Основное определение отрезка
Определение
Отрезок — это прямая линия, которая соединяет две произвольно расположенные точки, именуемые окончанием отрезка. В качестве конкретного примера можно назвать точки A и B и соответственно отрезок AB.
Прямую АВ можно получить путем удлинения отрезка, который состоит из двух точек. Вследствие чего, можно сказать, что полученный отрезок АВ — это часть прямой, которая ограничена точками А и В. Отрезок объединяет обе точки, которые являются концами прямой, а также множество других точек, лежащих на отрезке.
Например: дана точка К которая расположена между заданными отметками, следовательно, можно сказать, что данная точка лежит на этом отрезке.
Определения
Длина прямой – конкретное отмеренное расстояние, которое задано в масштабе. Чаще всего данный параметр задается как АВ.
Середина отрезка – это некая определенная отметка, которая лежит на прямой и удалена от концов на одинаковом расстоянии друг от друга. Ее можно обозначить как координата С.
Середина отрезка на координатной прямой
Заданы следующие параметры: координатная прямая Ox; точки А и В, которые не совпадают с данной прямой.
Заданным точкам соответствуют действительные числовые значения [x_{A}] и [x_{B}]. Координата С — это середина отрезка А и В. Исходя из этого нужно определить значение координаты [x_{C}] .
AB = |a — b|, где A и B — это произвольные точки, расстояние между которыми надо найти, то есть, найти длину отрезка AB, a и b — координаты точек.
Выражение |a — b| можно заменить выражением |b — a|, так как a — b и b — a являются противоположными числами и их модули равны.
Следовательно, чтобы найти расстояние между точками координатной прямой надо из координаты одной точки вычесть координату другой точки.
Середина отрезка на плоскости
Зададим следующие параметры: прямоугольная система координат относительно заданной плоскости Oxy; две произвольно расположенные несовпадающие точки, для которых заданы координаты [mathrm{A}left(x_{A} y_{A}right)] и [Bleft(chi_{B} chi_{B}right)]. Точка C — это заданная середина отрезка АВ. Нужно вычислить координаты [x_{C}] и [y_{C}] относительно точки С.
Чтобы правильно проанализировать задачу, возьмем случай, когда точки A и В между собой не совпадают и расположены на одной координатной плоскости.
В свою очередь координатная плоскость является перпендикулярной относительной одной из осей.
Координаты отметок [A_{x} A_{y} B_{x} B_{y} C_{x} C_{y}] — это проекции точек А, В, С.
Согласно построению, все прямые можно назвать параллельными; прямые также параллельны между собой. Принимая во внимание данное свойство и теорему Фалеса из равенства А С = С В следуют, что все равенства между собой равны. Также они в свою очередь свидетельствуют о том, что точка [C_{x}] – это середина отрезка [A_{x}] и [B_{x}], [C_{y}] а – середина отрезка [A_{y}] и [B_{y}].
Опираясь на полученное выражение получаем основное уравнение середины отрезка на координатной плоскости.
[x_{c}=frac{x_{A}+x_{B}}{2}text { и } y_{c}=frac{y_{A}+y_{B}}{2}]
Данным набором формул можно использовать, когда точки А и B лежат на одной координатной плоскости или прямой. Которая соответственно перпендикулярна относительной одной из осей.
В данном случае координаты отрезка будут определяться по следующей формуле:
[x_{C}=frac{x_{A}+x_{B}}{2} text{ и } y_{c}=frac{y_{A}+y_{B}}{2}]
Параметры середины отрезка в пространстве
Для выведения основной формулы для решения подобного рода задач, нужно рассмотреть конкретный пример.
Дана система координат, две произвольные координатные точки с конкретными координатами [mathrm{A}left(A_{x} A_{y} A_{z}right)] и [mathrm{B}left(B_{chi} B_{y} B_{z}right)]. Нужно определить отметку точки C, которая в свою очередь будет являться серединой отрезка.
Согласно основной теоремы Фалеса, все равенства между собой являются равными. Следовательно, значение точек С будут являться серединами отрезков, каждой координатной плоскости, коих имеется три.
Можно составить и записать окончательную формулу для определения середины прямой при координатной плоскости, состоящей более чем двух осей.
