Примеры решений задач по статистике
Решение задач по статистике и выводы к ним
Задача по статистике №1. Найти параметры интервального ряда распределения по данным таблицы, а именно: моду, медиану, среднюю арифметическую величину, среднюю взвешенную величину, коэффициент вариации, среднее квадратическое отклонение.
№ группы |
Группы компаний по основным производственным фондам, млн. руб. (х) |
Число компаний (fi) |
Середина интервала (Xi) = (начало интервала+конец интервала)/2 |
1 |
10 — 25 |
2 |
17,5 |
2 |
25 — 33 |
8 |
29 |
3 |
33 — 42 |
14 |
37,5 |
4 |
42 — 49 |
9 |
45,5 |
5 |
49 — 62 |
3 |
55,5 |
Всего: |
36 |
— |
Мы сразу добавили столбец «середина интервала». Для первой группы компаний рассчитали следующим образом: (10+25)/2=17,5 млн. руб. Для 2-5 групп расчеты произведены аналогично.
Теперь рассчитаем среднюю арифметическую величину.
средняя арифметическая = = (17,5+29+37,5+45,5+55,5)/5=37 млн. руб.
Далее рассчитаем среднюю взвешенную величину.
средняя взвешенная = = (17,5*2+29*8+37,5*14+45,5*9+55,5*3)/36=38 млн. руб.
Значение средневзвешенной величины можно считать более корректным, чем значение средней арифметической величины, поэтому далее в расчетах будем использовать среднюю взвешенную.
Теперь добавим в таблицу столбцы, данные которых нам понадобятся для расчета дисперсии.
Число компаний (f) |
Середина интервала (Xi) = (начало интервала+конец интервала)/2 |
Xi*fi |
|
|
|
2 |
17,5 |
35 |
-20,5 |
420,25 |
840,5 |
8 |
29 |
232 |
-9 |
81 |
648 |
14 |
37,5 |
525 |
-0,5 |
0,25 |
3,5 |
9 |
45,5 |
409,5 |
7,5 |
56,25 |
506,25 |
3 |
55,5 |
166,5 |
17,5 |
306,25 |
918,75 |
Итого: 36 |
— |
1368 |
— |
— |
2917 |
Рассчитаем дисперсию.
=2917/36=81,03. (дисперсия не имеет размерности)
Среднеквадратическое отклонение рассчитывается как корень квадратный из дисперсии.
=9 (млн. руб.).
Рассчитаем коэффициент вариации по формуле:
=(9/38)*100%=23,68%.
Рассчитаем моду и медиану.
Найдем моду по формуле.
Модальный интервал находим по наибольшей частоте. Наибольшая частота, т.е. частота модального интервала fМо=14. Модальный интервал от 33 до 42 млн. руб. Значит величина модального интервала i = 42-33=9.
Нижняя граница модального интервала равна 33.
Частота предмодального интервала равна 8.
Частота постмодального интервала равна 9.
Мода будет равна = 33 + 9*((14-8)/(14-8+14-9))=37,9 млн. руб.
Найдем медиану по формуле.
Медианный интервал находим по накопленной частоте. Суммируются f частоты, пока не достигается значение, превышающее середину совокупности (36/2=18 млн. руб.).
Группы компаний по основным производственным фондам, млн. руб. (х) |
Число компаний (f) |
Накопленная частота S |
10 — 25 |
2 |
2 |
25 — 33 |
8 |
10 |
33 — 42 |
14 |
24 |
42 — 49 |
9 |
33 |
49 — 62 |
3 |
36 |
Таким образом, медианный интервал от 33 до 42 млн. руб. Значит величина медианного интервала i = 42-33=9.
Частота медианного интервала fМе=14.
Нижняя граница медианного интервала равна 33.
Накопленная частота предмедианного интервала равна 10.
Медиана будет равна = 33 + 9*((36/2-10)/(14))=38,14 млн. руб.
Расчеты по теме «индексы»
Пример по выборке.
Задача по группировке.
Решение задачи по расчету средней.
