Температура поверхности трубы как найти

В первом приближении
средняя температура стенки равна
среднему арифметическому между
температурами теплоносителей:

, (1.4)

где
– средняя температура греющего
теплоносителя, °С;

–средняя температура
нагреваемого теплоносителя, °С.

°С.

По
выбираем критерии Прандтля для жидкостей,
движущихся в ТОА.

Prс1
= Prс2
= 1760,

где Prс1,
Prс2
– критерии Прандтля для греющей и
нагреваемой воды.

Коэффициент
теплопроводности медных труб λс
= 388,6 Вт/(м·К).

1.4 Определение коэффициента теплоотдачи со стороны греющего теплоносителя

При
турбулентном и переходном режимах Nu
зависит от Re и Pr, а при ламинарном еще и
от длины трубок. Поэтому перед расчетом
Nu1
зададимся некой «предполагаемой
длиной», по которой будем вести расчет
трубного пространства. Формула для
расчета среднего значения критерия
Нуссельта имеет вид:

, (1.5)

где
Pr1
– критерий Прандтля теплоносителя при
его средней температуре;

Prc
– критерий Прандтля теплоносителя при
средней температуре стенки.

Т.к.
,
то можно записать формулу для определения
среднего коэффициента теплоотдачи для
греющего теплоносителя:

, (1.6)

где 1
– коэффициент теплопроводности греющего
теплоносителя при его средней температуре,
Вт/(мК).

Вт/(м2К).

1.5 Определение коэффициента теплоотдачи со стороны нагреваемого теплоносителя

Выберем
шахматную компоновку трубного пучка.

Т.к.
в межтрубном пространстве режим течения
теплоносителя ламинарный, то формула
для расчета среднего значения критерия
Нуссельта для шахматного порядка имеет
вид:

, (1.7)

где Pr1
– критерий Прандтля теплоносителя при
его средней температуре;

Prc
– критерий Прандтля теплоносителя при
средней температуре стенки;

.

Аналогично
формуле (1.6) можно записать:

, (1.8)

Вт/(м2К).

1.6 Определение
коэффициента теплопередачи

Т.к.
отношение наружного диаметра трубки к
внутреннему составляет 1,083, что меньше
1,6, то при расчете среднего коэффициента
теплопередачи можно пользоваться
формулой для плоской стенки.

Вычислим
средний коэффициент теплопередачи:

, (1.9)

где С
– толщина стенок трубок, м;

С
– коэффициент теплопроводности материала
стенок при средней температуре стенки;

Вт/(м2К).

1.7 Уточнение температуры стенки

Средний
температурный напор для прямоточных и
противоточных ТОА с учетом перекрестного
тока вычисляется по формуле:

,
(1.10)

где tБ
– большая разность температур между
теплоносителями;

tМ
– меньшая разность температур между
теплоносителями;

εΔt
= 0,75 – поправка на перекрестный ток.

tБ
и tМ
выбираются по разности температур
и,
и разности температури.

= 100-60 = 40 °С,

= 40-20 = 20 °С.

°С.

.

Температура стенки
труб со стороны греющего теплоносителя
находится по формуле:

,
(1.11)

Температура стенки
труб со стороны нагреваемого теплоносителя
находится по формуле:

, (1.12)

Найдем
уточненную среднюю температуру стенки:

. (1.13)

Определим
погрешность нахождения средней
температуры стенки:

%. (1.14)

Т.к.
tc>5
%, то температура стенки определена с
недостаточной степенью точности.
Проведем аналогичный расчет, приняв за
среднюю температуру стенки значение,
полученное по формуле (1.13).

Содержание

  1. Расчет коэффициентов теплопередачи онлайн
  2. Расчет теплопередачи через плоскую стенку
  3. Исходные данные:
  4. Пример решения задачи 8
  5. Расчет теплоотдачи трубы
  6. Расчет в Excel теплоотдачи трубы.
  7. Теория, алгоритмы, литература.
  8. Теплоотдача «голой» трубы
  9. Теплоотдача изолированной трубы
  10. Влияние степени черноты наружной поверхности на мощность теплового потока «голых» и изолированных труб
  11. Литература:

Расчет коэффициентов теплопередачи онлайн

При расчете теплообменных аппаратов, анализе теплового баланса работающего оборудования, оценке тепловых потерь ирешении многих других задач теплообмена, часто необходимо рассчитать тепловой поток, проходящий через твердую стенку, разделяющую жидкости или газы при различных температурах, который в простейшем случае вычисляется по формуле:

K — коэффициент теплопередачи;

Tf1 , Tf2 — температуры жидкости или газа между которыми происходит теплообмен

Как видно, наибольшую сложность здесь представляет определение коэффициента теплопередачи k, который зависит от физических свойств теплоносителя, режима течения и коэффициента теплопроводности твердой стенки. Коэффициент теплопередачи плоской стенки можно выразить через коэффициенты теплоотдачи поверхностей стенки:

α1 , α2 — коэффициенты теплоотдачи поверхностей стенки;

λ — коэффициент теплопроводности стенки;

Вычислив коэффициенты теплоотдачи, на данной странице можно рассчитать тепловой поток, передаваемую мощность, коэффициент теплопередачи и температуру плоской или цилиндрической стенки.

