Точки пересечения с осями парабола как найти

В предыдущем уроке мы подробно разобрали,
как построить параболу.
В этом уроке мы разберем, как решать типовые задачи на квадратичную функцию.


Как найти нули квадратичной функции

Запомните!
!

Чтобы найти координаты точек нулей функции, нужно
в исходную функцию подставить вместо «y» число
ноль.

Рассмотрим задачу.

Найти нули квадратичной
функции «y = x2 − 3».

Подставим в исходную функцию вместо «y» ноль и решим полученное
квадратное уравнение.

0 = x2 − 3
x2 − 3 = 0

x1;2 =

0 ±
02 − 4 · 1 · (−3)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1;2 = ±√3

Ответ: нули функции «y = x2 − 3» :
    

x1 = √3;
    

x2 = 3 .

Как найти при каких значениях
«x» квадратичная функция принимает заданное
числовое значение

Запомните!
!

Чтобы найти при каких значениях «x» квадратичная функция принимает заданное числовое значение,
нужно:

  • вместо «y» подставить в функцию заданное числовое значение;
  • решить полученное квадратное уравнение относительно «x».

Рассмотрим задачу.

При каких значениях «x» функция
«y = x2 − x − 3» принимает значение
«−3»
.

Подставим в исходную функцию
«y = x2 − x − 3» вместо «y = −3» и
найдем «x».

y = x2 − x − 3

−3 = x2 − x − 3
x2 − x − 3 = −3
x2 − x − 3 + 3 = 0
x2 − x = 0
x1;2 =

1 ±
12 − 4 · 1 · 0
2 · 1

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 1 x2 = 0

Ответ: при «x = 0» и
«x = 1» функция «y = x2 − x − 3»
принимает значение «y = −3».

Как найти координаты точек пересечения параболы и прямой

Запомните!
!

Чтобы найти точки пересечения параболы с прямой нужно:

  • приравнять правые части функций (те части функций, в которых содержатся «x»);
  • решить полученное уравнение относительно «x»;
  • подставить полученные числовые значения «x»
    в любую из функций и найти координаты точек по оси «Оy».

Рассмотрим задачу.

Найти координаты точек пересечения параболы «y = x2»
и прямой «y = 3 − 2x».

Приравняем правые части функций и решим
полученное уравнение относительно «x».

x2 = 3 − 2x
x2 − 3 + 2x = 0
x2 + 2x − 3 = 0

x1;2 =

−2 ±
22 − 4 · 1 · (−3)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 1 x2 = −3

Теперь подставим в любую из заданных функций (например, в
«y = 3 − 2x») полученные
числовые значения «x», чтобы найти координаты
«y» точек пересечения.


1)   x = −3
y = 3 − 2x
y(−3) = 3 − 2 · (−3) = 3 − (−6) = 3 + 6 = 9
(·) A (−3; 9)
— первая точка пересечения.


2)   x = 1
y = 3 − 2x
y(1) = 3 − 2 · 1 = 3 − 2 = 1
(·) B (1; 1)
— вторая точка пересечения.

Запишем полученные точки пересечения с их координатами в ответ.

Ответ: точки пересечения параболы
«y = x2»
и прямой «y = 3 − 2x»:
(·) A (−3; 9) и
(·) B (1; 1).

Как определить, принадлежит ли точка графику функции параболы

Запомните!
!

Чтобы проверить принадлежность точки параболе нет необходимости строить график функции.

Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.

  • Если получится верное равенство, значит, точка принадлежит графику функции.
  • Если получится неверное равенство, значит, точка
    не принадлежит графику функции.

Рассмотрим задачу:

Не строя графика функции «y = x2», определить, какие точки принадлежат ему:
(·) А(2; 6),    
(·) B(−1; 1)
.

Подставим в функцию
«y = x2»

координаты точки (·) А(2; 6).


y = x2
6 = 22
6 = 4


(неверно)

Значит, точка (·) А(2; 6)
не принадлежит графику функции
«y = x2».

Подставим в функцию
«y = x2»

координаты точки (·) B(−1; 1).


y = x2
1 = (−)12
1 = 1


(верно)

Значит, точка (·) B(−1; 1)
принадлежит графику функции
«y = x2».


Как найти точки пересечения параболы с осями координат

Рассмотрим задачу

Найти координаты точек пересечения параболы
«y = x2 −3x + 2» с осями координат
.

Сначала определим точки пересечения функции с осью «Ox».
На графике функции эти точки выглядят так:

точки пересечения с осью Ox

Как видно на рисунке выше, координата «y» точек пересечения с осью «Ox»
равна нулю, поэтому подставим «y = 0» в
исходную функцию «y = x2 −3x + 2»
и найдем их координаты по оси «Ox».

