Таблица как найти наибольшее значение функции

Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.

Чтобы найти наибольшее или наименьшее значение функции необходимо:

  1. Найти производную функции $f'(х)$
  2. Найти стационарные точки, решив уравнение $f'(х)=0$
  3. Проверить, какие стационарные точки входят в заданный отрезок.
  4. Вычислить значение функции на концах отрезка и в стационарных точках из п.3
  5. Выбрать из полученных результатов наибольшее или наименьшее значение.

Чтобы найти точки максимума или минимума необходимо:

  1. Найти производную функции $f'(х)$
  2. Найти стационарные точки, решив уравнение $f'(х)=0$
  3. Разложить производную функции на множители.
  4. Начертить координатную прямую, расставить на ней стационарные точки и определить знаки производной в полученных интервалах, пользуясь записью п.3.
  5. Найти точки максимума или минимума по правилу: если в точке производная меняет знак с плюса на минус, то это будет точка максимума (если с минуса на плюс, то это будет точка минимума). На практике удобно использовать изображение стрелок на промежутках: на промежутке, где производная положительна, стрелка рисуется вверх и наоборот.

Таблица производных некоторых элементарных функций:

Функция Производная
$c$ $0$
$x$ $1$
$x^n, n∈N$ $nx^{n-1}, n∈N$
${1}/{x}$ $-{1}/{x^2}$
${1}/x{^n}, n∈N$ $-{n}/{x^{n+1}}, n∈N$
$√^n{x}, n∈N$ ${1}/{n√^n{x^{n-1}}, n∈N$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$
$cos^2x$ $-sin2x$
$sin^2x$ $sin2x$
$e^x$ $e^x$
$a^x$ $a^xlna$
$lnx$ ${1}/{x}$
$log_{a}x$ ${1}/{xlna}$

Основные правила дифференцирования

1. Производная суммы и разности равна производной каждого слагаемого

$(f(x) ± g(x))′= f′(x)± g′(x)$

Пример:

Найти производную функции $f(x) = 3x^5 – cosx + {1}/{x}$

Производная суммы и разности равна производной каждого слагаемого

$f′(x)=(3x^5)′–(cosx)′+({1}/{x})’=15x^4+sinx-{1}/{x^2}$

2. Производная произведения.

$(f(x)∙g(x))′=f′(x)∙g(x)+f(x)∙g(x)′$

Пример:

Найти производную $f(x)=4x∙cosx$

$f′(x)=(4x)′∙cosx+4x∙(cosx)′=4∙cosx-4x∙sinx$

3. Производная частного

$({f(x)}/{g(x)})’={f^'(x)∙g(x)-f(x)∙g(x)’}/{g^2(x)}$

Пример:

Найти производную $f(x)={5x^5}/{e^x}$

$f'(x)={(5x^5)’∙e^x-5x^5∙(e^x)’}/{(e^x)^2}={25x^4∙e^x-5x^5∙e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))′=f′(g(x))∙g′(x)$

Пример:

$f(x)= cos(5x)$

$f′(x)=cos′(5x)∙(5x)′= — sin(5x)∙5= -5sin(5x)$

Пример:

Найдите точку минимума функции $y=2x-ln⁡(x+11)+4$

Решение:

1. Найдем ОДЗ функции: $х+11>0; х>-11$

2. Найдем производную функции $y’=2-{1}/{x+11}={2x+22-1}/{x+11}={2x+21}/{x+11}$

3. Найдем стационарные точки, приравняв производную к нулю

${2x+21}/{x+11}=0$

Дробь равна нулю если числитель равен нулю, а знаменатель не равен нулю

$2x+21=0; x≠-11$

$2х=-21$

$х=-10,5$

4. Начертим координатную прямую, расставим на ней стационарные точки и определим знаки производной в полученных интервалах. Для этого подставим в производную любое число из крайней правой области, например, нуль.

$y'(0)={2∙0+21}/{0+11}={21}/{11}>0$

5. В точке минимума производная меняет знак с минуса на плюс, следовательно, точка $-10,5$ — это точка минимума.