Расчет теплопередачи через плоскую стенку

Исходные данные:

H — толщина стенки, миллиметрах;

S — площадь стенки, метрах 2 ;

Tfa — температура среды А, в °C;

αa — коэффициент теплоотдачи поверхности А, в ватт/метр 2 ×°C;

Tfb — температура среды B, в °C;

αb — коэффициент теплоотдачи поверхности B, в ватт/метр 2 ×°C.

ТЕПЛОПЕРЕДАЧА ЧЕРЕЗ ПЛОСКУЮ СТЕНКУ

Теплопроводность стенки λ, Вт/(м* 0 C×сек)

Температура среды А, Т, 0 С

Коэффициент теплоотдачи, αа, Вт/м 2 * 0 С

Температура среды B, Тfb, 0 С

Коэффициент теплоотдачи, αb, Вт/м 2 * 0 С

Источник

Пример решения задачи 8

Исходные данные: d=240 мм=0,24м; tс=250ºС; tв=15ºС.

Определить: величину ql.

Порядок расчёта

1. Находим по таблице (прил. 3) теплофизические характеристики воздуха при tв=15ºС:

коэффициент теплопроводности λж =0,0255 Вт/(м·К);

коэффициент кинематической вязкости νж =14,6·10 -6 м 2 /с;

2. Определяем среднюю температуру пограничного слоя

3. Находим коэффициент термического расширения воздуха

4. Вычисляем значение критерия Грасгофа по формуле (17.15):

5. Находим произведение критериев Грасгофа и Прандтля:

6. При вычисленном значении произведения Grж,d·Prж,d режим обтекания трубы воздухом турбулентный, поэтому постоянные в расчётном уравнении равны С=0,135; n=1/3.

Отсюда определяем величину критерия Нуссельта по формуле

7. Находим коэффициент теплоотдачи трубы α , используя уравнение

8. Определяем потери теплоты в единицу времени с единицы длины трубы

По стальной трубе, внутренний и внешний диаметр которой соответственно d1 и d2, а коэффициент теплопроводности λ1=40 Вт/(м · К), течет газ со средней температурой tг; коэффициент теплоотдачи от газа к стенке α1. Снаружи труба охлаждается водой со средней температурой tв; коэффициент теплоотдачи от стенки к воде α2. Определить линейный коэффициент теплопередачи Kl от газа к воде, тепловой поток на 1 м длины трубы qi и температуры поверхностей трубы. Данные, необходимые для решения задачи, выбрать из табл. 19.1. Определить также температуру внешней поверхности трубы и ql, если она покрылась слоем накипи толщиной δ = 2 мм, коэффициент теплопроводности которой λ2=0,8 Вт/(м·К) (при α2 = const).

Пример решения задачи 9

Исходные данные: d1=130 мм=0,13 м; d2=140 мм=0,14 м; λс=40 Вт/(м·К); tг=1000°С; tв=80°С; α1=60 Вт/(м 2 ·К); α2=4000 Вт/(м 2 ·К); δн=2 мм=0,002 м; λн=0,8 Вт/(м·К).

Определить: величину Кl, tс1 и tс2 – без накипи, а также Кl΄ и tс2΄ при наличии накипи.

Числовые данные к заданию 9

Последняя цифра шифра Диаметр трубы, мм Температура газа tг, °С Предпоследняя цифра шифра Температура воздуха tв, °С Коэффициент теплоотдачи, Вт/(м 2 ·К)
внутрен- ний d1 внешний d2 от газа к стенке α1 от стенки к воде α2

Порядок расчёта

1. Определяем линейный коэффициент теплопередачи от газа к воде по формуле (19.14):

2. Вычисляем линейную плотность теплового потока через однослойную цилиндрическую стенку

3. Находим температуру внутренней поверхности трубы tс1, используя формулу:

4. Температуру наружной поверхности трубы tс2 найдём из уравнения

5. При наличии слоя накипи на наружной поверхности трубы линейный коэффициент теплопередачи определим по формуле (19.17) для двухслойной цилиндрической стенки:

6. Линейная плотность теплового потока при наличии накипи равна

7. Температура на наружной поверхности трубы будет равна

Вывод: образование накипи на поверхности трубы приводит к уменьшению коэффициента теплопередачи и температуры наружной поверхности трубы.

Определить удельный лучистый тепловой поток q (в ваттах на квадратный метр) между двумя параллельно расположенными плоскими стенками, имеющими температуры t1 и t2 и степени черноты ε1 и ε2, если между ними нет экрана. Определить q при наличии экрана со степенью черноты εэ (с обеих сторон). Данные, необходимые для решения задачи, выбрать из табл. 20.1.

во сколько раз уменьшится тепловой поток, если принять в вашем варианте задачи εэ = ε1 по сравнению с потоком без экрана?

для случая ε2 = ε1 определите, какой экран из таблицы даст наихудший эффект и какой — наилучший.

Последняя цифра шифра Степени черноты стенок Предпоследняя цифра шифра Температура стенок, ° С
ε1 ε2 εЭ t1 t 2
0,5 0,55 0,6 0,52 0,58 0,62 0,7 0,65 0,75 0,8 0,6 0,52 0,7 0,72 0,74 0,54 0,58 0,62 0,73 0,77 0,04 0,045 0,05 0,02 0,03 0,025 0,032 0,055 0,06 0,023

Пример решения задания 10

Определить: величины qо и qэ.

