Термодинамика как найти кпд

Рассмотрим более
подробно цикл и принцип работы тепловой
машины. Уравнение первого закона
термодинамики для рабочего тела в
круговом процессе имеет вид:
,
поскольку при завершении его рабочее
тело возвращается в исходное состояние,
поэтому.

Но, согласно второму
закону термодинамики, теплота не может
превратиться в работу, если при этом не
протекает какой-либо компенсирующий
процесс. В тепловых двигателях таким
процессом является отдача части теплоты,
полученной рабочим телом, другому телу,
причем не тому, от которого она была
получена.

Рис.
3.5

Таким образом, принципиальная
схема тепловой машины должна включать
в себя минимум три элемента (рис. 3.5):

  1. рабочее тело (газ
    или пар), получающее теплоту q1
    и переводящее
    часть ее в работу цикла

l
ц
;

2) теплоотдатчик
(нагреватель), сообщающий за цикл каждой
единице массы рабочего тела теплоту
q1;

3) теплоприемник
(охладитель), в который от единицы массы
рабочего тела за каждый цикл отводится
теплота q2
, меньшая
q1.
Таким образом, в полезную работу
преобразуется только часть теплоты,
получаемой от теплоотдатчика:

.
(3.2)

Термическим кпд цикла тепловой машины называется отношение

работы
цикла к теплоте, подведенной к рабочему
телу (от теплоотдатчика), т.е.


. (3.3)

Термический КПД
характеризует совершенство цикла
тепловой машины (двигателя) с точки
зрения преобразования в полезную работу
теплоты q1,
подведенной к рабочему телу.

Так как по
второму закону термодинамики всегда
q2
> 0, то для

всех тепловых
машин
t
<
1.

3.5. Цикл Карно и теоремы Карно

Французский инженер
Сади Карно в 1824 г. опубликовал работу,
в которой предложил цикл, дающий
максимальное значение термического
КПД цикла тепловой машины при данных
значениях температур теплоотдатчика
и теплоприемника. Это прямой обратимый
цикл, состоящий из двух изотерм и двух
адиабат, изображенный в p,
v
координатах
на рис. 3.6 и получивший название цикла
Карно
.

Рис.
3.6. График цикла Карно

Рис.
3.7. Физическая картина

явлений
цикла Карно

Физическая картина
явлений может быть представлена следующим
образом (рис. 3.7). В точке А
находится газ с давлением объемом
υА
и температурой
Т1,
равной температуре нагревателя,
заключающего в себе большой запас
энергии. Поршень двигателя под влиянием
высокого давления начинает двигаться
вправо, при этом внутреннее пространство
цилиндра сообщено с нагревателем,
поддерживающим в расширяющемся газе
постоянную температуру Т1посредством
передачи ему соответствующего количества
энергии в виде теплоты q1.
Таким образом, расширение газа идет
изотермически по кривой
А-В.
В точке
В
цилиндр
изолируется от нагревателя, но газ
продолжает расширяться, двигая поршень
в том же направлении; процесс расширения
идет без подвода теплоты, т.е. адиабатно
(q =
0) по кривой
В-С.
В этом
процессе в работу расширения превращается
часть внутренней энергии газа и,
следовательно, его температура понижается
до значения
Т
2,
равного температуре охладителя. В этот
момент поршень достигает своего крайнего
правого положения.

Обратное движение
поршня происходит под воздействием
энергии, накопленной в маховике и
передаваемой посредством кривошипно-шатунного
механизма. Газ сжимается сначала
изотермически по кривой CD,
для этого внутреннее пространство
цилиндра сообщается с охладителем,
поддерживающим температуру
,

а в точке D
цилиндр изолируется от охладителя, и
дальнейшее сжатие идет по адиабате
DA
(q
= 0). В этом
процессе за счет работы сжатия внутренняя
энергия газа повышается, поэтому его
температура растет от Т1
до Т2.
Сжатие заканчивается в точке A,
где газ приходит к своему начальному
состоянию. На этом цикл завершен и
возможно его повторение.