Ответ: $-10,5$

Пример:

Найдите наибольшее значение функции $y=6x^5-90x^3-5$ на отрезке $[-5;1]$

Решение:

1. Найдем производную функции $y′=30x^4-270x^2$

2. Приравняем производную к нулю и найдем стационарные точки

$30x^4-270x^2=0$

Вынесем общий множитель $30x^2$ за скобки

$30x^2(x^2-9)=0$

$30x^2(х-3)(х+3)=0$

Приравняем каждый множитель к нулю

$x^2=0 ; х-3=0; х+3=0$

$х=0;х=3;х=-3$

3. Выберем стационарные точки, которые принадлежат заданному отрезку $[-5;1]$

Нам подходят стационарные точки $х=0$ и $х=-3$

4. Вычислим значение функции на концах отрезка и в стационарных точках из п.3

$y(-5)= 6∙(-5)^5-90∙(-5)^3-5=6∙(-3125)+90∙125-5= -18750+11250-5=-7505$

$y(-3)= 6∙(-3)^5-90∙(-3)^3-5=-1458+2430-5=967$

$y(0)= -5$

$y(1)= 6∙1^5-90∙1^3-5=6-90-5= -89$

Наибольшее значение равно $967$

Ответ: $967$

В какой точке функция принимает наименьшее значение

Общая информация

Исследование функции — распространенная задача, которая показывает ее поведение и свойства. Одним из элементов считается нахождение максимума и минимума функции. Существуют специальные программы для нахождения этих значений (онлайн-калькулятор). Однако каждому следует понимать принцип нахождения, поскольку это может пригодиться в жизни.

Для решения такого типа задач необходим определенный «багаж» знаний, поскольку без него вообще не обойтись. В его состав входят следующие элементы:

Как найти наименьшее значение функции квадратного уравнения

  1. Нахождение области определения функции (ОДФ).
  2. Понятие дифференциала и основные методы его нахождения.
  3. Умение решать уравнения.
  4. Знание графиков простых функций.
  5. Основные типы функций, полуинтервал и интервал.

Все пять навыков приобрести несложно, кроме второго. В этом нужно подробно разобраться, поскольку очень важно уметь находить производные (дифференциалы) не только табличных элементарных функций, но и сложных. Важно знать основные свойства, которые применяются для нахождения производной.

Область определения

Область определения какой-либо функции вида y = f(x) — область значений аргумента, при которых она существует. У каждой функции существует два типа неизвестных: зависимые и независимые. К первым следует отнести переменную y, которая зависит от независимой переменной «х». Необходимо отметить, что бывают функции, в которых нет аргумента. Примером их считается функция вида y = const, где const — константа (любое число).

Область определения обозначается в теории литерой «D». Однако обозначение можно менять, когда исследуются несколько функций. Чтобы не путаться, специалисты рекомендуют следующую запись D(f(x)). Например, для y = x^2 — 27x и y = 12sinx ОДФ записывается таким образом: D(x^2 — 27x) и D(12sinx) соответственно.

Обозначение интервалов

Результатом решения задач на нахождение ОДЗ является определенный интервал. Важно правильно его обозначать, поскольку это существенно влияет на решение. Нужно руководствоваться следующими правилами:

Наибольшее и наименьшее значение функции на промежутке

  1. Жесткая граница обозначается квадратной скобкой «[» или «]». Она обозначает, что число входит включительно в этот интервал. Можно использовать не только одну скобку, но и две одновременно.
  2. Для обозначения числового значения, которое не входит в промежуток, пользуются круглыми скобками «(» и «)». Их можно применять одновременно.
  3. Типы границ можно комбинировать.
  4. Если нужно объединить интервалы, то следует использовать символ «U».

Очень важно правильно читать интервалы. Например, запись (1;4) читается следующим образом: переменная принимает значения, которые находятся в интервале от 1 не включительно до 4 не включительно. Это числа 2 и 3, поскольку 1 и 4 не входят в промежуток. Запись вида [5;10) читается таким образом: некоторое значение принадлежит интервалу от 5 включительно, до 10 не включительно.

Зависимость от типа

Функции различаются между собой. От этого и зависит нахождение их области определения. Они бывают простыми и сложными. Первые состоят из единичных элементов, а сложные включают в себя несколько типов. Их еще называют составными. Простые классифицируются на три вида:

Наименьшее значение производной по графику функции

  1. Алгебраические: рациональные и иррациональные.
  2. Тригонометрические: sin, cos, tg и ctg.
  3. Трансцендентные: степенные, показательные и логарифмические.

Рациональные бывают целыми и дробными. Они не включают в себя выражения, содержащие такие элементы: корень, степень, логарифм и тригонометрические функции. D(f) этих функций — все действительные числа (Z). Если она является дробной, то это означает, что в ее числителе и (или) знаменателе находится аргумент, значение которого не должно обращать ее в пустое множество.