Порядок расчёта

1. Определяем величину теплового потока излучением между поверхностями (без экрана) по формуле (20.20):

.

Приведенный коэффициент излучения системы тел равен

здесь Со=5,67 Вт/(м 2 ·К 4 ) – коэффициент излучения абсолютно чёрного тела.

2. Находим лучистый тепловой поток между поверхностями qэ при установке полированного экрана со степенью черноты εэ=0,02 с обеих сторон экрана.

Предварительно определим приведенный коэффициент излучения поверхностей и экрана

3. Рассчитываем лучистый поток между поверхностями при установке полированного экрана по формуле (20.25):

Отсюда следует, что установка одного полированного экрана уменьшает теплообмен излучения примерно в 45,5 раза и составляет 2,2% от величины теплообмена излучением без экрана.

4. Определим лучистый поток между пластинами при установке шероховатого экрана со степенью черноты εэ1.

Приведенный коэффициент излучения пластины и экрана равен

Таким образом лучистый поток между пластинами при применении шероховатого экрана уменьшается в 2,5 раза.

Рекомендуемая литература

1. Чугаев Р.Р. Гидравлика. – Л.: Энергоиздат, 1982

2. Альтшуль А.Д., Животовский Л.С., Иванов А.П. Гидравлика и аэродинамика. – М. : Стройиздат, 1987.

3. Смыслов В.В. Гидравлика и аэродинамика: Учебник для ВУЗов. – Киев: Высшая школа, 1979. – 336с.

4. Брюханов О.Н. Основы гидравлики и теплотехники: Учебник.- М.: Академия.- 2004. 240 с.

5. Клименко А.В. Теплоэнергетика и теплотехника. Книга 3. Тепловые и атомные электростанции. Справочник. Изд.3 М.: МЭИ 2003.

6. Прибытков И.А. Теоретические основы теплотехники. Учебник. М.: ACADEMA. – 2004. 463 с.

1. Штеренлихт Д.В. Гидравлика: Учебник для ВУЗов. – М.:Энергоатомиздат, 1991. – 351с

2. Примеры гидравлических расчетов под редакцией

А.И. Богомолова . – М.: Транспорт, 1977. -526с.

3. Примеры расчетов по гидравлике под редакцией Альтшуля А.Д. – М.: Стройиздат, 1976. – 254с.

4. Ильина Т.Н.Основы гидравлического расчета инженерных сетей:Учебное пособие.–М.:АСВ,2005.

Источник

Расчет теплоотдачи трубы

Сколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее.

. программу в Excel, можно оперативно получить точные ответы на эти и другие вопросы!

Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.

Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.

Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:

  • y – значение функции (искомый расчетный параметр);
  • x1,x2,x3, …,xn – значения аргументов функции (исходные данные).

Чуть подробнее о работе с пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.

Расчет в Excel теплоотдачи трубы.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Теория, алгоритмы, литература.

Трубы, в системах теплоснабжения, могут выполнять две функции — транспортировать теплоноситель к месту его использования и служить сами отопительным прибором (регистром).

При реализации любой из вышеперечисленных функций необходимо производить количественную оценку эффективности её выполнения.

Основные показатели для систем транспорта тепловой энергии определены нормативными документами СО 153-34.20.523-2003 в 4 частях.

В любом случае возникает необходимость оперативного и точного расчёта:

  • параметров теплообмена между трубой и окружающей её средой;
  • затрат энергии на транспортирование теплоносителя (воды) через трубу.

Теплоотдача «голой» трубы

Параметры, знание которых позволяет рассчитывать тепловые процессы в системе «вода — труба — воздух», собраны и показаны в блоке исходных данных таблицы из предыдущей части статьи.

На рисунке ниже приведена эквивалентная схема теплоотдачи голой трубы.

При расчётах теплоотдачи трубы удобно использовать метод аналогии между теплотехникой и электротехникой, принимая:

  • перепад температур dt=tводаtвозд, как разность электрических потенциалов;
  • тепловой поток q, как электрический ток;
  • термическое сопротивление Rt, как электрическое сопротивление.

По аналогии с законом Ома получаем следующее уравнение:

q=dt/Rt=(tвода tвозд)/(Rвн+Rтр+Rнар), Вт.

Термическое сопротивление между двумя средами – водой и воздухом – препятствует всем формам теплообмена между ними:

Каждая из перечисленных форм теплообмена имеет свою специфику и описывается соответствующими аналитическими выражениями.

1. Конвективный теплообмен между движущейся водой и твёрдой цилиндрической стенкой

Rвн=1/(αвн·Fвн) – термическое внутреннее сопротивление, °С/Вт, где:

  • αвн – средний по длине трубы коэффициент теплоотдачи от движущейся воды внутренней поверхности трубы, Вт/(м²·°С);
  • Fвн — площадь смачиваемой внутренней стенки трубы, м².