0 = x2 −3x + 2
x2 −3x + 2 = 0

x1;2 =

3 ±
32 − 4 · 1 · 2
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 2 x2 = 1

Запишем координаты точек пересечения графика с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).

Теперь найдем координаты точки пересечения с осью «Oy».

точки пересечения с осью Oy

Как видно на рисунке выше, координата «x»
точки пересечения с осью «Oy» равна нулю.

Подставим «x = 0»
в исходную функцию
«y = x2 −3x + 2»
и найдем координату точки по оси
«Oy».

y(0) = 02 − 3 · 0 + 2 = 2

Выпишем координаты полученной точки: (·) C (0; 2)

Запишем в ответ все координаты точек пересечения параболы с осями.

Ответ: точки пересечения с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).
С осью «Oy»: (·)C (0; 2).


Как определить при каких значениях x функция принимает
положительные или
отрицательные значения

Напоминаем, что когда в задании говорится «функция принимает
значения» — речь идет о
значениях«y».
Другими словами, необходимо ответить на вопрос: при каких значениях
«x», координата
«y» положительна или отрицательна.

Запомните!
!

Чтобы по графику функции определить, где функция принимает положительные или отрицательные значения нужно:

  • провести прямые через точки в местах, где график пересекает ось «Ox»;
  • определить положительные или отрицательные значения принимает функция на промежутках между проведенными прямыми;
  • записать ответ для каждого промежутка относительно «x».

Рассмотрим задачу.

С помощью графика квадратичной функции, изображенного на рисунке, ответить:
При каких значениях «x» функция принимает 1) положительные значения; 2) отрицательные значения.

положительные и отрицательные значения функциии

Проведем через точки, где график функции пересекает ось «Ox» прямые.

положительные и отрицательные значения функциии с доп. прямыми

Определим области, где функция принимает отрицательные или положительные значения.

положительные и отрицательные значения на графике

Подпишем над каждой полученной областью, какие значения принимает
«x» в каждой из выделенных областей.

положительные и отрицательные значения на графике c подписью относительно x

Ответ: при «x < −1» и
«x > 2» функция принимает отрицательные значения;
при «−1 < x < 2» функция принимает
положительные значения.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Расположение графика квадратного трёхчлена относительно осей координат

В §28 данного справочника мы показали, что квадратный трёхчлен можно представить в виде:

$$ ax^2+bx+c = a(x+ frac{b}{2a})^2-frac{D}{4a}, D = b^2-4ac $$

Мы получаем:

  • ось симметрии $x = -frac{b}{2a}$
  • вершину параболы на оси симметрии $(–frac{b}{2a}; -frac{D}{4a})$
  • точку пересечения (0;c) с осью OY

Любая парабола $y = ax^2+bx+c, a ≠ 0$ пересекается с осью OY в единственной точке (0;c).

Количество точек пересечения параболы $y = ax^2+bx+c$ с осью OX зависит от знака дискриминанта.

Если $D gt 0$, парабола имеет две точки пересечения с $x_1,2 = frac{-b pm sqrt{D}}{2a}$ на оси OX.

Если D = 0, парабола имеет одну точку пересечения $x_0 = -frac{b}{2a}$, которая лежит на оси OX и является вершиной параболы.

Если $D lt 0$ у параболы нет ни одной точки пересечения с осью OX.

Точки пересечения параболы с осью OX

$a gt 0$

$a lt 0$

$D gt 0$

Расположение графика квадратного трёхчлена относительно осей координат рис.1 Расположение графика квадратного трёхчлена относительно осей координат рис.2

$x_(1,2) = frac{-b pm sqrt{D}}{2a}$

D = 0

Расположение графика квадратного трёхчлена относительно осей координат рис.3 Расположение графика квадратного трёхчлена относительно осей координат рис.4

$x_0 = -frac{b}{2a}$

$ D lt 0 $

Расположение графика квадратного трёхчлена относительно осей координат рис.5 Расположение графика квадратного трёхчлена относительно осей координат рис.6

${ varnothing }$-нет пересечений

Точки пересечения двух парабол

На практике часто возникает задача «перехвата» одного тела другим, т.е. поиска точек пересечения двух траекторий; а тела в поле тяготения Земли нередко движутся по параболе.

Точки пересечения двух парабол

Поэтому исследовать возможные точки пересечения двух парабол – важная прикладная задача. Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, quad y = a_2 x^2+b_2 x+c_2 $$

В точках пересечения выполняется равенство:

$$ a_1 x^2+b_1 x+c_1 = a_2 x^2+b_2 x+c_2 $$

$$ (a_1-a_2 ) x^2+(b_1-b_2 )x+(c_1-c_2 ) = 0 $$

Если ввести обозначения $A = a_1-a_2, B = b_1-b_2, C = c_1-c_2$, получаем уравнение:

$$ Ax^2+Bx+C = 0 $$

Количество решений этого уравнения в зависимости от нулевых и ненулевых значений параметров равно 11 и описывается схемой общего алгоритма решений квадратного уравнения (см.§25 данного справочника).