Когда под корнем находится выражение, содержащее независимую переменную, то она называется иррациональной. В этом случае D(f) — множество Z, кроме тех, которые превращают выражение под корнем четной степени в отрицательное значение. Функция, представленная степенными выражениями, имеет D(f) = Z, но только тогда, когда значение аргумента не превращает функцию в пустое множество.

Метод нахождения

Для решения любой задачи нужно применять определенные правила. Они называются алгоритмом. Для каждого типа функций существует конкретный вариант решения. Для дробной он является следующим:

Как определить наибольшее и наименьшее значение функции

  1. Найти корни уравнения знаменателя, приравнивая его к 0.
  2. Определить интервал, значения из которого может принимать аргумент.

В случае, когда выражение является иррациональной функцией, корень которой является четным, следует решать не уравнение, а неравенство. Его значение не должно быть меньше 0. Для логарифмического типа выражение натурального логарифма (ln) должно быть всегда больше 0.

Для sin(x) и cos(x) областью определения является множество значений Z. Однако для tg(x) и ctg(x) следует помнить, что аргумент не должен принимать значение x = (Pi / 2) + Pi * k и x = Pi * k соответственно. Следует отметить, что коэффициент k принадлежит множеству чисел Z.

Для примера нужно разобрать задачу, в которой следует найти D(3x / [(x — 1) * (x + 1) * (10 — x)^(1/2)]). Решать ее необходимо по такому алгоритму:

  1. Знаменатель является сложным. Он состоит из двух выражений: (x — 1) * (x + 1) и (10 — x)^(1/2).
  2. Первое выражение (решить уравнение): (x — 1) * (x + 1) = 0. Оно имеет два корня: x1 = -1 и x2 = 1. Числовой промежуток: (-бесконечность;-1) U (1;+бесконечность).
  3. Второе (неравенство): (10 — x) < 0. Интервал: (-бесконечность;10].
  4. Результат (объединение всех интервалов): (-бесконечность;-1) U (1;10].

Данный пример показывает особенность решения задачи, которая заключается в объединении двух алгоритмов. Это довольно часто практикуется. Результат — объединение трех множеств, при объединении которых получается два интервала.

Сведения о производных

Производная — скоростное изменение какой-либо функции. Эта характеристика присуща не всем, поскольку некоторые из них являются постоянными. Если она имеет производную в некоторой точке, то является дифференцируемой. Дифференцирование применяется не только для исследования функций, но и во многих отраслях науки и техники.

Для нахождения дифференциалов необходима таблица производных. Кроме того, следует освоить все основные правила, поскольку не во всех случаях функция соответствует одному из табличных значений. Для этого нужно воспользоваться некоторыми свойствами. Математики-специалисты рекомендуют применять на начальных стадиях обучения алгоритм нахождения производной, который позволяет существенно сократить время выполнения задания, а также количество ошибок.

Таблица дифференциалов

В некоторых простых задачах возникает необходимость определить производную некоторой элементарной функции. Для этих целей применяется специальная таблица, в которой записаны основные простые выражения.

Алгоритм нахождения наибольшего и наименьшего значения функции

Данные значения были получены практическим методом — нахождением отношения приращения функции к приращению аргумента. Необходимо учитывать, что последний стремится к нулевому значению.

Однако иногда приходится упрощать выражение, а потом находить его производную. Для этого существует специальный простой алгоритм:

  1. Выполнить математические преобразования (упростить выражение).
  2. Найти производную по таблице.

Данный алгоритм справедлив только для простых выражений. Для сложных функций нужно руководствоваться некоторыми свойствами.

Основные свойства

Когда выражение не совпадает с табличным значением или состоит из нескольких элементов, то нужно применять специальные правила. Ими являются следствия из доказательств различных теорем. К ним можно отнести следующие:

Вычисление наименьшего значения функции на отрезке

  1. Если константа A (в некоторых источниках «С»), то при дифференцировании ее можно выносить за знак производной: (A * f(x))’ = A(f(x))’.
  2. Дифференциал суммы или разности 2 и более функций эквивалентен дифференциалу каждой из них: (w(x) + z(x))’ = w'(x) + z'(x) и (w(x) — z(x))’ = w'(x) — z'(x).
  3. Производная произведения 2 функций соответствует сумме, которая является произведением каждой из них на дифференциал другой: (w(x) * z(x))’ = (w'(x) * z(x) + w(x) * z'(x).
  4. Если нужно взять производную дробной функции вида w(x) / z(x), то результат действия является дробью, числитель которой равен разности произведений дифференциала числителя на знаменатель, и дифференциала знаменателя, умноженного на числитель. Знаменатель результирующей дроби соответствует знаменателю исходной функции, возведенного в квадрат: (w(x) / z(x))’ = [(w'(x) * z(x) — w(x) * z'(x)] / (z(x))^2.