αвн=Nuвода·λвода/Dтр – коэффициент теплоотдачи на внутренней поверхности трубы, Вт/(м²·°С), где:

  • Nu – критерий Нуссельта;
  • λвода – коэффициент теплопроводности воды, Вт/(м·°С);
  • Dтр – гидравлический диаметр трубы, м.

Число Нуссельта (Nuвода) для движущейся воды в цилиндрической трубе, равно:

Nuвода=С·Reвода m ·Prвода n ·K число Нуссельта для движущейся воды в цилиндрической трубе, где:

  • Reвода – число Рейнольдса для движущейся воды;
  • Prвода – число Прандтля для воды;
  • С,m,n и K – индексы, значения которых зависят от характера потока воды (ламинарный или турбулентный).

2. Термическое сопротивление твёрдой стенки цилиндрической трубы

Rтр=Ln(Dнар/Dтр)/(λтр·2·π·Lтр) — термическое сопротивление стенки трубы, °С/Вт, где:

  • Dнар – наружный диаметр трубы, м;
  • Dтр – внутренний диаметр трубы, м;
  • λтр – к-т теплопроводности материала трубы, Вт/( м·°С);
  • Lтр – длина трубы, м.

3. Конвективный и лучистый теплообмены между твёрдой цилиндрической стенкой трубы и окружающим воздухом

Rнар=1/[(αклFнар] – термическое наружное сопротивление, °С/Вт, где:

  • αк – средний по длине трубы коэффициент конвективной теплоотдачи, Вт/(м²·°С);
  • αл – средний по длине трубы коэффициент лучистой теплоотдачи, Вт/(м²·°С);
  • Fнар — площадь омываемой воздухом наружной стенки трубы, м².

αк=Nuвозд·λвозд/Dнар — коэффициент теплоотдачи за счёт конвекции, Вт/(м²·°С), где:

  • Nuвозд – критерий Нуссельта для воздуха;
  • λвозд – коэффициент теплопроводности воздуха, Вт/( м·°С);
  • Dнар – наружный диаметр трубы, м.

Nuвозд=С·(Grвозд·Prвозд) n ·K число Нуссельта для воздуха, омывающего цилиндрическую горизонтальную трубу, где:

  • Grвозд – критерий Грасгофа для воздуха;
  • Prвозд – критерий Прандтля для воздуха;
  • С,m и n – индексы, значения которых зависит от характера потока воздуха, омывающего трубу.

Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,47; n=0,26; К=1.

Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,2; n=0,33; К=1.

Grвозд=g·β·ρвозд²·dtнар·Dнар³/μвозд² — число Грасгофа для воздуха, омывающего горизонтальную трубу, где:

  • g ускорение свободного падения, м/с²;
  • β температурный коэффициент объёмного расширения для воздуха, 1/К;
  • ρвозд – объёмная плотность воздуха, кг/м³;
  • dtнар – разность температур между наружной стенкой трубы и воздухом, °С;
  • μвозд — динамическая вязкость воздуха, Н·с/м² (Па·с).

qл=eизл·С0·[(T0+tвозд+dtнар) 4 -(T0+tвозд) 4 ] — удельный тепловой поток за счёт излучения, Вт/м², где:

  • eизл – излучательная способность (степень черноты) поверхности трубы;
  • С0– постоянная Стефана-Больцмана, С0=5,67·10 -8 Вт/(м²·К 4 ).

αл=qл/dtнар — коэффициент теплоотдачи за счёт излучения, Вт/(м²·К).

4. Перепад температур между наружной стенкой трубы и воздухом

Значение разности температур между наружной стенкой трубы и воздухом (dtнар) находится с помощью метода итераций при использовании следующих равенств:

Rнар=φ(dtнар) -> dtнар=Rнар·q -> Rнар=φ(dtнар) n раз, или до момента Δ(dtнар) ≈ 0.

5. Итоговые обобщения алгоритма

При движении воды по трубе изменяются физические параметры воды и, следовательно, меняются режимы теплообмена. Для «длинных» труб погрешности расчёта могут быть очень большими, даже при использовании усреднённых значений физических параметров (Р, t) воды.

Одним из вариантов повышения точности расчётов является разбиение трубы на участки небольших размеров, физические параметры воды на которых изменяются в «приемлемых границах». При этом параметры воды на выходе предыдущего участка являются входными параметрами воды последующего участка.

Рассмотренный выше алгоритм расчета разработан для горизонтально расположенных труб.

Аналогичный алгоритм расчёта и аналитические зависимости используются и при расчёте теплоотдачи вертикальной трубы. Незначительные отличия в формулах и новые значения индексов представлены далее.

Nuвозд=С·(Grвозд·Prвозд) n — критерий Нуссельта для воздуха, омывающего цилиндрическую вертикальную трубу, где:

Grвозд=g·β·ρвозд²·dtнар·Lтр³/μвозд² — критерий Грасгофа для воздуха, омывающего вертикальную трубу.

Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,59; n=0,25.

Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,021; n=0,4.