[x_{c}=frac{x_{A}+x_{B}}{2} text{ и } y_{C}=frac{y_{A}+y_{B}}{2}, z_{c}=frac{z_{A}+z_{B}}{2}]
Данные формулы также можно применять в случаях, когда точки A и B расположены на одной из координатных прямых. Либо на прямой, которая перпендикулярна относительно одной из осей. Есть еще случай, когда точки расположены в одной координатной плоскости, которая перпендикулярна одной из координатных плоскостей.
Нет времени решать самому?
Наши эксперты помогут!
Определение координат середины отрезка через координаты радиус-векторов его концов
Формулу для определения отметок середины отрезка, можно определить применяя алгебраическое правило решения векторных выражений.
Исходные данные: прямоугольная декартова система координат Oxy, точки с конкретно заданными координатами [mathrm{A}left(A_{x} A_{y}right)] и [text { B }left(B_{x} B_{y}right)].
Точка C – это середина отрезка с точками А и В.
Согласно геометрическому правилу и определению, действия над векторами будет выглядеть следующим образом:
[overline{O C}=frac{1}{2} cdot(overline{O A}+overline{O B}).]
Координата С в данной ситуации — это значение, в которой пересекаются диагонали геометрической фигуры параллелограмм. Данная фигура построена на основании следующих векторов [overline{O A}] и [overline{O B}], иными словами — это точка середины диагоналей.
Координатные показатели радиуса — это векторные показатели, которые равны координатам, тогда будут верны и равенства: [overline{O A}left(x_{A} y_{A}right)] и [overline{O B}left(x_{B} y_{B}right)].
Выполним следующие действия над векторными значениями и получим следующие формулы:
[overline{O C}=frac{1}{2} cdot(overline{O A}+overline{O B})=left(frac{x_{A}+y_{B}}{2}, frac{y_{A}+y_{B}}{2}right).]
Следовательно, заданная координата С обладает данными:
[left(frac{x_{A}+y_{B}}{2}, frac{y_{A}+y_{B}}{2}right).]
Аналогичным образом определяется нахождение координат середины заданного отрезка в пространстве.
[Cleft(frac{x_{A}+y_{B}}{2}, frac{y_{A}+y_{B}}{2}, frac{z_{A}+z_{B}}{2}right)]
Примеры решения задачи, при нахождении точки середины отрезка
Примеры
Пример №1:
Заданы координатные данные. Точка А с показателями (-7,3) и В (2,4).
Нужно определить точку с отметками, которая является серединой отрезка А и В.
Решение:
Середину отрезка можно обозначить любой точкой. В данном примере возьмем наименование точки — С.
Координатные значения ее будут вычисляться как половина суммы координат концов заданного отрезка с точками А
и В.
Составим и запишем следующие формулы:
[x_{C}=frac{x_{A}+x_{B}}{2}=frac{-7+2}{2}=-frac{5}{2}\y_{C}=frac{y_{A}+y_{B}}{2}=frac{3+4}{2}=frac{7}{2}]
Ответ: искомые координатные значения середины отрезка будут равны следующим данным:
[mathrm{AB}left(-frac{5}{2}, frac{7}{2}right)]
Пример №2:
Заданы координатные отметки геометрической фигуры треугольника: АВС А(-1,0), В (3,2), С (9,-8). По условию
необходимо вычислить длину медианы АМ.
Решение:
По условию задачи AM – медиана, следовательно, точка M будет являться точкой середины отрезка BC. В первую
очередь необходимо определить координаты середины отрезка BC, а именно: точки M.
[x_{M}=frac{x_{B}+x_{C}}{2}=frac{3+9}{2}=6\y_{M}=frac{y_{B}+y_{C}}{2}=frac{2+(-8)}{2}=-3]
Так как, нам известны координатные значения двух концов медианы, точки А и М. Можно воспользоваться формулой
определения расстояния между заданными значениями, и вычислить окончательное значение медианы.
[AM=sqrt{(6-(-1))^{2}+(-3+0)^{2}}=sqrt{58}]
Ответ: [sqrt{58}].
В данной публикации мы рассмотрим, что такое середина отрезка, по какой формуле считаются ее координаты (в плоскости и пространстве). Также разберем примеры решения задач по этой теме.
- Расчет координат середины отрезка
- Примеры задач
Расчет координат середины отрезка
Серединой называется точка, лежащая на отрезке и находящаяся на одинаковом расстоянии от его концов.