В некоторых случаях функция является сложной. Для нахождения ее дифференциала нужно разбить ее на составные функции. Затем взять отдельно производную каждого из элементов. Результат — произведение дифференциалов всех элементов. Например, нужно найти дифференциал z = (1/8 * sin (4x^4 — 3x^3 + 6). Алгоритм решения следующий:

  1. По правилу нужно вынести константу, равную 1/8.
  2. Состоит из 2 частей: sin и (4x^4 — 3x^3 + 6).
  3. Производная последней — дифференциал разности (2 свойство): [4x^4 — 3x^3 + 6]’ = ((4 * x^3) / 4) — ((3 * x^2) / 3) + 0 = x^3 — x^2.
  4. Для второй: (sinx)’ = cosx.
  5. Итоговый результат: z’ = (1/8) * (x^3 — x^2) * sin (4x^4 — 3x^3 + 6).

Очень важно уметь разбивать выражение на части, поскольку от этого зависит результат решения. В некоторых случаях выражение можно упростить.

Наибольшее и наименьшее значения

Задачи на нахождения максимума и минимума применяются не только в математике, но и в бизнесе, науке, производстве и т. д. Например, вычисление наименьшего значения функции на отрезке (за последний промежуток времени) позволяет узнать минимизацию издержек производства. Кроме того, можно определить максимальную прибыль, найти оптимальную загрузку техники и т. д. Данные значения следует искать на каких-либо интервалах. Они классифицируются следующим образом:

  1. Отрезок: [a;b].
  2. Открытый тип: (a;b), (a;b] и [a;b).
  3. Промежуток бесконечности (в некоторой литературе обозначается «inf»): (-бесконечность;а], (-inf;а), [a;+inf), (a;+inf) и (-inf;+inf).

Следует отметить, что наибольшее и наименьшее значение производной по графику функции можно также найти, однако расчетный метод намного проще.

Универсальный алгоритм

Для данной операции, как и для других математических действий, существуют определенные правила или последовательность действий, которые называются алгоритмом. Специалисты для решения различных задач в любых сферах рекомендуют использовать их. Они позволяют не только существенно экономить время, минимизируя количество вычислений, но и с их помощью можно избежать некоторых ошибок. Суть алгоритма очень проста. Он состоит из определенной последовательности таких шагов:

Как находить наибольшее и наименьшее значение функции

  1. Найти D(f(x)).
  2. Проверить вхождение заданного интервала.
  3. Взять производную и выполнить поиск всех точек, в которых она не существует (их может и не быть).
  4. Приравнять к нулю результат, полученный в пункте 4, и найти корни уравнения. Это и будут стационарные точки, но они могут не существовать.
  5. Подставить в исходную функцию значения границ и стационарные точки.
  6. Выбрать из них MAX(f(x)) и MIN(f(x)).

Выполнение шестого шага зависит от вида интервала. В некоторых случаях можно просто подставить значение, а в других — найти предел. Если указана скобка «[» или «]», то x равен значению возле этой скобки. Когда указаны круглые скобки, нужно брать предел x = lim (f(x)), где x стремится к числовому значению или бесконечности, которые находятся возле скобки (x->a). Например, (a;+inf): х = lim [f(x)], где x->a и x->+inf.

Для нахождения минимального и максимального значения функции достаточно материала, изложенного выше. Специалисты рекомендуют разобраться с теорией, а затем переходить к практике.

Примеры решений

Дана квадратичная функция y = x^2 + 6x + 9. Необходимо найти наименьшее значение функции квадратного уравнения на отрезке [1;5]. Для этой цели нужно воспользоваться алгоритмом:

  1. D(y): все множество Z.
  2. Отрезок входит в D(y).
  3. Производная: y’ = [x^2 + 6x + 9]’ = 2x + 6 (существует во всех точках).
  4. Стационарные точки (y’ = 0): 2x + 6 = 0. Отсюда, x = -3.
  5. Подставить в исходное выражение: y(-3) = (-3)^2 + 6 * (-3) + 9 = 9 — 18 + 9 = 0, y(1) = (1)^2 + 6 * (1) + 9 = 1 + 6 + 9 = 16 и y(5) = (5)^2 + 6 * (5) + 9 = 25 + 30 + 9 = 64.
  6. Максимум и минимум (с учетом стационарной точки и интервала): MIN(y) = 0 и MAX(y) = 64.