Задача по кореляционному анализу
Контрольные и курсовые работы по общей теории статистики и экономической статистике по этим и другим темам представлены в соответствующем разделе сайта.
Интервал группы
– значение варьирующего признака,
лежащее в определенных границах.
Каждый интервал
большие и меньшей границы, или один из
них.
Наименьшая граница – минимальное
значение признака в данном интервале.
Наибольшая граница – максимальное
значение признака в данном интервале.
Величина интервала- i.i– разность большего и меньшего интервалов.
Середина интервала: xi=
Равный интервал используется примерно
к однородной совокупности, обладающей
небольшой вариацией признака.
Iравных интерваловрассчитывается следующим образом:
h=
h- величина равных интервалов
xmax—
максимальное значение признака в
изучаемой совокупности.
xmin—
минимальное значение признака в изучаемой
совокупности.
n- число групп.
При использовании непрерывных признаков
одно и то же значение признака может
одновременно выступать большей и меньшей
границей у двух смежных интервалов.
Могут возникнуть проблемы отнесения
единиц в ту или иную группу, которую
можно решить заранее, определив канал.
Граница формируется по принципу
включительно/исключительно.
Дискретный признак в основе группировки
(число детей в семье, возраст в годах),
то нижняя граница интервала равна
большей границе интервала, следовательно,
один интервал увеличился на один.
Неравные интервалы. Величина может
возрастать и убывать, может быть
произвольной и специализированной.
4.Определение признаков, которые характеризуют каждую выделенную группу.
4.Значение и виды абсолютных величин. Виды относительных величин и способы их расчета.
Абсолютная величина – первая исходная
форма выражения статистических
показателей.
Абсолютная величина характеризует
масштабы, размеры изучаемых процессов,
явлений; отражает временные характеристики,
а также может характеризовать объемы
совокупности, т.е. численность.
Разновидности:
Индивидуальные(при статистическом
наблюдении)
Сводные/суммарные абсолютные
показатели(характеризуют общую величину
признака)
Абсолютная величина обязательно имеют
единицы измерения, которые являются
характеристикой сущности изучаемого
явления.
Единицы измерения:
1.Натуральные(г, кг, м, км):
А)простые
Б)сложные( при характеристике транспортной
работы (т/км)
К натуральным единицам измерения
относятся условно-натуральные измерители,
используемые, когда продукт имеет
разновидности.
2.Трудовые (человеко-час, человеко-день)
3.Универсальные (стоимостные, денежные)
Относительная величина позволяет
выявить количественное соотношение
путем деления двух абсолютных величин.
Разновидности относительных величин::
1.ОВ динамики – отражает изменения
показателя в отчетном периоде по
сравнению с простым периодом.
ОВ=i
iдин=
(цепной способ)
iдин=
(базисный способ)
2.ОВ планового задания
iдиин=
iплан.зад.=
3.ОВ выполнения плана
iдин=iпл.зад*iвып.зад
4.ОВ структуры(показывает
долю части целого)
iстр=>α=
5.ОВ координации
iкоорд=
6.ОВ сравнения(показывает
во сколько раз больше или сколько
процентов составляет значение одного
и того же показателя у одного и того же
объекта по сравнению с другим за один
и тот же период времени)
iср=
7.ОВ интенсивности
( показывает насколько распространено
изучаемое явление)
iинт=
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Варианты для выполнения работы
I. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.
Почти все встречающиеся в жизни величины (урожайность сельскохозяйственных растений, продуктивности скота, производительность труда и заработная плата рабочих, объем производства продукции и т.д.) принимают неодинаковые значения у различных членов совокупности. Поэтому возникает необходимость в изучении их изменяемости. Это изучение начинается с проведения соответствующих наблюдений, обследований.
В результате наблюдений получают сведения о численной величине изучаемого признака у каждого члена данной совокупности.
Пример. Имеются данные о размере прибыли 100 коммерческих банков. Прибыль, млн. рублей.