AC = CB
Если концы отрезка A (xa, ya) и B (xb, yb) расположены в одной плоскости, то координаты его середины (точки C) считаются по формуле:
Если отрезок с концами A (xa, ya, za) и B (xb, yb, zb) находится в трехмерном пространстве, координаты его середины рассчитываются следующим образом:
Примеры задач
Задание 1
Вычислим координаты точки C, которая является серединой отрезка AB, образованного точками A (5, -2) и B (11, 10).
Решение:
В данном случае нам подойдут формулы для плоскости:
xc = (5 + 11) / 2 = 8
yc = (-2 + 10) / 2 = 4
Таким образом, точка C имеет координаты (8, 4).
Задание 2
Найдем координаты точки B, являющейся одним из концов отрезка AB. При этом известны координаты точки A (7, 13) и середины отрезка – C (4, -3).
Решение:
Нужные нам формулы можно вывести из выражений для расчета координат середины отрезка:
xb = 2xc – xa = 2 · 4 – 7 = 1
yb = 2yc – ya = 2 · (-3) – 13 = -19
Следовательно, координаты B – (1, -19).
Определение.
Середина отрезка — это точка, которая лежит на отрезке и находится на равном расстоянии от конечных точек.
В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, …
Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.
Формулы вычисления расстояния между двумя точками:
- Формула вычисления координат середины отрезка с концами A(xa, ya) и B(xb, yb) на плоскости:
xc = xa + xb yc = ya + yb 2 2 - Формула вычисления координат середины отрезка с концами A(xa, ya, za) и B(xb, yb, zb) в пространстве:
xc = xa + xb yc = ya + yb zc = za + zb 2 2 2
Примеры задач на вычисление середины отрезка
Примеры вычисления координат середины отрезка на плоскости
Пример 1.
Найти координаты точки С, середины отрезка AB заданного точками A(-1, 3) и B(6, 5).
Решение.
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
Ответ: С(2.5, 4).
Пример 2.
Найти координаты точки В, если известны координаты точки C(1; 5), середины отрезка AB и точки A(-1, 3).
Решение.
xc =
xa + xb2
=> xb = 2xc — xa = 2·1-(-1)=2+1=3
yc =
ya + yb2
=> yb = 2yc — ya = 2·5-3=10-3=7
Ответ: B(3, 7).
Примеры вычисления координат середины отрезка в пространстве
Пример 3.
Найти координаты точки С середины отрезка AB заданного точками A(-1, 3, 1) и B(6, 5, -3).
Решение.
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
zc = | za + zb | = | 1 + (-3) | = | -2 | = -1 |
2 | 2 | 2 |
Ответ: С(2.5, 4, -1).
Пример 4.
Найти координаты точки В если известны координаты точки C(1, 5, 2), середины отрезка AB и точки A(-1, 3, 10).
Решение.
xc =
xa + xb2
=> xb = 2xc — xa = 2·1-(-1)=2+1=3
yc =
ya + yb2
=> yb = 2yc — ya = 2·5-3=10-3=7
zc =
za + zb2
=> zb = 2zc — za = 2·2-10=4-10=-6
Ответ: B(3, 7, -6).
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Координаты середины отрезка
Содержание:
- Что такое середина отрезка
-
Правила нахождения координат середины отрезка, формулы
- Середина отрезка на координатной прямой
- Середина отрезка на плоскости
- Середина отрезка в пространстве
- Метод с использованием координат радиус-векторов концов отрезка
- Примеры решения задач
Что такое середина отрезка
Отрезок — это геометрическая фигура, представляющая собой ограниченный с двух сторон участок прямой.
Пусть точки A и B не совпадают. Если провести через них прямую, то образуется отрезок AB или BA, который ограничен точками A и B. Данные точки являются концами отрезка.
Длина отрезка — это расстояние между двумя точками, ограничивающими данный отрезок. Длина отрезка AB обозначается как модуль данной геометрической фигуры, то есть |AB|.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Серединой отрезка является такая точка C, принадлежащая отрезку AB, которая расположена в центре данного отрезка, то есть |AC|=|CB|.
Правила нахождения координат середины отрезка, формулы
Середина отрезка на координатной прямой
Предположим, что несовпадающие точки A и B лежат на координатной прямая Ох. Известно, что A и B соответствуют действительные числа xA и xB, а точка С делит AB пополам. Определите координату xC, соответствующую С.