Одним из простейших типов задач является следующая: найдите наибольшее значение линейной функции z = 5x + 10 на отрезке [-3;3]. Для ее решения можно также воспользоваться алгоритмом:

Как найти наибольшее и наименьшее значение функции

  1. D(z) — все значения от бесконечно малого до бесконечно большого чисел.
  2. Промежуток, на котором нужно найти максимум и минимум, полностью входит в D(f).
  3. Дифференциал: z’ = 5 (существует во всех точках, а стационарных точек нет вообще).
  4. Минимум и максимум: MIN(z(-3)) = 5 * (-3) + 10 = -5 и MAX(z(3)) = 5 * (3) + 10 = 25.

Последнюю задачу необязательно решать по алгоритму, поскольку она считается простейшей. Математики рекомендуют тренироваться в нахождении MIN и MAX функции, поскольку только практика позволяет быстро решать задачи.

Таким образом, для нахождения максимального и минимального значений заданной функции необходимо пользоваться специальным универсальным алгоритмом. Кроме того, нужно правильно находить дифференциалы, область определения, а также разбираться в интервалах.

Наибольшее и наименьшее значение функции

Как найти?

Постановка задачи

Найти наибольшее и наименьшее значение функции $ f(x) $ на отрезке $ [a,b] $

План решения

Наибольшее и наименьшее значение непрерывной функции $ f(x) $ на промежутке $ [a,b] $ достигаются в критических точках, то есть в точках в которых производная функции равна нулю $ f'(x) = 0 $, бесконечности $ f'(x) = pm infty $, не существует, либо на концах отрезка $ [a,b] $

  1. Проверяем на непрерывность функцию $ f(x) $ на заданном отрезке
  2. Если функция непрерывная, то находим производную $ f'(x) $ и приравниваем её к нулю
  3. Решая уравнение $ f'(x) = 0 $ получаем корни, являющиеся критическими точками
  4. Выбираем критические точки, принадлежащие отрезку $ [a,b] $
  5. Вычисляем значения функции $ f(x) $ в оставшихся критических точках, а так же на концах промежутка $ [a,b] $. Затем выбираем из них наибольшее $ M $ и наименьшее $ m $

Примеры решений

Пример 1
Найти наибольшее и наименьшее значение функции $ y = 2x^3 — 3x^2 — 4 $ на отрезке $ [0;2] $
Решение

Функция представляет собой кубический многочлен. Точек разрыва нет, значит функция непрерывна на отрезке $ [0;2] $.

Находим производную: $$ y’ = (2x^3 — 3x^2 — 4)’ = 6x^2 — 6x $$

Приравниваем производную к нулю. Решаем уравнение и получаем критические точки:

$$ 6x^2 — 6x = 0 $$ $$ 6x(x — 1) = 0 $$ $$ x_1 = 0, x_2 = 1 $$

Проверяем принадлежность полученных точек отрезку $ [0;2] $:

$$ x_1 in [0;2], x_2 in [0;2] $$

Так как обе точки принадлежат отрезку, то вычисляем в них значение функции $ f(x) $, так же значение этой функции на концах интервала $ [0;2] $:

$$ y(x_1) = y(a) = f(0) = 2 cdot 0^3 — 3 cdot 0^2 — 4 = -4 $$

$$ y(x_2) = y(1) = 2 cdot 1^3 — 3 cdot 1^2 — 4 = -5 $$

$$ y(b) = y(2) = 2 cdot 2^3 — 3 cdot 2^2 — 4 = 0 $$

Среди полученных значений наибольшее $ M = 0 $, наименьшее $ m = -5 $

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M = 0, m = -5 $$
Пример 2
Найти наименьшее и наибольшее значение функции $ y = frac{4x^2}{3+x^2} $ на $ [-1;1] $
Решение

Функция непрерывна на $ x in [-1;1] $ так как знаменатель не обращается в ноль ни при каком $ x $.