6. Пользовательские функции

Для автоматизации рутинных расчетов были разработаны перечисленные ниже пользовательские функции (ПФ), предназначенные для вычисления параметров теплообмена между «голой» трубой и внешней воздушной средой:

  1. ПФ для расчёта теплоотдачи горизонтальной «голой» трубы с водой в воздушном пространстве:

РтрГГ=qТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

  1. ПФ для вычисления тепловой мощности вертикальной «голой» трубы, заполненной движущейся водой и окруженной воздушной средой:

РтрВГ=qТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

  1. ПФ для расчёта разности между температурами воды на входе и выходе горизонтальной «голой» трубы при теплообмене с воздушной средой:

dtтрГГ=dtТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

  1. ПФ для вычисления изменения температуры воды на участке от входа до выхода из вертикальной «голой» трубы, находящейся в воздушном пространстве:

dtтрВГ=dtТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

Теплоотдача изолированной трубы

На следующем рисунке приведена эквивалентная схема к расчету теплоотдачи изолированной трубы.

Расчётный алгоритм для теплоизолированной трубы отличается от алгоритма для «голой» трубы учётом дополнительного термического сопротивления теплоизоляции.

Rиз=Ln(Dиз/Dнар)/(λиз·2·π·Lтр) – термическое сопротивление изоляции, °С/Вт, где:

  • Dиз – наружный диаметр теплоизоляции, м;
  • Dнар – наружный диаметр голой трубы, м;
  • λиз коэффициент теплопроводности материала теплоизоляции, Вт/( м·°С);
  • Lтр – длина трубы, м.

q=dt/Rt=(tвода tвозд)/(Rвн+Rтр+Rиз+Rнар) — тепловой поток от воды через стенку трубы, слой изоляции к окружающему водуху, Вт.

Остальные формулы — те же, что и в расчетах «голой» трубы.

Для упрощения расчётов теплоотдачи изолированных труб были разработаны похожие на предыдущие четыре пользовательские функции:

  1. ПФ для расчёта теплоотдачи изолированной горизонтальной трубы:

РтрГИ=qТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

  1. ПФ для вычисления тепловой мощности изолированной вертикальной трубы:

РтрВИ=qТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

  1. ПФ для определения падения температуры воды в теплоизолированной горизонтальной трубе:

dtтрГИ=dtТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

  1. ПФ для расчёта разности между температурами воды на входе и выходе теплоизолированной вертикальной трубы:

dtтрВИ=dtТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

Влияние степени черноты наружной поверхности на мощность теплового потока «голых» и изолированных труб

В рассмотренном ниже примере расчёты теплоотдачи выполнены с использованием пользовательских функций для «голой» и теплоизолированной труб со степенью черноты наружных поверхностей в диапазоне e=0,1…1,0.

Графики наглядно демонстрируют, что коэффициент излучения наружной поверхности теплоизоляции не значительно влияет на относительную мощность теплового потока. В то же время степень черноты внешней стенки «голой» трубы оказывает весьма существенное влияние на теплоотдачу! Это означает, что для «голых» труб необходимо более точно в расчётах задавать значение коэффициента излучения их наружных поверхностей. Для теплоизолированных труб точность задания степени черноты поверхности изоляции менее критична.

Коэффициенты излучения поверхностей различных материалов существенно отличаются и часто значительно зависят от температуры.

Литература:

  1. Х.Уонг Основные формулы и данные по теплообмену для инженеров. Справочник. Москва. Атомиздат. 1979.
  2. Ф.Крейт, У.Блэк Основы теплопередачи. Москва, Мир, 1983.
  3. М.А. Михеев, И.М. Михеева Основы теплопередачи. Издание второе. Москва, Энергия, 1977.
  4. В.Р. Кулинченко Справочник по теплообменным расчётам. Киев. Тэхника, 1990.

Ссылка на скачивание файла: raschet-teplootdachi-truby (xls 271,0KB).

Источник

Главная >> Применение >> Типовые примеры >>

Естественная конвекция с поверхности горизонтальной трубы

конвекция, температура, теплопроводность, тепловой поток, моделирование трубы

Горизонтальная стальная труба, полностью заполненная текущей по ней горячей водой, окружена неподвижным воздухом.

Тип задачи

Плоско-параллельная задача стационарной теплопередачи.

Геометрия

Естественная конвекция с поверхности горизонтальной трубы
Горизонтальная стальная труба, полностью заполненная текущей по ней горячей водой, окружена неподвижным воздухом.

Труба

D1
D2

Tвода
Tвозд

Дано
внутренний диаметр трубы D1 = 120 мм,
наружный диаметр трубы D2 = 140 мм,
температура воды Tвода = 90°C,
температура окружающего воздуха Tвозд = 20°C,
теплопроводность трубы λтруб = 0.4 Вт/(м·K).

Задание
Определить внешнюю температуру трубы и тепловой поток на метр длины.

Решение
Текущая по трубе горячая вода нагревает её внутреннюю поверхность до своей температуры. Тепло с поверхности трубы уходит в окружающую среду в результате конвекции. Коэффициент конвекции зависит от многих параметров, включая температуру среды, форму и ориентацию поверхности.

Вычисление коэффициентов конвекции выполнено в калькуляторе коэффициента конвекции для естественных условий. Температуры поверхности трубы для расчета коэффициента конвекции примем Ts = Tвода = 90 °C.

Средний коэффициент конвекции с поверхности трубы: α = 6 Вт/(м²·K).

Результат
Поток тепла на метр длины трубы: Ф = 159 Вт.
Температура поверхности трубы: Ts = 80 °C.