A = B = C = 0

$ a_1 = a_2, b_1 = b_2, $

$ c_1 = c_2 $

Две параболы совпадают

Бесконечное множество общих точек, $x in Bbb R$

Бесконечное множество общих точек

$A = B = 0, C neq 0$

$ a_1 = a_2, b_1 = b_2, $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+bx+c_1$

$ y = ax^2+bx+c_2 $

У них общая ось симметрии

$ x = -frac{b}{2a}$, одна парабола находится над другой.

Ветки сходятся только на бесконечности.

Точек пересечения нет

Точек пересечения нет

$A = 0, B neq 0, C = 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c$

$ y = ax^2+b_2 x+c $

Обе проходят через точку (0;c).

Это – единственная точка пересечения.

Одна точка пересечения

(0;c)

Одна точка пересечения

$A = 0, B neq 0, C neq 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c_1$

$ y = ax^2+b_2 x+c_2 $

Абсцисса точки пересечения

$ x = — frac{C}{B} = -frac{c_1-c_2}{b_1-b_2}$

Одна точка пересечения (касание)

Одна точка пересечения (касание)

$A neq 0, B = 0, C = 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c$

$ y = a_2 x^2+bx+c $

Пересекаются при x=0 (точка касания)

Одна точка пересечения (касание) (0;c)

Точек пересечения нет

$A neq 0, B = 0, C neq 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c_1$

$ y = a_2 x^2+bx+c_2 $

Не пересекаются, если

$- frac{c_1-c_2}{a_1-a_2} lt 0 $

Две точки пересечения

Две точки пересечения

Если

$- frac{c_1-c_2}{a_1-a_2} gt 0 $

Пересекаются в двух точках

$$ x_{1,2} = pm sqrt{-frac{c_1-c_2}{a_1-a_2}} $$

Две точки пересечения

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C = 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$$ y = a_1 x^2+b_1 x+c $$

$$ y = a_2 x^2+b_2 x+c $$

Две точки пересечения

$ x_1 = 0 $

$$x_2 = -frac{b_1-b_2}{a_1-a_2}$$

Две точки пересечения,

одна из которых (0;c)

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C neq 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Все параметры парабол разные

Ищем дискриминант:

$$ D = B^2-4AC $$

Если $D gt 0$

Две точки пересечения

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} $$

Две точки пересечения

Две точки пересечения

Если D = 0

Одна точка пересечения (касание)

$$ x_0 = -frac{B}{2A} $$

Одна точка пересечения

(касание)

Одна точка пересечения

Если $D lt 0$

Точек пересечения нет

Точек пересечения нет

Точек пересечения нет

Внимание!

Если две параболы не совпадают, то они могут иметь 1) две точки пересечения; 2) одну точку пересечения; 3) ни одной точки пересечения.

Иметь ровно 3, 4, 5 и т.д. точек пересечения две параболы не могут!

Примеры

Пример 1. Найдите точки пересечения параболы с осями координат:

$а) y = 3x^2+2x-1$

Пример 1. а)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -1end{array} right.}$

Пересечение с осью OX:

$$ 3x^2+2x-1 = 0 Rightarrow (3x-1)(x+1) = 0 Rightarrow $$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{3} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ — две точки пересечения

$б) y = -4x^2-3x+1$

Пример 1. б)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ -4x^2-3x+1 = 0 Rightarrow 4x^2+3x-1 = 0 $$

$$ (4x-1)(x+1) = 0 Rightarrow$$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{4} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ — две точки пересечения

$в) y = 5x^2-2x+1$

Пример 1. в)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ 5x^2-2x+1 = 0 $$

$$ D = 2^2-4 cdot 5 cdot 1 = 4-20 = -16 lt 0 $$

Парабола не пересекает ось OX

$ г) y = -x^2+4x-4 $

Пример 1. г)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -4end{array} right.}$

Пересечение с осью OX:

$$ -x^2+4x-4 = 0 Rightarrow x^2-4x+4 = 0 Rightarrow $$

$$ Rightarrow (x-2)^2 = 0 Rightarrow {left{ begin{array}{c} x = 2 \ y = 0 end{array} right.}$$ — одна точка пересечения

Пример 2*. Даны две параболы

$$ y = 2x^2+5x+1 и y = x^2+3x+k $$

Найдите такое значение параметра k, чтобы параболы

1) имели две точки пересечения; 2) имели одну точку пересечения; 3) не пересекались.

По условию

$$ a_1 = 2, b_1 = 5, c_1 = 1, a_2 = 1, b_2 = 3, c_2 = k $$

$$ a_1 neq a_2, b_1 neq b_2 $$

A = 2-1 = 1, B = 5-3 = 2, C = 1-k

Нам необходимо рассмотреть 4 последних случая из представленных выше, в таблице §29.