Проследим процессы,
протекающие в рабочем теле в этом цикле,
считая рабочее тело идеальным
газом
.

Процесс А-В
– изотермическое расширение газа при
.
Газ совершает работу расширения
,
эквивалентную площади под кривой этого
процесса, за счет подвода к нему от
теплоотдатчика теплоты, эквивалентной
этой работе:.

Процесс В-С
– адиабатное расширение газа (q
= 0). Газ совершает
работу расширения за счет убыли его
внутренней энергии, при этом его
температура снижается до значения
.

Процесс CD
– изотермическое
сжатие газа при
.
На сжатие газа затрачивается работа,
эквивалентная площади под кривой этого
процесса, а в теплоприемник отводится
теплота,
эквивалентная этой работе, в количестве:

.

Процесс DA
– адиабатное
сжатие газа (q
= 0). На сжатие
газа затрачивается работа, эквивалентная
площади под кривой этого процесса. При
этом внутренняя энергия газа повышается,
и он нагревается до температуры
,
возвращаясь в исходное состояние в
точке А.

Термический
КПД цикла Карно.

.
(3.4)

Для адиабатных
процессов В-С
и
DA
можно записать

и
.

Следовательно,

или
.

Тогда из (3.4) следует,
что термический КПД цикла Карно для
идеального газа равен:

, (3.5)

т.е. зависит только
от соотношения температур теплоотдатчика
и теплоприемника.

Опираясь на второй
закон термодинамики, Карно доказал
также следующие положения, носящие
название теорем
Карно
:

1) термический КПД
цикла Карно не зависит от природы
рабочего тела и определяется только
отношением температур теплоотдатчика
Т1
и теплоприемника
Т2;

2) невозможно
создать тепловую машину, работающую в
том же диапазоне температур (т.е. с
),
термический КПД которой был бы выше

КПД
цикла Карно.

Действительно,
если температуры теплоотдатчика Т1
и теплоприемника Т2
постоянны в процессах подвода и отвода
тепла, то цикл Карно является единственно
возможным обратимым
циклом. Поэто­му его термический
к.п.д. устанавливает максимально
возмож­ную степень преобразования
теплоты в работу при заданных зна­чениях
Т1
и Т2.
Любой другой
цикл, в котором теплоотдатчик и
теплоприемник имеют те же значения
температур (Т1
и Т2),
а температура рабочего тела в процессах
подвода и отвода тепла изменяется, будет
необратимым,
так как в этом случае не выпол­няется
одно из условий обратимости, а именно
отсутствие конечной
разности температур рабочего тела и
теплоотдатчика (или теплоприемника)
при подводе или отводе тепла. Поскольку
необратимость
связана с потерей работы
(например,
за счет трения), значения термических
к.п.д. таких циклов всегда меньше цикла
Карно.

Таким образом,
термический КПД цикла Карно, определяемый
формулой (3.5), представляет собой
максимально
возможное значение термического КПД
тепловой машины
,
цикл которой реализуется в диапазоне
температур между Т1
и Т2
.

Из анализа
результатов, полученных С. Карно,
вытекает также следующее.

Во-первых,
так как реально Т1
< 
и Т2
> 0, то
всегда
.

Во-вторых,
если Т1 = Т2
,
то термический КПД цикла Карно равен
нулю. Следовательно, если все тела
термодинамической системы имеют
одинаковую температуру, т. е. находятся
в тепловом равновесии, то преобразование
теплоты в работу невозможно.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

На этой странице вы узнаете

  • В чем прелесть фазовых переходов?
  • Что лучше выбрать: Mercedes или BMW?

Люди научились летать в космос, покорять недра Земли и погружаться в глубины океана. Эти и другие достижения возможны благодаря способности извлекать максимум пользы из имеющихся ресурсов,а именно получать тепловую энергию различными доступными способами. Сегодня мы разберем задачи, которые заставят тепловые процессы играть на нашей стороне. 