30,2 | 51,9 | 43,1 | 58,9 | 34,1 | 55,2 | 47,9 | 43,7 | 53,2 | 34,9 |
47,8 | 65,7 | 37,8 | 68,6 | 48,4 | 67,5 | 27,3 | 66,1 | 52,0 | 55,6 |
54,1 | 26,9 | 53,6 | 42,5 | 59,3 | 44,8 | 52,8 | 42,3 | 55,9 | 48,1 |
44,5 | 69,8 | 47,3 | 35,6 | 70,1 | 39,5 | 70,3 | 33,7 | 51,8 | 56,1 |
28,4 | 48,7 | 41,9 | 58,1 | 20,4 | 56,3 | 46,5 | 41,8 | 59,5 | 38,1 |
41,4 | 70,4 | 31,4 | 52,5 | 45,2 | 52,3 | 40,2 | 60,4 | 27,6 | 57,4 |
29,3 | 53,8 | 46,3 | 40,1 | 50,3 | 48,9 | 35,8 | 61,7 | 49,2 | 45,8 |
45,3 | 71,5 | 35,1 | 57,8 | 28,1 | 57,6 | 49,6 | 45,5 | 36,2 | 63,2 |
61,9 | 25,1 | 65,1 | 49,7 | 62,1 | 46,1 | 39,9 | 62,4 | 50,1 | 33,1 |
33,3 | 49,8 | 39,8 | 45,9 | 37,3 | 78,0 | 64,9 | 28,8 | 62,5 | 58,7 |
Из данной таблицы видно, что интересующий нас признак (прибыль банков) меняется от одного члена совокупности к другому, варьирует. Варьирование есть изменяемость признака у отдельных членов совокупности.
Вариационным рядом называется последовательность вариант, записанных в возрастающем порядке и соответствующих им частот.
Число, показывающее, сколько раз повторяется в данной совокупности каждое значение признака, называется частотой.
Составим ранжированный вариационный ряд (выпишем варианты в порядке возрастания):
20,4 | 25,1 | 26,9 | 27,3 | 27,6 | 28,1 | 28,4 | 28,8 | 29,3 | 30,2 |
31,4 | 33,1 | 33,3 | 33,7 | 34,1 | 34,9 | 35,1 | 35,6 | 35,8 | 36,2 |
37,3 | 37,8 | 38,1 | 39,5 | 39,8 | 39,9 | 40,1 | 40,2 | 41,4 | 41,8 |
41,9 | 42,3 | 42,5 | 43,1 | 43,7 | 44,5 | 44,8 | 45,2 | 45,3 | 45,5 |
45,8 | 45,9 | 46,1 | 46,3 | 46,5 | 47,3 | 47,8 | 47,9 | 48,1 | 48,4 |
48,7 | 48,9 | 49,2 | 49,6 | 49,7 | 49,8 | 50,1 | 50,3 | 51,8 | 51,9 |
52,0 | 52,3 | 52,5 | 52,8 | 53,2 | 53,6 | 53,8 | 54,1 | 55,2 | 55,6 |
55,9 | 56,1 | 56,3 | 57,4 | 57,6 | 57,8 | 58,1 | 58,7 | 58,9 | 59,3 |
59,5 | 60,4 | 61,7 | 61,9 | 62,1 | 62,4 | 62,5 | 63,2 | 64,9 | 65,1 |
65,7 | 66,1 | 67,5 | 68,6 | 69,8 | 70,1 | 70,3 | 70,4 | 71,5 | 78,0 |
В нашем случае каждое значение признака (варианта вариационного ряда) повторилось только один раз, т.е. значение частоты для всех вариант равно единице. Перейдем к интервальному вариационному ряду, так как интересующий нас признак принимает дробные, практически не повторяющиеся значения.
Для этого необходимо определить число интервалов (классов) и длину интервала (классного промежутка), после чего произвести разноску, т.е. подсчитать для каждого интервала число вариант, попавших в него.
Количество классов устанавливают в зависимости от степени точности, с которой ведется обработка, и количества объектов в выборке. Считается удобным при объеме выборки (n) в пределах от 30 до 60 вариант распределять их на 6-7 классов, при n от 60 до 100 вариант — на 7-8 классов, при n от 100 и более вариант — на 9-17 классов.