1) Параболы имеют две точки пересечения в двух случаях:

1 случай: $c_2 = c_1$, k = 1

Пример 2* 1 случай

$$x_1 = 0, x_2 = -frac{B}{A} = -2$$

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x+1 end{array} right.} Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x_1 = 0 \ y_1 = 1end{array} right.} \ {left{ begin{array}{c} x_2 = -2 \ y_2 = -1 end{array} right.} end{array} right.$$

2 случай: $c_2 ≠ c_1, D gt 0$

$$ D = B^2-4AC = 2^2-4 cdot 1 cdot (1-k) = 4k gt 0 Rightarrow k gt 0 $$

Пример 2* 2 случай

Например, k = 4

$$ D = 4k = 16 = 4^2 $$

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} = frac{-2 pm 4}{2} = left[ begin{array}{cc} x_1 = -3\ x_2 = 1 end{array} right. $$

Оба случая можем объединить требованием $k gt 0$.

2) Параболы имеют одну точку пересечения, если:

$$ D = 4k = 0 Rightarrow k = 0 $$

Пример 2 случай 2)

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x end{array} right.} $$

$$ x_0 = frac{-B}{2A} = -1 $$

3) Параболы не имеют общих точек, если:

$$ D = 4k lt 0 Rightarrow k lt 0 $$

Пример 2* 3)

Например, k = -1

Ответ: 1) $k gt 0$; 2) k = 0; 3) $k lt 0$

Пример 3. Две параболы с общей вершиной

Найдите соотношение параметров двух парабол, при котором они будут пересекаться в одной точке – вершине парабол.

Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, y = a_2 x^2+b_2 x+c_2 $$

Координаты вершин:

$$ left( -frac{b_1}{2a_1}, — frac{D_1}{4a_1} right), left(- frac{b_2}{2a_2},- frac{D_2}{4a_2} right) $$

По условию:

$$ {left{ begin{array}{c} -frac{b_1}{2a_1} = -frac{b_2}{2a_2} \ -frac{D_1}{4a_1} = -frac{D_2}{4a_2} end{array} right.} Rightarrow {left{ begin{array}{c} frac{b_1}{a_1} = frac{b_2}{2a_2} \ frac{D_1}{a_1} = frac{D_2}{a_2} end{array} right.} $$

Получаем две пропорции, которым параметры уравнений должны удовлетворять одновременно.

Пример 4. Используя результаты примера 3, найдите две параболы, у которых такая же вершина, как у $y = frac{x^2}{2}-3x+1$.

Координаты вершины:

$$ x_0 = — frac{b}{2a} = — frac{-3}{2 cdot frac{1}{2}} = 3, D = b^2-4ac = 3^2-4 cdot frac{1}{2} cdot 1 = 7 $$

$$ y_0 = — frac{D}{4a} = — frac{7}{4 cdot frac{1}{2}} = -3,5 $$

Уравнение искомой параболы: $y = ax^2+bx+c$

Пропорции для параметров (см. пример 3):

$$ {left{ begin{array}{c} frac{b}{a} = frac{-3}{1/2} = -6 \ frac{D}{a} = frac{7}{1/2} = 14 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = 14a end{array} right.} $$

Пусть для искомых двух парабол a=1 и a=-0,2 (можно взять любые другие значения). Получаем:

$$ {left{ begin{array}{c} a = 1 \ b = -6a = -6 \ D = 14a = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ b^2-4ac = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ 36-4c = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ c = frac{36-14}{4} = 5,5 end{array} right.}$$

$$ y = x^2-6x+5,5 $$

$$ {left{ begin{array}{c} a = -0,2 \ b = -6a = 1,2 \ D = 14a = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ 1,2^2-4 cdot (-0,2)c = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ c = — frac{1,44+2,8}{0,8} = -5,3 end{array} right.} $$

$$ y = -0,2x^2+1,2x-5,3 $$

Параболы

$$ y = frac{x^2}{2}-3x+1, y = x^2-6x+5,5, y = -0,2x^2+1,2x-5,3 $$

имеют общую вершину (3;-3,5)

Пример 4.

Пример 5. Комета движется по параболической траектории, которая в выбранной системе координат описывается уравнением $y = frac{x^2}{3}-2x+5$.

Космический аппарат запускается из начала координат и также движется по параболической траектории. Рассчитайте уравнение этой траектории так, чтобы её вершина совпала с вершиной траектории кометы.

Координаты вершины траектории кометы:

$$ x_0 = -frac{b}{2a} = -frac{-2}{2 cdot frac{1}{3}} = 3, D = b^2-4ac = 2^2-4 cdot frac{1}{3} cdot 5 = — frac{8}{3} $$

$$ y_0 = — frac{D}{4a} = — frac{-8/3}{4 cdot 1/3} = 2 $$

Уравнение траектории космического аппарата: $y = ax^2+bx+c$.