Тепловые машины и их КПД

Рекомендация: перед тем как приступить к выполнению задач неплохо было бы повторить тему «Уравнение состояния идеального газа» . Но ключевую теорию, на которой основано решение задач, сейчас разберем вместе.

В чем прелесть фазовых переходов?

Вспомним, что фазовые переходы — это переход из одного агрегатного состояния в другое. При этом может выделяться большое количество теплоты.

Именно благодаря этому они и стали такими полезными для нас. Например, в ядерных реакторах воду используют в качестве рабочего тела, то есть она нагревается вследствие энергии, полученной из ядерных реакций, доходит до температуры кипения, а затем под большим давлением уже в качестве водяного пара воздействует на ротор генератора, который вращается и дает нам электроэнергию! На этом основан принцип работы атомных электростанций. 

А самый простой пример фазового перехода — образование льда на лужах в морозные ноябрьские дни. Правда о выделении тепла здесь речи не идет.

Мы не почувствуем, как испарится капелька у нас на руке, потому что это не требует много тепла от нашего тела. Но мы можем наблюдать, как горят дрова в мангале, когда мы жарим шашлык, потому что выделяется огромное количество теплоты. А зачем мы вообще рассматриваем эти фазовые переходы? Все дело в том, что именно фазовые переходы являются ключевым звеном во всех процессах, где нас просят посчитать КПД, от них нашему рабочему телу и подводится теплота нагревателя.

Человечество придумало такие устройства, которые могут переработать тепловую энергию в механическую.

Тепловые двигатели, или тепловые машины, — устройства, способные преобразовывать внутреннюю энергию в механическую. 

Их устройство довольно просто: они на входе получают какую-то энергию (в основном — энергию сгорания топлива), а затем часть этой теплоты расходуется на совершение работы механизмом. Например, в автомобилях часть энергии от сгоревшего бензина идет на движение. Схематично можно изобразить так:

Рабочее тело — то, что совершает работу — принимает от нагревателя количество теплоты Q1, из которой A уходит на работу механизма. Остаток теплоты Q2 рабочее тело отдает холодильнику, по сути — это потеря энергии.

Физика не была бы такой загадочной, если б все в ней было идеально. Как и в любом процессе или преобразовании, здесь возможны потери, зачастую очень большие. Поэтому «индикатором качества» машины является КПД, с которым мы уже сталкивались в механике:

Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.

(eta = frac{A}{Q_1}) , где

(eta) —  КПД,
A — работа газа (Дж),
Q1 — количество теплоты, полученное от нагревателя (Дж).

Мы должны понимать, что КПД на практике никогда не получится больше 1, поскольку всегда будут тепловые потери. 

Полезную работу можно расписать как Q1 — Q2 (по закону сохранения энергии). Тогда формула примет вид:

(eta = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})

Давайте попрактикуемся в применении данной формулы на задаче номер 9 из ЕГЭ.

Задача. Тепловая машина, КПД которой равен 60%, за цикл отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях).

Решение:

Давайте сначала вспомним нашу формулу для КПД:

(eta = frac{Q_1 — Q_2}{Q_1}),

где (Q_1) — это теплота, которую тело получает от нагревателя, (Q_2) — теплота, которая подводится к холодильнику.

Тогда отсюда можно вывести искомую теплоту нагревателя:

(eta Q_1 =Q_1-Q_2)
(eta Q_1 — Q_1= -Q_2)
(Q_1=frac{- Q_2}{eta-1}=frac{-100}{0,6-1}=250 Дж).

Ответ: 250 Дж

Цикл Карно

Мы знаем, что потери — это плохо, поэтому должны предотвращать их. Как это сделать? Нам ничего делать не нужно, за нас уже все сделал Сади Карно, французский физик, разработавший цикл, в котором машины достигают наивысшего КПД. Этот цикл носит его имя и состоит из двух изотерм и двух адиабат. Рассмотрим, как этот цикл выглядит в координатах p(V).