Нужное количество групп также может быть ориентировочно вычислено по формуле Стерджесса:
где — число групп (классов, интервалов) ряда распределения; n — объем выборки.
Можно также использовать выражение:
При они дают примерно одинаковые результаты.
В рассматриваемом примере о размере прибыли коммерческих банков, n=100. Применяя формулу Стерджесса, получим:
Однако Таким образом, число интервалов может быть равно 8, 9, 10 и т.д.
Нахождение нужного количества групп и их размеров часто бывает взаимообусловлено. Для того, чтобы как-то определиться с числом интервалов, найдем размах вариации — разность между наибольшей и наименьшей вариантой:
где — размах вариации,
— наибольшее значение варьирующего признака,
— наименьшее значение варьирующего признака.
Найдем размах вариации для рассматриваемой задачи:
Для того, чтобы найти длину интервала (величину классового промежутка) необходимо разделить размах вариации на число классов и полученную величину округлить таким образом, чтобы было удобно производить сначала разноску, а затем и различные вычисления. Рекомендую округлять до единиц, до которых округлены варианты в исходной таблице, в нашем случае до десятых.
Согласно формуле получаем
Теперь необходимо определиться с началом первого интервала. Для этого можно использовать формулу:
Замечание. За начало первого интервала можно принять некоторое значение, несколько меньшее или само значение . Далее в табличном виде я покажу оба варианта.
Прибавив к началу первого интервала (нижней границе) шаг, получим верхнюю границу первого интервала и одновременно нижнюю границу второго интервала. Выполняя последовательно указанные действия, будем находить границы последующих интервалов до тех пор, пока не будет получено или перекрыто .
Таким образом, верхняя граница одного интервала одновременно является нижней границей другого интервала. Чтобы не возникало сомнений, в какой интервал отнести варианту, попавшую на границу, условимся относить ее к верхнему интервалу.
Составим теперь рабочую таблицу для построения интервального вариационного ряда и произведем подсчет частот вариант, попавших в тот или иной интервал.
Как и обещал покажу две таблицы построения ряда:
1. Отсчет ведем от , т.е. нижняя граница первого интервала совпадает с .
Группы банков по размеру прибыли (границы интервалов) |
Количество банков, принадлежащих данной группе (частоты, ) |
Накопленные частоты, |
20,4 — 27,6 | 4 | 4 |
27,6 — 34,8 | 11 | 15 |
34,8 — 42 | 16 | 31 |
42 — 49,2 | 21 | 52 |
49,2 — 56,4 | 21 | 73 |
56,4 — 63,6 | 15 | 88 |
63,6 — 70,8 | 10 | 98 |
70,8 — 78 | 2 | 100 |
2. Начало первого интервала определяем с помощью формулы: .
Группы банков по размеру прибыли (границы интервалов) |
Количество банков, принадлежащих данной группе (частоты, ) |
Накопленные частоты, |
16,8 — 24 | 1 | 1 |
24 — 31,2 | 9 | 10 |
31,2 — 38,4 | 13 | 23 |
38,4 — 45,6 | 17 | 40 |
45,6 — 52,8 | 23 | 63 |
52,8 — 60 | 18 | 81 |
60 — 67,2 | 11 | 92 |
67,2 — 74,4 | 7 | 99 |
74,4 — 81,6 | 1 | 100 |
Как мы видим в 1-м случае у нас получилось восемь интервалов, что полностью совпадает с результатом, который нам дала формула Стерджесса. Во втором случае у нас получилось девять интервалов, так как при поиске начала первого интервала пользовались специальной формулой.
Для дальнейшего исследования я буду пользоваться результатами второй таблицы, так как там ярко выражен модальный интервал (одна мода) и медиана практически точно попадает на середину вариационного ряда.
Мы получили интервальный вариационный ряд — упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами попаданий в каждый из них значений величины.