Выполняем нахождение производной:

$$ y’ = (frac{4x^2}{3+x^2})’ = frac{(4x^2)'(3+x^2)-(4x^2)(3+x^2)’}{(3+x^2)^2} = $$

$$ = frac{8x(3+x^2)-(4x^2)(2x)}{(3+x^2)^2} = frac{24x+8x^3-8x^3}{3+x^2)^2} = frac{24x}{(3+x^2)^2} $$

Приравниваем полученную производную к нулю и вычисляем критические точки:

$$ frac{24x}{(3+x^2)^2} = 0 $$ $$ 24x = 0, 3+x^2 neq 0 $$ $$ x = 0 $$

Получена единственная критическая точка $ x = 0 $, которая принадлежит $ [-1; 1] $.

Вычисляем значение функции $ f(x) $ в критической точке и на концах интервала $ [-1;1] $:

$$ y(-1) = frac{4cdot (-1)^2}{3+(-1)^2} = frac{4}{4}=1 $$

$$ y(0) = frac{0}{3} = 0 $$

$$ y(1) = frac{4cdot 1^2}{3+1^2} = frac{4}{4} = 1 $$

Из полученных значений видно, что максимальное значение $ M = 1 $ и минимальное значение $ m = 0 $.

Ответ
$$ m = 0, M = 1 $$

В этой статье я расскажу про алгоритм поиска наибольшего и наименьшего значения функции, точек минимума и максимума.

Из теории нам точно пригодится таблица производных и правила дифференцирования. Все это есть в этой табличке:

Алгоритм поиска наибольшего и наименьшего значения.

Мне удобнее объяснять на конкретном примере. Рассмотрим:

Пример: Найдите наибольшее значение функции

y=x^5+20x^3–65x

на отрезке [–4;0].

Шаг 1. Берем производную.

y’ = (x^5+20x^3–65x)’ = 5x^4 + 20*3x^2 — 65 = 5x^4 + 60x^2 — 65

Шаг 2. Находим точки экстремума.

Точкой экстремума мы называем такие точки, в которых функция достигает своего наибольшего или наименьшего значения.

Чтобы найти точки экстремума, надо приравнять производную функции к нулю (y’ = 0)

5x^4 + 60x^2 — 65 = 0

Теперь решаем это биквадратное уравнение и найденные корни есть наши точки экстремума.

Я решаю такие уравнения заменой

t = x^2, тогда 5t^2 + 60t — 65 = 0.

Сократим уравнение на 5, получим: t^2 + 12t — 13 = 0

D = 12^2 — 4*1*(-13) = 196

t_(1) = (-12 + sqrt(196))/2 = (-12 + 14)/2 = 1

t_(2) = (-12 — sqrt(196))/2 = (-12 — 14)/2 = -13

Делаем обратную замену x^2 = t:

x_(1 и 2) = ±sqrt(1) = ±1
x_(3 и 4) = ±sqrt(-13) (исключаем, под корнем не может быть отрицательных чисел, если конечно речь не идет о комплексных числах)

Итого: x_(1) = 1 и x_(2) = -1 — это и есть наши точки экстремума.

Шаг 3. Определяем наибольшее и наименьшее значение.

Метод подстановки.

В условии нам был дан отрезок [b][–4;0][/b]. Точка x=1 в этот отрезок не входит. Значит ее мы не рассматриваем. Но помимо точки x=-1 нам также надо рассмотреть левую и правую границу нашего отрезка, то есть точки -4 и 0. Для этого подставляем все эти три точки в исходную функцию. Заметьте исходную — это ту, которая дана в условии (y=x^5+20x^3–65x), некоторые начинают подставлять в производную…

y(-1) = (-1)^5 + 20*(-1)^3 — 65*(-1) = -1 — 20 + 65 = [b]44[/b]
y(0) = (0)^5 + 20*(0)^3 — 65*(0) = 0
y(-4) = (-4)^5 + 20*(-4)^3 — 65*(-4) = -1024 — 1280 + 260 = -2044

Значит наибольшее значение функции это [b]44[/b] и достигается оно в точки [b]-1[/b], которая называется точкой максимума функции на отрезке [-4; 0].

Мы решили и получили ответ, мы молодцы, можно расслабиться. Но стоп! Вам не кажется, что считать y(-4) как-то слишком сложно? В условиях ограниченного времени лучше воспользоваться другим способом, я называю его так:

Через промежутки знакопостоянства.

Находятся эти промежутки для производной функции, то есть для нашего биквадратного уравнения.