Аппарат запускается из начала координат, т.е. его траектория пересекается с осью OY в точке (0;0). Значит, в уравнении параболы c = 0.

Пропорции для параметров (см. пример 3) с учетом c = 0:

$$ {left{ begin{array}{c} frac{b}{a} = frac{-2}{1/3} = -6 \ frac{D}{a} = frac{-frac{8}{3}}{frac{1}{3}} = -8 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = b^2-4a underbrace{c}_{text{= 0 }} = b^2 = -8a end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ b^2 = -8a end{array} right.} Rightarrow $$

$$ {left{ begin{array}{c} b = frac{-8a}{-6a} = frac{4}{3} \ a = -frac{b}{6} = -frac{2}{9} end{array} right.} $$

Уравнение траектории космического аппарата с «перехватом» кометы в вершине:

$$ y = -frac{2}{9} x^2+ frac{4}{3} x $$

Пример 5.

Функция вида y=ax^2+bx+c , где aneq 0 называется квадратичной функцией

График квадратичной функции – парабола

парабола, построение параболы, график парабола

Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА 

y=x^2, то есть a=1, b=0, c=0

Для построения заполняем таблицу, подставляя значения x в формулу:

parabola2

Отмечаем  точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х ( в данном случае шаг 1 ), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:

классическая парабола, парабола, построение параболы

Нетрудно заметить, что если мы возьмем случай a=-1, b=0, c=0, то есть y=-x^2, то мы получим параболу, симметричную y=x^2 относительно оси (ох). Убедиться  в этом несложно, заполнив аналогичную таблицу:

парабола, построение параболы

II СЛУЧАЙ,  «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать a=2, a=-3, a=0.5? Как изменится поведение параболы? При |a|>1 парабола  y=ax^2 изменит форму, она “похудеет” по сравнению с параболой y=x^2 (не верите – заполните соответствующую таблицу – и убедитесь сами):

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы y=x^2 (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях x  ордината  y  каждой точки умножилась на 4.  Это произойдет со всеми ключевыми точками исходной  таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при |a|<1 парабола y=ax^2  «станет шире»  параболы y=x^2:

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант, ветви вниз

Давайте подитожим:

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ  «С»

 Теперь давайте введем в игру c (то есть рассматриваем случай, когда cneq 0), будем рассматривать параболы вида y=ax^2+c. Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы y=ax^2 вдоль оси (oy) вверх или вниз в зависимости от знака c:

парабола, построение параболы, сдвиг параболы, ветви параболы, коэффициенты параболы, дискриминант

IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси (oy) и будет, наконец, “гулять” по всей координатной плоскости? Когда b перестанет быть равным 0.

Здесь для построения параболы y=ax^2+bx+c нам понадобится формула для вычисления вершины: x_o=frac{-b}{2a},   y_o=y(x_o).

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу y=ax^2, что уже нам по силам. Если  имеем дело со случаем a=1, то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с a=2, например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы y=x^2-4x-2:

x_o=frac{4}{2}=2,  y_o=(2)^2-4cdot 2 -2=-6. Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы y=x^2,  ведь a=1 в нашем случае.

парабола, построение параболы, ветви параболы, дискриминант

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку (0;c).  Действительно, подставив в формулу y=ax^2+bx+c x=0, получим, что y=c. То есть ордината точки пересечения параболы  с осью (оу), это c.   В нашем примере (выше), парабола пересекает ось ординат в точке -2, так как c=-2.

2) осью симметрии параболы является прямая x=frac{-b}{2a}, поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая y к 0, мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение ax^2+bx+c=0. В зависимости от дискриминанта, будем получать одну (D=0,  x=-frac{b}{2a}), две (D>0, x_{1,2}=frac{-bpmsqrt{b^2-4ac}}{2a}) или нИсколько (D<0) точек пересечения с осью (ох). В предыдущем примере у нас  корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения  с осью (ох) у нас будут (так как D>0), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана  в виде y=ax^2+bx+c

1) определяем направление ветвей ( а>0 – вверх, a<0 – вниз)

2) находим координаты вершины (x_o;y_o) параболы по формуле x_o=frac{-b}{2a},   y_o=y(x_o).

3) находим точку пересечения параболы с осью (оу) по свободному члену c, строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение c велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу y=ax^2. Если |a|>1, то парабола y=ax^2 становится у’же по сравнению с y=x^2, если |a|<1, то парабола расширяется по сравнению с y=x^2

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение ax^2+bx+c=0

Пример 1

алгоритм построения параболы, парабола

Пример  2

парабола, построение параболы, ветви параболы, коэффициенты параболы, дискриминант

Замечание 1. Если же парабола изначально нам задана в виде y=a(x-m)^2+n, где m, n – некоторые числа (например, y=(x-5)^2-1), то построить ее будет еще легче, потому что нам уже заданы координаты вершины (m, n). Почему?