II. Графическая интерпретация вариационных рядов.
№ п/п |
Границы интервалов, |
Середины интервалов, |
Частоты интервалов, |
Относительные частоты |
Плотность относит. частоты |
Плотность частоты |
1 | 16,8 — 24 | 20,4 | 1 | 0,01 | 0,001 | 0,139 |
2 | 24 — 31,2 | 27,6 | 9 | 0,09 | 0,013 | 1,250 |
3 | 31,2 — 38,4 | 34,8 | 13 | 0,13 | 0,018 | 1,806 |
4 | 38,4 — 45,6 | 42 | 17 | 0,17 | 0,024 | 2,361 |
5 | 45,6 — 52,8 | 49,2 | 23 | 0,23 | 0,032 | 3,194 |
6 | 52,8 — 60 | 56,4 | 18 | 0,18 | 0,025 | 2,500 |
7 | 60 — 67,2 | 63,6 | 11 | 0,11 | 0,015 | 1,528 |
8 | 67,2 — 74,4 | 70,8 | 7 | 0,07 | 0,010 | 0,972 |
9 | 74,4 — 81,6 | 78 | 1 | 0,01 | 0,001 | 0,139 |
Строим графики:
Далее найдем моду вариационного ряда:
где
— начало модального интервала;
— длина частичного интервала (шаг);
— частота предмодального интервала;
— частота модального интервала;
— частота послемодального интервала.
Определим модальный интервал — интервал, имеющий наибольшую частоту. Из таблицы видно, что модальным является интервал (45,6 — 52,8).
Медиана
Для интервального ряда медиана находится по формуле:
где
— начало медианного интервала;
— длина частичного интервала (шаг);
— объем совокупности;
— накопленная частота интервала, предшествующая медианному;
— частота медианного интервала.
Определим медианный интервал — интервал, в котором впервые накопленная частота превышает половину объема выборки.Так как объем выборки n=100, то n/2=50. По таблице найдем интервал, где впервые накопленные частоты превысят это значение. Таким является интервал (45,6 — 52,8).
Получаем,
III. Расчет сводных характеристик выборки.
Для определения составим расчетную таблицу. Для начала определимся с ложным нулем С. В качестве ложного нуля можно принять любую варианту. Максимальная простота вычислений достигается, если выбрать в качестве ложного нуля варианту, которая расположена примерно в середине вариационного ряда (часто такая варианта имеет наибольшую частоту).
Варианте, которая принята в качестве ложного нуля, соответствует условная варианта, равная нулю. В нашем случае С=49,2.
Равноотстоящими называют варианты, которые образуют арифметическую прогрессию с разностью h.
Условными называют варианты, определяемые равенством:
Произведем расчет условных вариант согласно формуле:
N п/п |
Середины интервалов, |
Частоты интервалов, |
Условные варианты, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
Произведения частот и условных вариант, |
1 | 20,4 | 1 | -4 | -4 | 16 | -64 | 256 | 9 | 81 |
2 | 27,6 | 9 | -3 | -27 | 81 | -243 | 729 | 36 | 144 |
3 | 34,8 | 13 | -2 | -26 | 52 | -104 | 208 | 13 | 13 |
4 | 42 | 17 | -1 | -17 | 17 | -17 | 17 | 0 | 0 |
5 | 49,2 | 23 | 0 | 0 | 0 | 0 | 0 | 23 | 23 |
6 | 56,4 | 18 | 1 | 18 | 18 | 18 | 18 | 72 | 288 |
7 | 63,6 | 11 | 2 | 22 | 44 | 88 | 176 | 99 | 891 |
8 | 70,8 | 7 | 3 | 21 | 63 | 189 | 567 | 112 | 1792 |
9 | 78 | 1 | 4 | 4 | 16 | 64 | 256 | 25 | 625 |
Контроль:
Контроль:
Равенство выполнено, следовательно вычисления произведены верно.
Вычислим условные моменты 1-го, 2-го, 3-го и 4-го порядков:
Найдем выборочные среднюю, дисперсию и среднее квадратическое отклонение :
Также для оценки отклонения эмпирического распределения от нормального используют такие характеристики, как асимметрия и эксцесс.