Так как C — это середина AB, то справедливо следующее равенство:
(left|ACright|=left|CBright|)
Вычислим расстояние между A и C, а также между C и B. Для этого определим модуль разницы их координат. На математическом языке это будет иметь вид:
(left|ACright|=left|CBright|Leftrightarrowleft|x_C-x_Aright|=left|x_B-x_Cright|)
Опустим знак модуля и получим справедливость двух выражений:
(x_C-x_A=x_B-x_C)
(x_C-x_A=-left(x_B-x_Cright))
Исходя из первого равенства, получим формулу нахождения xC, согласно которой координата точки С равна половине суммы координат A и B:
(x_C=frac{x_A+x_B}2)
Следствием второго равенства будет следующее утверждение:
(x_A=x_B)
Это противоречит заданным условиям, следовательно, формула определения координат середины отрезка выглядит так:
(x_C=frac{x_A+x_B}2)
Середина отрезка на плоскости
В декартовой системе координат Oxy расположены две точки A(xA,yA) и B(xB,yB), которые не совпадают между собой. Точка C является центром AB. Необходимо произвести вычисление координат xC и yC, соответствующих С.
Пусть произвольные точки А и В лежат на одной координатной прямой, а также не принадлежат прямым, располагающимся перпендикулярно к оси абсцисс или ординат. Опустим от заданных точек A, B, C перпендикуляры на ось x на ось y. Полученные точки пересечения с осями координат Ax, Ay; Bx, By; Cx, Cy — это проекции исходных точек.
По построению прямые AAx, BBx, CCx относительно друг друга находятся параллельно. Прямые AAy, BBy, CCy не пересекаются, то есть являются параллельными. Согласно равенству AB=BC, далее применим теорему Фалеса и получим:
(A_xC_x=C_xB_x)
(A_yC_y=C_yB_y)
Это значит, что Cx и Cy являются серединами отрезков AxBx и AyBy соответственно. Теперь воспользуемся формулой определения координат середины отрезка на координатной прямой и получим:
(x_C=frac{x_A+x_B}2)
(y_C=frac{y_A+y_B}2)
Данные формулы подходят для вычисления координат середины отрезка в случае его расположения на осях абсцисс и ординат, а также при перпендикулярности одной из них. Следовательно, координаты центра отрезка AB, находящегося в плоскости и ограниченного точками A(xA,yA) и B(xB,yB), вычисляются следующим образом:
(left(frac{x_A+x_B}2,frac{y_A+y_B}2right))
Середина отрезка в пространстве
Допустим, что в трехмерной системе координат Oxyz любые две точки с соответствующими им координатами A(xA, yA, zA) и B(xB, yB, zB). C(xC, yC, zC) — это центр АВ. Задание заключается в том, чтобы определить xC, yC, zC.
Проведем от исходных точек перпендикуляры к прямым Ox, Oy и Oz. Образовавшиеся точки пересечения с координатными осями — Ax, Ay, Az; Bx, By, Bz; Cx, Cy, Cz — проекции точек A, B, C на них.
Воспользуемся теоремой Фалеса:
(left|A_xC_xright|=left|C_xB_xright|)
(left|A_yC_yright|=left|C_yB_yright|)
(left|A_zC_zright|=left|C_zB_zright|)
Исходя из полученных равенств следует, что Cx, Cy, Cz — делят AxBx, AyBy, AzBz пополам, то есть являются серединами перечисленных отрезков. Значит, для определения координат центра AB с концами A(xA,yA,zA) и B(xB,yB,zB) используем формулу:
(left(frac{x_A+x_B}2,frac{y_A+y_B}2,;frac{z_A+z_B}2right))
Метод с использованием координат радиус-векторов концов отрезка
Трактовка векторов в алгебре позволяет составить формулу для расчета координат середины отрезка.
Дано: прямоугольная система координат Oxy, в которой лежат произвольные точки A(xA,yA) и B(xB,yB), а также C, делящая пополам отрезок, ограниченный A и B.
По определению действий над вектором в геометрии:
((1);overrightarrow{OC}=frac12timesleft(overrightarrow{OA}+overrightarrow{OB}right))
В рассматриваемой ситуации в точке C пересекаются диагонали параллелограмма с основаниями: (overrightarrow{OA},;overrightarrow{OB}
).
Это значит, что С — это центр диагоналей.