Возьмем квадратный трехчлен ax^2+bx+c и выделим в нем полный квадрат: ax^2+bx+c=a(x^2+frac{b}{a}x+frac{c}{a})=a((x^2+2frac{b}{2a}x+frac{b^2}{4a^2})-frac{b^2}{4a^2}+frac{c}{a})=a(x+frac{b}{2a})^2-frac{b^2}{4a}+c. Посмотрите, вот мы и получили, что m=frac{-b}{2a}, n=-frac{b^2}{4a}+c=y(frac{-b}{2a}). Мы с вами ранее называли   вершину параболы (x_o; y_o), то есть теперь x_o=m, y_o=n.

Например,  y=-frac{1}{3}{(x+2)}^2+6. Отмечаем на плоскости вершину параболы (-2; 6), понимаем, что ветви направлены вниз, парабола расширена (относительно y=x^2). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

парабола с ветвями вниз

Замечание 2. Если парабола задана в виде, подобном этому y=x(x-4) (то есть y представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае  – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Парабола (от греч. παραβολή — сравнение, приближение, кривая линия) — в геометрии это плоская кривая линия (в форме арки), где каждая из точек M (на рисунке ниже) равноудалена от неподвижной точки F (фокус) и от неподвижной линии DA, называемой директрисой (MF = MA).

Парабола
Парабола

Расстояние от фокуса до директрисы называется фокальным параметром параболы и обозначается как p.

Также это кривая, которую описывает вылетевший снаряд.

В литературе парабола — это аллегория, под которой скрывается важная истина.

Как выглядит парабола, когда меняется фокальный параметр (p)

Изменения фокального параметра, когда фокус находится на оси OX:

Когда фокус находится на оси OX

Изменения фокального параметра, когда фокус находится на оси OY:

Когда фокус находится на оси OY

Квадратичная функция и как построить график параболы

Квадратичная функция выглядит следующим образом:

y = ax² + bx + c, где a≠0

(a — старший коэффициент; b — второй коэффициент; с — свободный член).

Построение графика квадратичной функции

Шаги построения графика

1. Как определить, куда направлены ветви параболы

Таким образом выглядит функция y = x².
Таким образом выглядит функция y = x².

Т. е. a (старший коэффициент) в данном случае равен 1, b (второй коэффициент) и c (свободный член) оба равны 0.

Ветви параболы будут направлены вверх, когда a > 0.

Таким образом выглядит функция y = -x².
Таким образом выглядит функция y = -x².

А в данном случае a = –1 (b = 0, с = 0).

Ветви параболы будут направлены вниз, когда a < 0.

2. Как определить нули функции (значения х, где функция равна нулю)

Так как ордината (у) любой точки, лежащей на оси ОХ, равна нулю, значит нужно решить уравнение f (x) = 0. Т. е. ax² + bx + c = 0

Для этого нужно найти дискриминант по этой формуле: D = b² – 4ac, который определит количество корней квадратного уравнения.

  • Если D < 0, то у квадратичной параболы нет точек пересечения с осью ОХ (она расположена выше или ниже оси ОХ и не дотрагивается до неё);
  • Если D = 0, то квадратичная парабола имеет только одну точку пересечения с осью ОХ;
  • Если D > 0, то у квадратичной параболы будут две точки пересечения с осью ОХ, которые можно найти по этим формулам:

x1 i x2

3. Как вычислить координаты вершины параболы

Формулы для их вычисления:

Как вычислить координаты вершины параболы

4. Как посчитать точку пересечения параболы с осью OY

Точка пересечения параболы с осью OY имеет координаты (0;c). Так как абсцисса любой точки, лежащей на оси OY, равна нулю.

Чтобы найти точку пересечения параболы с осью OY, нужно всего лишь в вашу формулу вида ax² + bx + c вместо х подставить ноль.

Пример построения графика квадратичной функции

Например, нужно построить график квадратичной функции y = x² − 7x + 10.

1) Если квадратичная функция выглядит как y = ax² + bx + c, получается, в нашем случае: a = 1, b = −7, c = 10.

a = 1, а это a > 0, следовательно ветви параболы будут направлены вверх

2) Определяем нули функции, это значит ax² + bx + c = 0, в нашем случае: x² − 7x + 10 = 0

Ищем дискриминант по формуле: D = b² − 4ac, это D = (−7)² − 4*1*10 = 49 − 40 = 9

Потом вычисляем х1 и х2:

х1 = (−b + ²√D) / 2a = (7 + ²√9) / (2*1) = 5

х2 = (−b − ²√D) / 2а = (7 − ²√9) / (2*1) = 2

3) Вычисляем координаты вершины параболы:

х0 = −b / 2a = 7 / (2*1) = 3,5

y0 = −D / 4а = −9 / (4*1) = −2,25

4) Точка пересечения параболы с осью OY имеет координаты (0;c), следовательно, если c = 10, она пересекает её на (0;10).