Полученное значение температуры близко к начальному предположению о температуре поверхности. Поэтому проведение итерационного процесса уточнения коэффициента конвекции не требуется.

Естественная конвекция с поверхности горизонтальной трубы

  • Скачать файлы задачи

Расчет теплоотдачи трубы

Опубликовано 18 мая 2018
Рубрика: Теплотехника | 39 комментариев

Значок Тепло - в трубуСколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее…

…программу в Excel, можно оперативно получить точные ответы на эти и другие вопросы!

Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.

Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.

Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:

y=f (x1, x2, x3, …, xn), где:

  • y – значение функции (искомый расчетный параметр);
  • x1, x2, x3, …, xn – значения аргументов функции (исходные данные).

Чуть подробнее о работе с  пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

Таблица Excel Расчет теплоотдачи трубы

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Теория, алгоритмы, литература.

Трубы, в системах теплоснабжения, могут выполнять две функции — транспортировать теплоноситель к месту его использования и служить сами отопительным прибором (регистром).

При реализации любой из вышеперечисленных функций необходимо производить количественную оценку эффективности её выполнения.

Основные показатели для систем транспорта тепловой энергии определены нормативными документами СО 153-34.20.523-2003 в 4 частях.

В любом случае возникает необходимость оперативного и точного расчёта:

  • параметров теплообмена между трубой и окружающей её средой;
  • затрат энергии на транспортирование теплоносителя (воды) через трубу.

Теплоотдача «голой» трубы

Параметры, знание  которых  позволяет рассчитывать тепловые процессы в системе «вода — труба — воздух», собраны и показаны в блоке исходных данных таблицы из предыдущей части статьи.

На рисунке ниже приведена эквивалентная схема теплоотдачи голой трубы.

Чертеж Теплоотдача "голой" трубы

При расчётах теплоотдачи трубы удобно использовать метод аналогии между теплотехникой и электротехникой, принимая:

  • перепад температур dt=tводаtвозд, как разность электрических потенциалов;
  • тепловой поток q, как электрический ток;
  • термическое сопротивление Rt, как электрическое сопротивление.

По аналогии с законом Ома получаем следующее уравнение:

q=dt/Rt=(tводаtвозд)/(Rвн+Rтр+Rнар), Вт.

Термическое сопротивление между двумя средами – водой и воздухом – препятствует всем формам теплообмена между ними:

  • конвективному;
  • контактному;
  • излучением.

Каждая из перечисленных форм теплообмена имеет свою специфику и описывается соответствующими аналитическими выражениями.

1. Конвективный теплообмен между движущейся водой и твёрдой цилиндрической стенкой

Rвн=1/(αвн·Fвн) – термическое внутреннее сопротивление, °С/Вт, где:

  • αвн – средний по длине трубы коэффициент теплоотдачи от движущейся воды внутренней поверхности трубы, Вт/(м²·°С);
  • Fвн — площадь смачиваемой внутренней стенки трубы, м².

αвн=Nuвода·λвода/Dтр – коэффициент теплоотдачи на внутренней поверхности трубы, Вт/(м²·°С), где:

  • Nu – критерий Нуссельта;
  • λвода – коэффициент теплопроводности воды, Вт/(м·°С);
  • Dтр – гидравлический диаметр трубы, м.

Число  Нуссельта (Nuвода) для движущейся воды в цилиндрической трубе, равно:

Nuвода=С·Reводаm·Prводаn·K — число Нуссельта для движущейся воды в цилиндрической трубе, где:

  • Reвода – число Рейнольдса для движущейся воды;
  • Prвода – число Прандтля для воды;
  • С, m, n и K – индексы, значения которых зависят от характера потока воды (ламинарный или турбулентный).

2. Термическое сопротивление твёрдой стенки цилиндрической трубы

Rтр=Ln(Dнар/Dтр)/(λтр·2·π·Lтр) — термическое сопротивление стенки трубы, °С/Вт, где:

  • Dнар – наружный диаметр трубы, м;
  • Dтр – внутренний диаметр трубы, м;
  • λтр – к-т теплопроводности материала трубы, Вт/( м·°С);
  • Lтр – длина трубы, м.

3. Конвективный и лучистый теплообмены между твёрдой цилиндрической стенкой трубы и окружающим воздухом

Rнар=1/[(αклFнар] – термическое наружное сопротивление, °С/Вт, где:

  • αк – средний по длине трубы коэффициент конвективной теплоотдачи, Вт/(м²·°С);
  • αл – средний по длине трубы коэффициент лучистой теплоотдачи, Вт/(м²·°С);
  • Fнар — площадь омываемой воздухом наружной стенки трубы, м².

αк=Nuвозд·λвозд/Dнар — коэффициент теплоотдачи за счёт конвекции, Вт/(м²·°С), где:

  • Nuвозд – критерий Нуссельта для воздуха;
  • λвозд – коэффициент теплопроводности воздуха, Вт/( м·°С);
  • Dнар – наружный диаметр трубы, м.

