движения трос, если его жесткость равна (3cdot 10^5 text{Н/м})?

Дано:
(m=1,5 text{т}=1500 text{кг})
(s=600 text{м})
(t=50 text{c})
(v_0=0)
(k=3cdot 10^5 text{Н/м})
__________________
(Delta l-?)

Сила упругости, возникающая в тросе, уравновешивает силу тяги, передвигающую автомобиль с постоянным ускорением: $$ F_{text{упр}}=kDelta l=F_{text{т}}=ma $$ Перемещение из состояния покоя $$ s=frac{at^2}{2}Rightarrow a=frac{2s}{t^2} $$ Получаем: begin{gather*} kDelta l=mcdotfrac{2s}{t^2}Rightarrow Delta l=frac mkcdot frac{2s}{t^2}\[6pt] Delta l=frac{1500}{3cdot 10^5}cdot frac{2cdot 600}{50^2}=2,4cdot 10^{-3} (text{м})=2,4 (text{мм}) end{gather*} Ответ: 2,4 мм

Понравилась статья? Поделить с друзьями:
  • Как составить список своей библиотеки
  • Как правильно составить резюме медработника
  • Как найти в террарии темный осколок
  • Как быстро найти работу для подростка
  • Фотошоп запускается в фоновом режиме как исправить