Поскольку координаты радиус вектора совпадают с координатами точки, имеем: (overrightarrow{OA}=left(x_A,;y_Aright),;overrightarrow{OB}=left(x_B,;y_Bright)
).
Произведем подстановку в формулу (1):
(overrightarrow{OC}=frac12timesleft(overrightarrow{OA}+overrightarrow{OB}right)=left(frac{x_A+x_B}2,;frac{y_A+y_B}2right)
).
Получили формулу определения координат середины отрезка, находящегося в декартовой системе координат:
(left(frac{x_A+x_B}2,;frac{y_A+y_B}2right))
По аналогично схеме можно вывести формулу для расчета координат центра отрезка, лежащего в пространстве:
(left(frac{x_A+x_B}2,frac{y_A+y_B}2,;frac{z_A+z_B}2right))
Примеры решения задач
Задача № 1
Дано: в декартовой системе координат имеются точки M(5,4) и N(1,−2). Найти координаты середины отрезка MN.
Решение:
Пусть точка O — центр MN. Тогда вычислим ее координаты, подставив в формулы:
(x_O=frac{x_A+x_B}2=frac{5+1}2=frac62=3)
(y_O=frac{y_A+y_B}2=frac{4+left(-2right)}2=frac{4-2}2=frac22=1)
Точка O имеет координаты (3,1).
Ответ: (3,1).
Задача № 2
Дано: треугольник ABC лежит в прямоугольной системе координат. Известны координаты его вершин: A(7,3), B(−3,1), C(2,4). Вычислите длину медианы АМ.
Решение:
Поскольку АМ является медианой треугольника ABC, то точка М делит сторону ВС на два равных отрезка, то есть является серединой отрезка ВС. Отсюда можно вычислить координат точки М:
(x_М=frac{x_В+x_С}2=frac{-3+2}2=frac{-1}2=-0,5)
(y_М=frac{y_В+y_С}2=frac{1+4}2=frac52=2,5)
Теперь, зная координаты начала и конца отрезка АМ, применим формулу нахождения расстояния между точками:
(AM=sqrt{left(x_M-x_Aright)^2+left(y_M-y_Aright)^2}=sqrt{left(-0,5-7right)^2+left(-2,5-3right)^2}=sqrt{-7,5^2+left(-5,5right)^2}=sqrt{56,25+30,25}=sqrt{86,5}
).
Ответ: √86,5.
Середина отрезка. Координаты середины отрезка
В геометрических задачах часто можно столкнуться с необходимостью найти середину отрезка заданного координатами точек его концов, например в задачах поиска медианы, средней линии, .
Каждая координата середины отрезка равна полусумме соответствующих координат концов отрезка.
Формулы вычисления расстояния между двумя точками:
- Формула вычисления координат середины отрезка с концами A( xa , ya ) и B( xb , yb ) на плоскости:
xc = | xa + xb | yc = | ya + yb |
2 | 2 |
Формула вычисления координат середины отрезка с концами A( xa , ya , za ) и B( xb , yb , zb ) в пространстве:
xc = | xa + xb | yc = | ya + yb | zc = | za + zb |
2 | 2 | 2 |
Примеры задач на вычисление середины отрезка
Примеры вычисления координат середины отрезка на плоскости
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
Примеры вычисления координат середины отрезка в пространстве
xc = | xa + xb | = | -1 + 6 | = | 5 | = 2.5 |
2 | 2 | 2 |
yc = | ya + yb | = | 3 + 5 | = | 8 | = 4 |
2 | 2 | 2 |
zc = | za + zb | = | 1 + (-3) | = | -2 | = -1 |
2 | 2 | 2 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Нахождение координат середины отрезка: примеры, решения
В статье ниже будут освещены вопросы нахождения координат середины отрезка при наличии в качестве исходных данных координат его крайних точек. Но, прежде чем приступить к изучению вопроса, введем ряд определений.
Отрезок – прямая линия, соединяющая две произвольные точки, называемые концами отрезка. В качестве примера пусть это будут точки A и B и соответственно отрезок A B .
Если отрезок A B продолжить в обе стороны от точек A и B , мы получим прямую A B . Тогда отрезок A B – часть полученной прямой, ограниченный точками A и B . Отрезок A B объединяет точки A и B , являющиеся его концами, а также множество точек, лежащих между. Если, к примеру, взять любую произвольную точку K , лежащую между точками A и B , можно сказать, что точка K лежит на отрезке A B .