Nuвозд=С·(Grвозд·Prвозд)n·K — число Нуссельта для воздуха, омывающего цилиндрическую горизонтальную трубу, где:

  • Grвозд – критерий Грасгофа для воздуха;
  • Prвозд – критерий Прандтля для воздуха;
  • С, m и n – индексы, значения которых зависит от характера потока воздуха, омывающего трубу.

Если Grвозд·Prвозд≤109 — ламинарный поток воздуха: С=0,47; n=0,26; К=1.

Если Grвозд·Prвозд>109 — турбулентный поток воздуха: С=0,2; n=0,33; К=1.

Grвозд=g·β·ρвозд²·dtнар·Dнар³/μвозд² — число Грасгофа для воздуха, омывающего горизонтальную трубу, где:

  • g ускорение свободного падения, м/с²;
  • βтемпературный коэффициент объёмного расширения для воздуха, 1/К;
  • ρвозд – объёмная плотность воздуха, кг/м³;
  • dtнар – разность температур между наружной стенкой трубы и воздухом, °С;
  • μвозд — динамическая вязкость воздуха, Н·с/м² (Па·с).

qл=eизл·С0·[(T0+tвозд+dtнар)4-(T0+tвозд)4] — удельный тепловой поток за счёт излучения, Вт/м², где:

  • eизл – излучательная способность (степень черноты) поверхности трубы;
  • С0 – постоянная Стефана-Больцмана, С0 =5,67·10-8 Вт/(м²·К4).

αл=qл/dtнар — коэффициент теплоотдачи за счёт излучения, Вт/(м²·К).

4. Перепад температур между наружной стенкой трубы и воздухом

Значение разности температур между наружной стенкой трубы и воздухом (dtнар) находится с помощью метода итераций при использовании следующих равенств:

Rнар=φ(dtнар)  ->  dtнар=Rнар· ->  Rнар=φ(dtнар) n раз, или до момента Δ(dtнар) ≈ 0.

5. Итоговые обобщения алгоритма

При движении воды по трубе изменяются физические параметры воды и, следовательно, меняются режимы теплообмена. Для «длинных» труб погрешности расчёта могут быть очень большими, даже при использовании усреднённых значений физических параметров (Р, t) воды.

Одним из вариантов повышения точности расчётов является разбиение трубы на участки небольших размеров, физические параметры воды на которых изменяются в «приемлемых границах». При этом параметры воды на выходе предыдущего участка являются входными параметрами воды последующего участка.

Рассмотренный выше алгоритм расчета разработан для горизонтально расположенных труб.

Аналогичный алгоритм расчёта и аналитические зависимости используются и при расчёте теплоотдачи вертикальной трубы. Незначительные отличия в формулах и новые значения индексов представлены далее.

Nuвозд=С·(Grвозд·Prвозд)n — критерий  Нуссельта для воздуха, омывающего цилиндрическую вертикальную трубу, где:

Grвозд=g·β·ρвозд²·dtнар·Lтр³/μвозд² — критерий Грасгофа для воздуха, омывающего вертикальную трубу.

Если Grвозд·Prвозд≤109 — ламинарный поток воздуха: С=0,59; n=0,25.

Если Grвозд·Prвозд>109 — турбулентный поток воздуха: С=0,021; n=0,4.

6. Пользовательские функции

Для автоматизации рутинных расчетов были разработаны перечисленные ниже пользовательские функции (ПФ), предназначенные для вычисления параметров теплообмена между «голой» трубой и внешней воздушной средой:

  1. ПФ для расчёта теплоотдачи горизонтальной «голой» трубы с водой в воздушном пространстве:

РтрГГ=qТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

  1. ПФ для вычисления тепловой мощности вертикальной «голой» трубы, заполненной движущейся водой и окруженной воздушной средой:

РтрВГ=qТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

  1. ПФ для расчёта разности между температурами воды на входе и выходе горизонтальной «голой» трубы при теплообмене с воздушной средой:

dtтрГГ=dtТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

  1. ПФ для вычисления изменения температуры воды на участке от входа до выхода из вертикальной «голой» трубы, находящейся в воздушном пространстве:

dtтрВГ=dtТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

Теплоотдача изолированной трубы

На следующем рисунке приведена эквивалентная схема к расчету теплоотдачи изолированной трубы.

Чертеж Теплоотдача изолированной трубы

Расчётный алгоритм для теплоизолированной трубы отличается от алгоритма для «голой» трубы учётом дополнительного термического сопротивления теплоизоляции.

Rиз=Ln(Dиз/Dнар)/(λиз·2·π·Lтр) – термическое сопротивление изоляции, °С/Вт, где:

  • Dиз – наружный диаметр теплоизоляции, м;
  • Dнар – наружный диаметр голой трубы, м;
  • λизкоэффициент теплопроводности материала теплоизоляции, Вт/( м·°С);
  • Lтр – длина трубы, м.

q=dt/Rt=(tводаtвозд)/(Rвн+Rтр+Rиз+Rнар) — тепловой поток от воды через стенку трубы, слой изоляции к окружающему водуху, Вт.

Остальные формулы — те же, что и в расчетах «голой» трубы.