Таким образом, получилась парабола такого вида:

ответ y = x²−7x+10

Свойства квадратичной функции y = x²

График функции y = x² выглядит следующим образом:

График функции y=x² выглядит следующим образом:

Свойства

1) Область определения функции y = x² — множество всех действительных чисел, т. е. D(y) = R = (−∞; +∞).

2) Множество значений функции — положительная полупрямая: E(y) = [0; +∞).

3) В точке x = 0 (и y = 0) функция принимает минимальные значения (наибольшего значения у функции нет).

Эта точка (с координатами (0;0)) является вершиной параболы; одновременно точка (0;0) является единственной общей точкой параболы с осями координат (начало координат).

4) Функция у = x² чётная, график симметричен относительно оси Оу, т. е. f(−x) = (−x)² = x² = f(x).

5) Функция непрерывна на всей области определения. На (−∞; 0) функция монотонно убывает, а на (0; + ∞) функция монотонно возрастает.

6) Функция у = x² непериодическая.

7) Единственный нуль функции — значение аргумента x = 0.

8) Функция у = x² не имеет асимптот.

9) Функция принимает положительные значения на всех точках параболы, кроме начала координат, т. е. в: (−∞;0) ∪ (0;+∞).

Узнайте также, что такое Экспонента, Аксиома, Корреляция, Логарифм и Гипербола в математике.

Квадратичная функция (парабола)

Все знают, как выглядит парабола y = x2. В седьмом классе мы рисовали таблицу:

x -3 -2 -1 0 1 2 3
y 9 4 1 0 1 4 9

После этого по точкам строили график:

Параболу y = ax2 + bx + c мы не станем строить каждый раз «по точкам» — для выпускника школы это просто несолидно. Ведь нам надо знать закономерности поведения данной функции. А эти закономерности таковы.

1. Знак коэффициента a отвечает за направление ветвей. При a > 0 ветви направлены вверх, при a < 0 — вниз.

На рисунке приведены две параболы y = ax2 с равными по модулю, но противоположными по знаку значениями a.


2. Абсолютная величина коэффициента a отвечает за «раскрыв» параболы. Чем больше |a|, тем у́же парабола (больше прижата к оси Y ). Наоборот, чем меньше |a|, тем шире парабола (больше прижата к оси X).

На рисунке приведены две параболы y = a1x2 и y = a2x2, у которых a2 > a1 > 0.


3. Абсцисса вершины параболы y = ax2 + bx + c находится по формуле:


Для нахождения ординаты вершины y0 удобнее всего подставить x0 в уравнение параболы. Но вообще, полезно помнить, что


где D = b2 − 4ac — дискриминант.

4. Точки пересечения параболы y = ax2 + bx + c с осью X находятся с помощью решения квадратного уравнения
ax2 + bx + c = 0. Если дискриминант равен нулю, то парабола касается оси X. Если дискриминант меньше нуля, то парабола не пересекает ось X.

5. Точка пересечения с осью Y находится легко: мы просто подставляем x = 0 в уравнение параболы. Получается точка (0, c).

А теперь покажем, как с помощью графика функции y = ax2 + bx + c решать квадратные неравенства.

1. Часто на тестировании мы предлагаем решить неравенство

x2 < 400.

Справляются далеко не все. Очень часто, не задумываясь, выдают «ответ»: x < ± 20.

Однако сама эта запись — абсурдна! Представьте, что вы слышите прогноз погоды: «Температура будет меньше плюс-минус двадцати градусов». Что, спрашивается, надеть — рубашку или шубу? :-)

Давайте решим это неравенство с помощью графика. Изобразим схематично график функции y = x2 и отметим все значения x, для которых y < 400.


Теперь мы видим правильный ответ: x ∈ (−20; 20).

2. Решим неравенство: x2 − 3x − 10 ≥ 0.

Графиком функции y = x2 − 3x − 10 служит парабола, ветви которой направлены вверх. Решая квадратное уравнение x2 − 3x − 10 = 0, находим x1 = −2 и x2 = 5 — в этих точках парабола пересекает ось X. Нарисуем схематично нашу параболу:


Мы видим, что при x ∈ (−2; 5) значения функции отрицательны (график проходит ниже оси X). В точках −2 и 5 функция обращается в нуль, а при x < −2 и x > 5 значения функции положительны. Следовательно, наше неравенство выполняется при .

Обратите внимание, что для решения неравенства нам достаточно было схематично изобразить параболу. Ось Y вообще не понадобилась!

3. Ещё одно неравенство: x2 + 2x + 4 > 0.