Я делаю это следующим образом. Рисую направленный отрезок. Расставляю точки: -4, -1, 0, 1. Не смотря на то, что 1 не входит в заданный отрезок, ее все равно следует отметить для того, чтобы корректно определить промежутки знакопостоянства. Возьмем какое-нибудь число во много раз больше 1, допустим 100, мысленно подставим его в наше биквадратное уравнение 5(100)^4 + 60(100)^2 — 65. Даже ничего не считая становится очевидно, что в точке 100 функция имеет знак плюс. А значит и на промежутки от 1 до 100 она имеет знак плюс. При переходе через 1 (мы идем справа налево)функция сменит знак на минус. При переходе через точку 0 функция сохранит свой знак, так как это лишь граница отрезка, а не корень уравнения. При переходе через -1 функция опять сменит знак на плюс.

Из теории мы знаем, что там, где производная функции (а мы именно для нее это и чертили) меняет знак с плюса на минус (точка -1 в нашем случае) функция достигает своего локального максимума (y(-1)=44, как была посчитано ранее) на данном отрезке (это логически очень понятно, функция перестала возрастать, так как достигла своего максимума и начала убывать).

Соответственно, там где производная функции меняет знак с минуса на плюс, достигается локальный минимум функции. Да, да, мы также нашли точку локального минимума это 1, а y(1) — это минимальное значение функции на отрезке, допустим от -1 до +∞. Обратите огромное внимание, что это лишь ЛОКАЛЬНЫЙ МИНИМУМ, то есть минимум на определенном отрезке. Так как действительный (глобальный) минимум функция достигнет где-то там, в -∞.

На мой взгляд первый способ проще теоретически, а второй проще с точки зрения арифметических действий, но намного сложнее с точки зрения теории. Ведь иногда бывают случаи, когда функция не меняет знак при переходе через корень уравнения, да и вообще можно запутаться с этими локальными, глобальными максимумами и минимумами, хотя Вам так и так придется это хорошо освоить, если вы планируете поступать в технический ВУЗ (а для чего иначе сдавать профильное ЕГЭ и решать это задание). Но практика и только практика раз и навсегда научит Вас решать такие задачи. А тренироваться можете на нашем сайте. Вот здесь.

Если появились какие-то вопросы, или что-то непонятно — обязательно спросите. Я с радостью Вам отвечу, и внесу изменения, дополнения в статью. Помните мы делаем этот сайт вместе!

Образовательные задачи урока.


  • повторить необходимые и достаточные условия
    существования точек экстремума, понятия:
    стационарные и критические точки;
  • ввести алгоритм нахождения наибольшего и
    наименьшего значения функции на отрезке
  • сформировать умение решать задачи на
    нахождение наибольшего и наименьшего значения
    степенной функции на отрезке с помощью
    производной.
  • разобрать прототипы задач № 1 В14
    экзаменационной работы в формате ЕГЭ.
  • Продолжить формирование общеучебных умений и
    навыков: навыков самоконтроля, умения писать
    необходимом темпе.

Воспитательные задачи:


  • cодействовать в ходе урока формированию
    основных мировоззренческих идей (материальность
    мира, познаваемость мира и его закономерностей,
    обусловленность развития науки потребностям
    производства);
  • cодействовать воспитанию у учащихся таких
    нравственных качеств, как коллективизм;
  • cодействовать профилактике утомляемости
    школьников, используя разнообразные виды работы
    на уроке.

I. Организационный момент. Приветствие.
Проверка готовности класса к уроку. Выявление
отсутствующих.

II. Актуализация знаний учащихся.

Повторить с учащимися основные понятия прошлых
уроков: точки экстремума, каково достаточное
условие точек экстремума, стационарные точки и
критические точки (учащихся отвечают с места)

Повторить таблицу производных основных
функций и основные правила нахождения

III. Изучение нового материала.

Алгоритм нахождения наибольшего и наименьшего
значения функции на отрезке

(учащиеся записывают себе в тетрадь).

Пусть функция непрерывна и дифференцируема на
отрезке , то
для нахождения наибольшего и наименьшего
значения функции на отрезке нужно:

  1. найти производную функции, найти стационарные
    точки (решаем уравнение, приравнивая производную
    к нулю)
  2. среди полученных стационарных точек выбрать те,
    которые принадлежат отрезку
  3. найти значение в стационарных точках и в концах
    отрезка, то есть и .
  4. среди полученных значений выбрать наибольшее
    или наименьшее.

Записать схему нахождения наибольшего и
наименьшего значения функции на отрезке в
тетради (учитель оформляет схему на доске):

Пусть
непрерывна на
и дифференцируема. Тогда, для нахождения или :

  1. Находим находим
  2. Проверяем принадлежность отрезку
  3. Находим , , .
  4. Среди полученных значений выбираем или .
  5. Записываем ответ (Акцентировать внимание, что в
    ответе должно быть записано либо целое число,
    либо конечная десятичная дробь).