  • Температура верхней изотермы 1-2 — температура нагревателя (так как теплота в данном процессе подводится).
  • Температура нижней изотермы 3-4 — температура холодильника (так как теплота в данном процессе отводится).
  • 2-3 и 4-1 — это адиабатические расширение и сжатие соответственно, в них газ не обменивается теплом с окружающей средой.

Цикл Карно — цикл идеальной тепловой машины, которая достигает наивысшего КПД. 

Формула, по которой можно рассчитать ее КПД выражается через температуры:

(eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1}), где 

T1 — температура нагревателя,  
T2 — температура холодильника.

Что лучше выбрать: Mercedes или BMW?

Не то круто, что красиво, а то, что по Карно работает! Поэтому присматривайте такой автомобиль, у которого высокий КПД.

Интересно, что максимальный уровень КПД двигателя внутреннего сгорания автомобилей на данный момент всего около 43%. По официальным заявлениям компания Nissan Motor с 2021 года испытывает прообраз двигателя нового поколения с планируемым КПД 50%.

Приступим к задачам

Задачи на данную тему достаточно часто встречаются в задании 27 из КИМа ЕГЭ. Давайте разберем некоторые примеры.

Задание 1. Одноатомный газ совершает циклический процесс, как показано на рисунке. На участке 1–2 газ совершает работу A12 = 1520 Дж. Участок 3–1 представляет собой адиабатный процесс. Количество теплоты, отданное газом за цикл холодильнику, равно |Qхол| = 4780 Дж. Найдите работу газа |A13| на адиабате, если количество вещества постоянно.

Решение:

Шаг 1. Первое, с чего лучше начинать задачи по термодинамике — исследование процессов. 

Посмотрим на участок 1-2 графика: продолжение прямой проходит через начало координат, поэтому график функционально можно записать, как p = aV, где a — какое-то число, константа. Графиком является не изотерма, поскольку график изотермы в координатах p-V — гипербола. Из уравнения Менделеева-Клапейрона следует: (frac{pV}{T} = const). Отсюда можно сделать вывод, что возрастает температура, так как растут давление и объем.  Температура и объем растут, значит, увеличивается и внутренняя энергия и объем соответственно.

Участок 2-3: процесс изохорный, поскольку объем постоянен, следовательно, работа газом не совершается. Рассмотрим закон Шарля: (frac{p}{T} = const). Давление в этом процессе растет, тогда растет и температура, поскольку дробь не должна менять свое значение. Делаем вывод, что внутренняя энергия тоже увеличивается.

Участок 3-1: адиабата по условию, то есть количество теплоты в этом переходе равна нулю из определения адиабатного процесса. Работа газа отрицательна, так как газ уменьшает объем. 

Оформим все данные в таблицу. 

Определим знаки Q, используя первый закон термодинамики: Q = ΔU + A.

Из этих данных сразу видно, что количество теплоты, отданное холодильнику — это количество теплоты в процессе 2-3.

Шаг 2. Первый закон термодинамики для процесса 1-2 запишется в виде: 

Q12 = ΔU12 + A12

Работа A12 — площадь фигуры под графиком процесса, то есть площадь трапеции: 

(A_{12} = frac{p_0 + 2p_0}{2} * V0 =frac{3p_0V_0}{2}). 

Запишем изменение внутренней энергии для этого процесса через давление и объем. Мы выводили эту формулу в статье «Первое начало термодинамики»:

(Delta U_{12} = frac{3}{2}(2p_0 * 2V_0 — p_0V_0) = frac{9p_0V_0}{2}). 

Заметим, что это в 3 раза больше работы газа на этом участке: 

(Delta U_{12} = 3A_{12} rightarrow Q_{12} = 4A_{12}).

Шаг 3. Работа цикла — площадь фигуры, которую замыкает график, тогда . A = A12 — |A31|. С другой стороны, работа цикла вычисляется как разность между энергиями нагревателя и холодильника: A = Q12 — |Q31|.