Асимметрией теоретического распределения называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения:
Асимметрия положительна, если «длинная часть» кривой распределения расположена справа от математического ожидания; асимметрия отрицательна, если «длинная часть» кривой расположена слева от математического ожидания. Практически определяют знак асимметрии по расположению кривой распределения относительно моды (точки максимума дифференциальной функции): если «длинная часть» кривой расположена правее моды, то асимметрия положительна, если слева — отрицательна.
Эксцесс эмпирического распределения определяется равенством:
где — центральный эмпирический момент четвертого порядка.
Для нормального распределения эксцесс равен нулю. Поэтому если эксцесс некоторого распределения отличен от нуля, то кривая этого распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая. При этом предполагается, что нормальное и теоретическое распределения имеют одинаковые математические ожидания и дисперсии.
Вычисляем центральные эмпирические моменты третьего и четвертого порядков:
Найдем асимметрию и эксцесс:
IV. Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий согласия Пирсона.
Проверим генеральную совокупность значений размера прибыли банков по критерию Пирсона
Правило. Для того, чтобы при заданном уровне значимости проверить нулевую гипотезу : генеральная совокупность распределена нормально, надо сначала вычислить теоретические частоты, а затем наблюдаемое значение критерия:
и по таблице критических точек распределения , по заданному уровню значимости и числу степеней свободы найти критическую точку , где s — количество интервалов.
Если — нет оснований отвергнуть нулевую гипотезу.
Если — нулевую гипотезу отвергают.
Найдем теоретические частоты , для этого составим следующую таблицу.
Середины интервалов, |
Частоты интервалов, |
Произведем расчет, |
Произведем расчет, |
Значения функции Гаусса, |
Произведем расчет, |
Теоретические частоты, |
20,4 | 1 | -28,152 | -2,23 | 0,0332 | 57 | 2 |
27,6 | 9 | -20,952 | -1,66 | 0,1006 | 57 | 6 |
34,8 | 13 | -13,752 | -1,09 | 0,2203 | 57 | 13 |
42 | 17 | -6,552 | -0,52 | 0,3485 | 57 | 20 |
49,2 | 23 | 0,648 | 0,05 | 0,3984 | 57 | 23 |
56,4 | 18 | 7,848 | 0,62 | 0,3292 | 57 | 19 |
63,6 | 11 | 15,048 | 1,19 | 0,1965 | 57 | 11 |
70,8 | 7 | 22,248 | 1,77 | 0,0833 | 57 | 5 |
78 | 1 | 29,448 | 2,34 | 0,0258 | 57 | 1 |
Вычислим , для чего составим расчетную таблицу.
1 | 1 | 2 | -1 | 1 | 0,5 | 1 | 0,5 |
2 | 9 | 6 | 3 | 9 | 1,5 | 81 | 13,5 |
3 | 13 | 13 | 0 | 0 | 0 | 169 | 13 |
4 | 17 | 20 | -3 | 9 | 0,45 | 289 | 14,45 |
5 | 23 | 23 | 0 | 0 | 0 | 529 | 23 |
6 | 18 | 19 | -1 | 1 | 0,05 | 324 | 17,05 |
7 | 11 | 11 | 0 | 0 | 0 | 121 | 11 |
8 | 7 | 5 | 2 | 4 | 0,8 | 49 | 9,8 |
9 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
100 | 100 |
Наблюдаемое значение критерия, |
103,30 |
Контроль:
Вычисления произведены правильно.
Найдем число степеней свободы, учитывая, что число групп выборки (число различных вариант) s=9;
По таблице критических точек распределения по уровню значимости и числу степеней свободы k=6 находим
Так как — нет оснований отвергнуть нулевую гипотезу. Другими словами, расхождение эмпирических и теоретических частот незначительное. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.