Длина отрезка – расстояние между концами отрезка при заданном масштабе (отрезке единичной длины). Длину отрезка A B обозначим следующим образом: A B .
Середина отрезка – точка, лежащая на отрезке и равноудаленная от его концов. Если середину отрезка A B обозначить точкой C , то верным будет равенство: A C = C B
И далее мы рассмотрим, как же определять координаты середины отрезка (точки C ) при заданных координатах концов отрезка ( A и B ), расположенных на координатной прямой или в прямоугольной системе координат.
Середина отрезка на координатной прямой
Исходные данные: координатная прямая O x и несовпадающие точки на ней: A и B . Этим точкам соответствуют действительные числа x A и x B . Точка C – середина отрезка A B : необходимо определить координату x C .
Поскольку точка C является серединой отрезка А В , верным будет являться равенство: | А С | = | С В | . Расстояние между точками определяется модулем разницы их координат, т.е.
| А С | = | С В | ⇔ x C — x A = x B — x C
Тогда возможно два равенства: x C — x A = x B — x C и x C — x A = — ( x B — x C )
Из первого равенства выведем формулу для координаты точки C : x C = x A + x B 2 (полусумма координат концов отрезка).
Из второго равенста получим: x A = x B , что невозможно, т.к. в исходных данных — несовпадающие точки. Таким образом, формула для определения координат середины отрезка A B с концами A ( x A ) и B ( x B ):
Полученная формула будет основой для определения координат середины отрезка на плоскости или в пространстве.
Середина отрезка на плоскости
Исходные данные: прямоугольная система координат на плоскости О x y , две произвольные несовпадающие точки с заданными координатами A x A , y A и B x B , y B . Точка C – середина отрезка A B . Необходимо определить координаты x C и y C для точки C .
Возьмем для анализа случай, когда точки A и B не совпадают и не лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. A x , A y ; B x , B y и C x , C y — проекции точек A , B и C на оси координат (прямые О х и О y ).
Согласно построению прямые A A x , B B x , C C x параллельны; прямые также параллельны между собой. Совокупно с этим по теореме Фалеса из равенства А С = С В следуют равенства: А x С x = С x В x и А y С y = С y В y , и они в свою очередь свидетельствуют о том, что точка С x – середина отрезка А x В x , а С y – середина отрезка А y В y . И тогда, опираясь на полученную ранее формулу, получим:
x C = x A + x B 2 и y C = y A + y B 2
Этими же формулами можно воспользоваться в случае, когда точки A и B лежат на одной координатной прямой или прямой, перпендикулярной одной из осей. Проводить детальный анализ этого случая не будем, рассмотрим его лишь графически:
Резюмируя все выше сказанное, координаты середины отрезка A B на плоскости с координатами концов A ( x A , y A ) и B ( x B , y B ) определяются как:
( x A + x B 2 , y A + y B 2 )
Середина отрезка в пространстве
Исходные данные: система координат О x y z и две произвольные точки с заданными координатами A ( x A , y A , z A ) и B ( x B , y B , z B ) . Необходимо определить координаты точки C , являющейся серединой отрезка A B .
A x , A y , A z ; B x , B y , B z и C x , C y , C z — проекции всех заданных точек на оси системы координат.
Согласно теореме Фалеса верны равенства: A x C x = C x B x , A y C y = C y B y , A z C z = C z B z
Следовательно, точки C x , C y , C z являются серединами отрезков A x B x , A y B y , A z B z соответственно. Тогда, для определения координат середины отрезка в пространстве верны формулы:
x C = x A + x B 2 , y c = y A + y B 2 , z c = z A + Z B 2
Полученные формулы применимы также в случаях, когда точки A и B лежат на одной из координатных прямых; на прямой, перпендикулярной одной из осей; в одной координатной плоскости или плоскости, перпендикулярной одной из координатных плоскостей.
Определение координат середины отрезка через координаты радиус-векторов его концов
Формулу для нахождения координат середины отрезка также можно вывести согласно алгебраическому толкованию векторов.
Исходные данные: прямоугольная декартова система координат O x y , точки с заданными координатами A ( x A , y A ) и B ( x B , x B ) . Точка C – середина отрезка A B .