Для упрощения расчётов теплоотдачи изолированных труб были разработаны похожие на предыдущие четыре пользовательские функции:

  1. ПФ для расчёта теплоотдачи изолированной горизонтальной трубы:

РтрГИ=qТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

  1. ПФ для вычисления тепловой мощности изолированной вертикальной трубы:

РтрВИ=qТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

  1. ПФ для определения падения температуры воды в теплоизолированной горизонтальной трубе:

dtтрГИ=dtТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

  1. ПФ для расчёта разности между температурами воды на входе и выходе теплоизолированной вертикальной трубы:

dtтрВИ=dtТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

Влияние степени черноты наружной поверхности на мощность теплового потока «голых» и изолированных труб

В рассмотренном ниже примере расчёты теплоотдачи выполнены с использованием пользовательских функций для «голой» и теплоизолированной труб со степенью черноты наружных поверхностей в диапазоне e=0,1…1,0.

Таблицы и графики Влияние степени черноты на теплоотдачу

Графики наглядно демонстрируют, что коэффициент излучения наружной поверхности теплоизоляции не значительно влияет на относительную мощность теплового потока. В то же время степень черноты внешней стенки «голой» трубы оказывает весьма существенное влияние на теплоотдачу! Это означает, что для «голых» труб необходимо более точно в расчётах задавать значение коэффициента излучения их наружных поверхностей. Для теплоизолированных труб точность задания степени черноты поверхности изоляции менее критична.

Коэффициенты излучения поверхностей различных материалов существенно отличаются и часто значительно зависят от температуры.

Таблица Степень черноты поверхности

Литература:

  1. Х.Уонг Основные формулы и данные по теплообмену для инженеров. Справочник. Москва. Атомиздат. 1979.
  2. Ф.Крейт, У.Блэк Основы теплопередачи. Москва, Мир, 1983.
  3. М.А. Михеев, И.М. Михеева Основы теплопередачи. Издание второе. Москва, Энергия, 1977.
  4. В.Р. Кулинченко Справочник по теплообменным расчётам. Киев. Тэхника, 1990.

Ссылка на скачивание файла: raschet-teplootdachi-truby (xls 271,0KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы


Расчет коэффициентов
теплопередачи онлайн

При расчете теплообменных аппаратов, анализе теплового баланса работающего оборудования, оценке тепловых потерь и решении многих других задач теплообмена, часто необходимо рассчитать тепловой поток, проходящий через твердую стенку, разделяющую жидкости или газы при различных температурах.

Вычислив коэффициенты теплоотдачи, на данной странице можно рассчитать тепловой поток, передаваемую мощность, коэффициент теплопередачи и температуру плоской или цилиндрической стенки.

Коэффициент теплопередачи плоской стенки

Толщина стенки, H, мм

Площадь стенки, S, м2

Теплопроводность стенки λ, Вт/(м*°C×сек)

Температура среды А, Т, °С

Коэффициент теплоотдачи, αа, Вт/м2*°С

Температура среды B, Тfb, °С

Коэффициент теплоотдачи, αb, Вт/м2*°С

Коэффициент теплопередачи К, Вт/м2* °С

Передаваемая мощность Р, Вт

Температура стенки Тwa, °С

Температура стенки Тwb, °С

www.caetec.ru

©Copyright Кайтек 2020

  • Коэффициент теплопередачи:
    K = 1 / (1 / αa + δ / λ + 1 / αb);
  • Тепловой поток:
    q = k×(Т — Тfb);
  • Передаваемая мощность:
    P = q×S;
  • Температура стенки А:
    Т = (αa×Т — q) / αa;
  • Температура стенки B:
    Тwb = (αb×Тfb + q) / αb.

Коэффициент теплопередачи цилиндрической стенки

Внутренний диаметр трубы, D1, мм

Наружный диаметр трубы, D2, мм

Общая длина трубы, L, мм

Теплопроводность стенки λ, Вт/(м*°C×сек)

Температура среды внутри трубы, Т, °С

Коэффициент теплоотдачи, αа, Вт/м2*°С

Температура среды снаружи трубы, Тfb, °С

Коэффициент теплоотдачи, αb, Вт/м2

Коэффициент теплопередачи К, Вт/м* °С

Передаваемая мощность Р, Вт

Температура внутренней поверхности стенки Тwa, °С

Температура наружной поверхности стенки Тwb, °С

www.caetec.ru

©Copyright Кайтек 2020

  • Коэффициент теплопередачи:
    K = π / ((1 / αa×D1) + (1 / 2λ)×Ln(D2 / D1) + 1 / (αb×D2));
  • Тепловой поток:
    q = k×(Т — Тfb);
  • Передаваемая мощность:
    P = q×L;
  • Температура внутренней стенки:
    Т = (αa×Т×π×D1 — q) / (π×D1×αa);
  • Температура наружной стенки:
    Тwb = (αb×Тfb×π×D2 + q) / (π×D2×αb).

©ООО»Кайтек», 2020. Любое использование либо копирование материалов или подборки материалов сайта, может осуществляться лишь с разрешения автора (правообладателя) и только при наличии ссылки на сайт www.caetec.ru

Понравилась статья? Поделить с друзьями:
  • Как быстро найти денег в гта 5
  • Как найти скороговорки с рисунками
  • Закрученные ногти на руках как исправить
  • Как найти телефон айфон через айклауд
  • Как найти свой аккаунт в телефоне хуавей