 Сравним эти формулы:

Q12 -|Q31| = A12 — |A31|,

подставим выражения из предыдущего пункта:

4A12 — |Q31| = A12 — |A31| (rightarrow) |A31| = -3A12 + |Q31| = -31520 + 4780 = 220 Дж.

Ответ: 220 Дж

Задание 2. Найти КПД цикла для идеального одноатомного газа.

Решение:

Шаг 1. КПД цикла определим по формуле: (eta = frac{A}{Q}), где Q — количество теплоты от нагревателя, а А — работа газа за цикл. Найдем А как площадь замкнутой фигуры: A = (2p1 — p1)(3V1 — V1) = 2p1V1.

Шаг 2. Найдем процесс, который соответствует получению тепла от нагревателя. Воспользуемся теми же приемами, что и в прошлой задаче:

Посмотрим на участок 1-2 графика: давление растет, объем не меняется. По закону Шарля (frac{p}{T} = const) температура тоже растет. Работа газа равна 0 при изохорном процессе, а изменение внутренней энергии положительное.

2-3: давление не меняется, растет объем, а значит, работа газа положительна. По закону Гей-Люссака (frac{V}{T} = const) температура тоже растет, растет и внутренняя энергия.

3-4: давление уменьшается, следовательно, и температура уменьшается. При этом процесс изохорный и работа газа равна 0.

4-1: давление не меняется, объем и температура уменьшаются — работа газа отрицательна и внутренняя энергия уменьшается.

Оформим данные в таблицу: 

Отметим, что  необходимое Q = Q12 + Q23.

Шаг 3. Запишем первый закон термодинамики для процессов 1-2 и 2-3:

(Q_{12} = U_{12} + A_{12} = Delta U_{12} = frac{3}{2}(2p_1V_1 -p_1V_1) = frac{3}{2}p_1V_1).
(Q_{23} = Delta U_{23} + A_{23}), работу газа найдем как площадь под графиком: A23 = 2p1(3V1 — V1) = 4p1V1.
(Delta U_{12} = frac{3}{2}(2p_1 * 3V_1 — 2p_1V_1) = 6p_1V_1).
(Q_{23} = Delta U_{23} + A_{23} = 10p_1V_1).

Шаг 4. Мы готовы считать КПД: (eta = frac{A}{Q} = frac{A}{Q_{12} + Q_{23}} = frac{2p_1V_1}{frac{3}{2}p_1V_1 + 10p_1V_1} = frac{4}{23} approx 0,17).

Ответ: 17%

Теперь вас не должно настораживать наличие графиков в условиях задач на расчет КПД тепловых машин. Продолжить обучение решению задач экзамена вы можете в статьях «Применение законов Ньютона» и «Движение точки по окружности».

Фактчек

  • Тепловые двигатели — устройства, способные преобразовывать внутреннюю энергию в механическую. 
  • Тепловая машина принимает тепло от нагревателя, отдает холодильнику, а рабочим телом совершает работу.
  • Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.
    (eta = frac{A}{Q_1} = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})  
  • Цикл Карно — цикл с максимально возможным КПД: (eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1})
  • Не забываем, что работа считается, как площадь фигуры под графиком.

Проверь себя

Задание 1. 
1 моль идеального газа переходит из состояния 1 в состояние 2, а потом — в состояние 3 так, как это показано графике. Начальная температура газа равна T0 = 350 К. Определите работу газа при переходе из состояния 2 в состояние 3, если k = 3, а n = 2.

  1. 5672 Дж
  2. 4731 Дж
  3. 5817 Дж
  4. 6393 Дж

Задание 2. 
1 моль идеального одноатомного газа совершает цикл, который изображен на pV-диаграмме и состоит из двух адиабат, изохоры, изобары. Модуль отношения изменения температуры газа при изобарном процессе ΔT12 к изменению его температуры ΔT34 при изохорном процессе равен 1,5. Определите КПД цикла.