Согласно геометрическому определению действий над векторами верным будет равенство: O C → = 1 2 · O A → + O B → . Точка C в данном случае – точка пересечения диагоналей параллелограмма, построенного на основе векторов O A → и O B → , т.е. точка середины диагоналей.Координаты радиус-вектора точки равны координатам точки, тогда верны равенства: O A → = ( x A , y A ) , O B → = ( x B , y B ) . Выполним некоторые операции над векторами в координатах и получим:
O C → = 1 2 · O A → + O B → = x A + x B 2 , y A + y B 2
Следовательно, точка C имеет координаты:
x A + x B 2 , y A + y B 2
По аналогии определяется формула для нахождения координат середины отрезка в пространстве:
C ( x A + x B 2 , y A + y B 2 , z A + z B 2 )
Примеры решения задач на нахождение координат середины отрезка
Среди задач, предполагающих использование полученных выше формул, встречаются, как и те, в которых напрямую стоит вопрос рассчитать координаты середины отрезка, так и такие, что предполагают приведение заданных условий к этому вопросу: зачастую используется термин «медиана», ставится целью нахождение координат одного из концов отрезка, а также распространены задачи на симметрию, решение которых в общем также не должно вызывать затруднений после изучения настоящей темы. Рассмотрим характерные примеры.
Исходные данные: на плоскости – точки с заданными координатами А ( — 7 , 3 ) и В ( 2 , 4 ) . Необходимо найти координаты середины отрезка А В .
Решение
Обозначим середину отрезка A B точкой C . Координаты ее буду определяться как полусумма координат концов отрезка, т.е. точек A и B .
x C = x A + x B 2 = — 7 + 2 2 = — 5 2 y C = y A + y B 2 = 3 + 4 2 = 7 2
Ответ: координаты середины отрезка А В — 5 2 , 7 2 .
Исходные данные: известны координаты треугольника А В С : А ( — 1 , 0 ) , В ( 3 , 2 ) , С ( 9 , — 8 ) . Необходимо найти длину медианы А М .
Решение
- По условию задачи A M – медиана, а значит M является точкой середины отрезка B C . В первую очередь найдем координаты середины отрезка B C , т.е. точки M :
x M = x B + x C 2 = 3 + 9 2 = 6 y M = y B + y C 2 = 2 + ( — 8 ) 2 = — 3
- Поскольку теперь нам известны координаты обоих концов медианы (точки A и М ), можем воспользоваться формулой для определения расстояния между точками и посчитать длину медианы А М :
A M = ( 6 — ( — 1 ) ) 2 + ( — 3 — 0 ) 2 = 58
Ответ: 58
Исходные данные: в прямоугольной системе координат трехмерного пространства задан параллелепипед A B C D A 1 B 1 C 1 D 1 . Заданы координаты точки C 1 ( 1 , 1 , 0 ) , а также определена точка M , являющаяся серединой диагонали B D 1 и имеющая координаты M ( 4 , 2 , — 4 ) . Необходимо рассчитать координаты точки А .
Решение
Диагонали параллелепипеда имеют пересечение в одной точке, которая при этом является серединой всех диагоналей. Исходя из этого утверждения, можно иметь в виду, что известная по условиям задачи точка М является серединой отрезка А С 1 . Опираясь на формулу для нахождения координат середины отрезка в пространстве, найдем координаты точки А : x M = x A + x C 1 2 ⇒ x A = 2 · x M — x C 1 = 2 · 4 — 1 + 7 y M = y A + y C 1 2 ⇒ y A = 2 · y M — y C 1 = 2 · 2 — 1 = 3 z M = z A + z C 1 2 ⇒ z A = 2 · z M — z C 1 = 2 · ( — 4 ) — 0 = — 8
Ответ: координаты точки А ( 7 , 3 , — 8 ) .
Как найти середину отрезка по координатам точек вектора
Найдем координаты середины отрезка ab.
По сути каждая координата точки — это вектор. Ниже будет надо будет ввести координаты векторов (точек).
Надо Вам ввести лишь размерность (допустим, если точки на плоскости, то размерность равна 2, если в пространстве, то 3) и координаты точек. А система уже сама вычислит координаты середины отрезка.
Точки a(2,2) и b(1,4), точка число координат равно 2.
© Контрольная работа РУ — калькуляторы онлайн
Где учитесь?
Для правильного составления решения, укажите:
http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-serediny-otrezka/
http://www.kontrolnaya-rabota.ru/s/vector/koordinatyi-seredinyi-otrezka/