Ветви параболы y = x2 + 2x + 4 направлены вверх. Дискриминант отрицателен, т. е. уравнение x2 + 2x + 4 = 0 не имеет корней. Стало быть, нет и точек пересечения параболы с осью X.

Раз ветви параболы направлены вверх и она не пересекает ось X — значит, парабола расположена над осью X.


Получается, что значения функции положительны при всех возможных x. Иными словами, решения нашего неравенства — это все действительные числа.

Ответ: .

Квадратные неравенства являются неотъемлемой частью ЕГЭ. Разберём типичные примеры из банка заданий ЕГЭ.

4. Завиcимоcть объeма cпроcа q (тыc. руб.) на продукцию предприятия-монополиcта от цены p (тыc. руб.) задаeтcя формулой q = 100 − 10p. Выручка предприятия за меcяц r (в тыc. руб.) вычиcляетcя по формуле r(p) = q · p. Определите наибольшую цену p, при которой меcячная выручка r(p) cоcтавит не менее 240 тыc. руб. Ответ приведите в тыc. руб.

Подставим выражение для q в формулу выручки:

r(p) = qp = (100 − 10p)p = 100p − 10p2.

Выручка должна быть не менее (то есть больше или равна) 240 тысяч рублей. Поскольку цена p уже выражена в тысячах рублей, мы можем записать это условие в виде неравенства:

100p − 10p2 ≥ 240.

Переносим всё вправо и делим на 10:

p2 − 10p + 24 ≤ 0.

Для схематичного построения параболы находим корни уравнения p2 − 10p + 24 = 0. Они равны 4 и 6. Остаётся сделать рисунок.

Решением нашего неравенства служит отрезок [4; 6]. Нас просили найти наибольшее p. Оно равно 6.

Ответ: 6.

5. Выcота над землёй подброшенного вверх мяча меняетcя по закону h(t) = 1,6 + 8t − 5t2, где h — выcота в метрах, t — время в cекундах, прошедшее c момента броcка. Cколько cекунд мяч будет находитьcя на выcоте не менее трёх метров?

Итак, требуется, чтобы выполнялось неравенство h(t) ≥ 3. Подставляем сюда выражение для h:

1,6 + 8t − 5t2 ≥ 3.

Собираем всё справа:

5t2 − 8t + 1,4 ≤ 0.

Корни соответствующего уравнения 5t2 −8t+1,4 = 0 равны t1 = 0,2 и t2 = 1,4. Как дальше действовать — мы знаем.


Таким образом, через t1 = 0,2 секунды после начала полёта мяч оказался на высоте 3 метра. Мяч продолжал лететь вверх, высота увеличивалась; затем началось снижение, высота уменьшалась, и в момент времени t = 1,4 секунды снова стала равна трём метрам над землей.

Получается, что мяч находился на высоте не менее трёх метров в течение t2 − t1 = 1,2 секунд. В бланк ответов вписываем десятичную дробь 1,2.

6. Завиcимоcть температуры (в градуcах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экcпериментально и на иccледуемом интервале температур определяетcя выражением T(t) = T0 + bt + at2, где t — время в минутах, T0 = 1400 К, a = −10 К/мин, b = 200 К/мин. Извеcтно, что при температуре нагревателя cвыше 1760 К прибор может иcпортитьcя, поэтому его нужно отключать. Определите, через какое наибольшее время поcле начала работы нужно отключать прибор. Ответ выразите в минутах.

Согласно условию, зависимость температуры нагревательного элемента от времени определяется формулой:

T(t) = 1400 + 200t − 10t2.

В нормальном режиме работы прибора должно выполняться неравенство T ≤ 1760, или

1400 + 200t − 10t2 ≤ 1760.

Переносим всё вправо и делим на 10:

t2 − 20t + 36 ≥ 0.

Находим t1 = 2, t2 = 18 и делаем рисунок:

Получаем решения нашего неравенства:

left [ begin{array}{c}tleq 2,\tgeq 18.\end{array} right.

Остаётся понять: в какой же момент отключать прибор? Для этого надо представить физическую картину процесса.

Мы включаем прибор в момент времени t = 0. Температура нагревателя повышается и при t = 2 мин достигает 1760 К. Затем повышение температуры продолжается, в результате чего прибор может испортиться. Поэтому ясно, что отключать его надо при t = 2.

А что же решения t ≥ 18? Они не имеют физического смысла. Войдя в зону температур T > 1760, прибор испортится, и формула T(t) = 1400+200t−10t2, справедливая для исправного прибора, перестанет адекватно отражать реальность.

Поэтому в бланк ответов вписываем число 2.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Квадратичная функция (парабола)» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти воду признаки
  • Как найти женщину в краснодарском крае
  • Как найти иллюстрации бесконечного лета
  • Как найти простые проценты по вкладу
  • Как найти на алике по фото