  1. 0,6
  2. 0,5
  3. 0,8
  4. 1

Задание 3.
В топке паровой машины сгорело 50 кг каменного угля, удельная теплота сгорания которого равна 30 МДж/кг. При этом машиной была совершена полезная механическая работа 135 МДж. Чему равен КПД этой тепловой машины? Ответ дайте в процентах.

  1. 6%
  2. 100%
  3. 22%
  4. 9%

Задание 4.
С двумя молями одноатомного идеального газа совершают циклический процесс 1–2–3–1 (см. рис.). Чему равна работа, совершаемая газом на участке 1–2 в этом циклическом процессе?

  1. 4444 Дж
  2. 2891 Дж
  3. 4986 Дж
  4. 9355 Дж

Ответы:1 — 3; 2 — 1; 3 — 4; 4 — 3.

Второе начало термодинамики – физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Существуют несколько эквивалентных формулировок второго начала термодинамики:

  • Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему» (такой процесс называется процессом Клаузиуса).
  • Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Эквивалентность этих формулировок легко показать. В самом деле, допустим, что постулат Клаузиуса неверен, то есть существует процесс, единственным результатом которого была бы передача тепла от более холодного тела к более горячему. Тогда возьмем два тела с различной температурой (нагреватель и холодильник) и проведем несколько циклов тепловой машины, забрав тепло (Q_1) у нагревателя, отдав (Q_2) холодильнику и совершив при этом работу (A=Q_1-Q_2). После этого воспользуемся процессом Клаузиуса и вернем тепло (Q_2) от холодильника нагревателю. В результате получается, что мы совершили работу только за счет отъема теплоты от нагревателя, то есть постулат Томсона тоже неверен.

С другой стороны, предположим, что неверен постулат Томсона. Тогда можно отнять часть тепла у более холодного тела и превратить в механическую работу. Эту работу можно превратить в тепло, например, с помощью трения, нагрев более горячее тело. Значит, из неверности постулата Томсона следует неверность постулата Клаузиуса.

Таким образом, постулаты Клаузиуса и Томсона эквивалентны.

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

  • «Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии).

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

Коэффицие́нт поле́зного де́йствия (КПД) – характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно (eta) («эта»). (eta= frac{W_{пол}}{W_{cyм}}). КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:

(eta = frac AQ cdot 100%), где А – полезная работа, а (Q) – затраченная энергия. В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии.

КПД теплово́го дви́гателя – отношение совершенной полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле:

(eta = frac{Q_1-Q_2}{Q_1}cdot 100%),

где (Q_1) – количество теплоты, полученное от нагревателя, (Q_2) – количество теплоты, отданное холодильнику.

Наибольшим КПД среди циклических машин, оперирующих при заданных температурах горячего источника (T_1) и холодного (T_2), обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен

(eta =frac {T_1-T_2}{T_1}.)

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся. Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая постоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро)

Универсальная газовая постоянная

Массу, в свою очередь, можно вычислить, как произведение плотности и объема.

Масса

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Уравнение МКТ

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Формулы термодинамики

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Уравнение МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Первое начало термодинамики

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

Изотермический процесс

Изохорный процесс протекает при постоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

Изохорный процесс

Изобарный процесс идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

Изобарный процесс

Адиабатный процесс. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Адиабатный процесс

Внутренняя энергия одноатомного и двухатомного идеального газа

Внутренняя энергия

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Теплоемкость газа

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Молярная теплоемкость

Тепловые машины. Формула КПД в термодинамике

Тепловая машина, в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вновь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

КПД

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы  – помните о студенческом сервисе, специалисты которого готовы в любой момент прийти на выручку.

Понравилась статья? Поделить с друзьями:
  • Рассказ как найти подходящую собаку
  • Как найти номер цвета по фото
  • Как найти учительницу по математике
  • Как найти связку ключей в монашки
  • Как найти сотовые вышки операторов