Пример № 1. Найти наименьшее значение функции
на отрезке . (Учитель
совместно с учащимися записывает решение на
доске последовательно проговаривая каждый пункт
алгоритма).

Решение:

Ответ:

Пример № 2. Найти наибольшее значение
функции на
отрезке

Решение:

Ответ: 23

Пример № 3. Найдите наименьшее значение
функции на
отрезке .

Решение:

Ответ: -3

Пример № 4. Найдите наибольшее
значение функции на отрезке .

Решение:

Упростим функцию

Ответ: 1

IV. Закрепление материала.


  1. Найдите наименьшее значение функции на отрезке
  2. Найдите наименьшее значение функции на отрезке
  3. Найдите наименьшее значение функции на отрезке

V. Итоги урока.


  1. Повторить алгоритм нахождения наибольшего и
    наименьшего значения функции на отрезке.
  2. Выставить отметки за урок.

VI. Домашнее задание:


  1. Найдите наименьшее значение функции на отрезке
  2. Найдите наибольшее значение функции на отрезке
  3. Найдите наибольшее значение функции на отрезке
  4. Найдите наименьшее значение функции на отрезке
  5. Найти наибольшее значение функции на отрезке

Урок № 2. “Нахождение наибольшего и
наименьшего значения функций и на отрезке .

Тип урока: комбинированный.

Образовательные задачи:


  • обеспечить повторение в ходе урока алгоритма
    нахождения наибольшего и наименьшего значения
    функции на отрезке;
  • продолжить формирования навыка применения
    этого алгоритма при решении второго типа задач
    экзаменационных вариантов ЕГЭ;
  • продолжить формирование общеучебных умений и
    навыков: навыков самоконтроля, умения в
    необходимом темпе читать и писать, анализировать
    условия задачи.

Воспитательные задачи:


  • содействовать в ходе урока формированию
    основных мировоззренческих идей (материальность
    мира, познаваемость мира и его закономерностей,
    обусловленность развития науки потребностям
    производства);
  • содействовать воспитанию у учащихся таких
    нравственных качеств, как коллективизм. умение
    слушать товарищей;
  • содействовать профилактике утомляемости
    школьников.

I. Организационный момент. Приветствие.
Проверка готовности класса к уроку. Выявление
отсутствующих.

II. Проверка домашнего задания. Фронтальная
проверка домашнего задания. Если у большинства
учащихся возникли вопросы, разобрать на доске
решение конкретного задания, если лишь у
некоторых, объяснить в индивидуальном порядке,
предварительно схематично обговорив решение у
доски.

III. Актуализация знаний. Повторить еще раз
алгоритм нахождения наибольшего и наименьшего
значения функции на отрезке с оформлением схемы
на доске.

Повторить следующие формулы для дальнейшего
изучения материала:

, ,

Решить на повторение примеры (1 учащийся пишет
решение на доске с комментариями по решению,
остальные записывают себе в тетради).

IV. Решение новых прототипов задач (разбирает
решение учитель)

Пример № 1. Найти наименьшее значение
функции на
отрезке

Решение

Ответ:1

Пример № 2. Найти наименьшее значение
функции на
отрезке

Решение. Преобразуем и упростим функцию , используя
свойство логарифмов

Ответ: -6

V. Закрепление материала (самостоятельное
решение задач учащимися у доски).

Пример № 3. Найти наибольшее значение функции
на отрезке

Решение.

Ответ: 51

Пример № 4. Найти наименьшее значение функции
на отрезке

Решение.

(, так как )

Ответ: 4

Пример № 5. Найти наименьшее значение функции
на отрезке

Решение

Ответ: -1

Пример № 6. Найти наибольшее значение функции
на отрезке

Решение:

Ответ: 1

Пример № 7: Найдите наибольшее значение
функции на
отрезке

Решение

Ответ: 36

VI. Итоги урока.


  1. Повторить алгоритм нахождения наибольшего и
    наименьшего значения функции на отрезке.
  2. Проговорить основные алгоритмы решения тех
    примеров, которые изучены на уроке.

VII. Домашнее задание по вариантам.

Понравилась статья? Поделить с друзьями:
  • Как найти мультик про машинки
  • Как найти человека который живет в германии
  • Как найти обрыв в двухжильном кабеле
  • Как в дискорде найти человека на телефоне
  • Как найти сведения об учредители