На рисунке построены нормальная (теоретическая) кривая по теоретическим частотам (зеленый график) и полигон наблюдаемых частот (коричневый график). Сравнение графиков наглядно показывает, что построенная теоретическая кривая удовлетворительно отражает данные наблюдений.
V. Интервальные оценки.
Интервальной называют оценку, которая определяется двумя числами — концами интервала, покрывающего оцениваемый параметр.
Доверительным называют интервал, который с заданной надежностью покрывает заданный параметр.
Интервальной оценкой (с надежностью ) математического ожидания (а) нормально распределенного количественного признака Х по выборочной средней при известном среднем квадратическом отклонении генеральной совокупности служит доверительный интервал
где — точность оценки, n — объем выборки, t — значение аргумента функции Лапласа (см. приложение 2), при котором ;
при неизвестном среднем квадратическом отклонении (и объеме выборки n<30)
где S — исправленное выборочное среднее квадратическое отклонение, находят по таблице приложения по заданным n и .
В нашем примере среднее квадратическое отклонение известно, . А также , , . Поэтому для поиска доверительного интервала используем первую формулу:
Все величины, кроме t, известны. Найдем t из соотношения По таблице приложения находим t=1,96. Подставив t=1,96, , , в формулу, окончательно получим искомый доверительный интервал:
Интервальной оценкой (с надежностью ) среднего квадратического отклонения нормально распределенного количественного признака Х по «исправленному» выборочному среднему квадратическому отклонению S служит доверительный интервал
(при q<1), (*)
(при q>1),
где q — находят по таблице приложения по заданным n и .
По данным и n=100 по таблице приложения 4 найдем q=0,143. Так как q<1, то, подставив в соотношение (*), получим доверительный интервал:
Как найти середину интервала
При статистической обработке результатов исследований самого разного рода полученные значения часто группируются в последовательность интервалов. Для расчета обобщающих характеристик таких последовательностей иногда приходится вычислять середину интервала — «центральную варианту». Методы ее расчета достаточно просты, но имеют некоторые особенности, вытекающие как из используемой для измерения шкалы, так и из характера группировки (открытые или закрытые интервалы).
Инструкция
Если интервал является участком непрерывной числовой последовательности, то для нахождения ее середины используйте обычные математические методы вычисления среднеарифметического значения. Минимальное значение интервала (его начало) сложите с максимальным (окончанием) и разделите результат пополам — это один из способов вычисления среднеарифметического значения. Например, это правило применимо, когда речь идет о возрастных интервалах. Скажем, серединой возрастного интервала в диапазоне от 21 года до 33 лет будет отметка в 27 лет, так как (21+33)/2=27.
Иногда бывает удобнее использовать другой метод вычисления среднеарифметического значения между верхней и нижней границами интервала. В этом варианте сначала определите ширину диапазона — отнимите от максимального значения минимальное. Затем поделите полученную величину пополам и прибавьте результат к минимальному значению диапазона. Например, если нижняя граница соответствует значению 47,15, а верхняя — 79,13, то ширина диапазона составит 79,13-47,15=31,98. Тогда серединой интервала будет 63,14, так как 47,15+(31,98/2) = 47,15+15,99 = 63,14.
Если интервал не является участком обычной числовой последовательности, то вычисляйте его середину в соответствии с цикличностью и размерностью используемой измерительной шкалы. Например, если речь идет об историческом периоде, то серединой интервала будет являться определенная календарная дата. Так для интервала с 1 января 2012 года по 31 января 2012 серединой будет дата 16 января 2012.
Кроме обычных (закрытых) интервалов статистические методы исследований могут оперировать и «открытыми». У таких диапазонов одна из границ не определена. Например, открытый интервал может быть задан формулировкой «от 50 лет и старше». Середина в этом случае определяется методом аналогий — если все остальные диапазоны рассматриваемой последовательности имеют одинаковую ширину, то предполагается, что и этот открытый интервал имеет такую же размерность. В противном случае вам надо определить динамику изменения ширины интервалов, предшествующих открытому, и вывести его условную ширину, исходя из полученной тенденции изменения.
Источники:
- что такое открытый интервал
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.