Треугольник внутри круга как найти угол

Треугольник вписанный в окружность

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac<1><2>ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Углы, связанные с окружностью

Вписанные и центральные углы

Определение 1 . Центральным углом называют угол, вершина которого совпадает с центром окружности, а стороны являются радиусами радиусами (рис. 1).

Определение 2 . Вписанным углом называют угол, вершина которого лежит на окружности, а стороны являются хордами хордами (рис. 2).

Напомним, что углы можно измерять в градусах и в радианах. Дуги окружности также можно измерять в градусах и в радианах, что вытекает из следующего определения.

Определение 3 . Угловой мерой (угловой величиной) дуги окружности является величина центрального угла, опирающегося на эту дугу.

Теоремы о вписанных и центральных углах

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Фигура Рисунок Теорема
Вписанный угол
Вписанный угол Вписанные углы, опирающиеся на одну и ту же дугу равны.
Вписанный угол Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды
Вписанный угол Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды
Вписанный угол Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр
Окружность, описанная около прямоугольного треугольника

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу равны.

Вписанные углы, опирающиеся на одну и ту же хорду, равны, если их вершины лежат по одну сторону от этой хорды

Два вписанных угла, опирающихся на одну и ту же хорду, в сумме составляют 180° , если их вершины лежат по разные стороны от этой хорды

Вписанный угол является прямым углом, тогда и только тогда, когда он опирается на диаметр

Середина гипотенузы прямоугольного треугольника является центром описанной
около этого треугольника окружности.

Теоремы об углах, образованных хордами, касательными и секущими

Вписанный угол
Окружность, описанная около прямоугольного треугольника

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Фигура Рисунок Теорема Формула
Угол, образованный пересекающимися хордами
Угол, образованный секущими, которые пересекаются вне круга
Угол, образованный касательной и хордой, проходящей через точку касания
Угол, образованный касательной и секущей
Угол, образованный двумя касательными к окружности

Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами.

Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами

Угол, образованный пересекающимися хордами хордами
Формула:
Угол, образованный секущими секущими , которые пересекаются вне круга
Формула:

Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный касательной и хордой хордой , проходящей через точку касания
Формула:
Угол, образованный касательной и секущей касательной и секущей
Формула:

Величина угла, образованного касательной и секущей, равна половине разности величин дуг, заключённых между его сторонами

Угол, образованный двумя касательными касательными к окружности
Формулы:

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Углы в окружности

Рассмотрим углы в окружности и углы, связанные с окружностью.

  • Угол с вершиной в центре окружности.
  • Угол с вершиной на окружности (его стороны пересекают окружность).
  • Угол с вершиной внутри окружности (не в центре).
  • Угол с вершиной вне окружности, стороны которого пересекают окружность.

I. Угол с вершиной в центре окружности называется центральным углом.

Стороны центрального угла разбивают окружность на две части. Дугой, соответствующей данному центральному углу, называется та часть, которая содержится внутри угла.

Например, центральному углу AOC соответствует дуга AC (или дуга AFC. Обычно дугу называют двумя буквами. Но, поскольку любую из двух, на которые точки A и C делят окружность, можно назвать AC, то третью, дополнительную букву, иногда используют для уточнения выбранной дуги).

Градусная мера дуги окружности равна градусной мере соответствующего центрального угла:

II. Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом.

Стороны вписанного угла также разбивают окружность на две дуги. Говорят, что вписанный угол опирается на лугу, которая лежит внутри него.

Например, вписанный угол ABC опирается на дугу AC (или дугу AFC).

Вписанный угол равен половине дуги, на которую он опирается:

Есть другой вариант формулировки свойства вписанного угла.

Вписанный угол равен половине соответствующего ему центрального угла:

Вписанный угол, опирающийся на полуокружность — прямой.

И наоборот: любой прямой вписанный угол опирается на полуокружность.

Другая формулировка этого утверждения:

(обратно: Если вписанный угол прямой, то он опирается на диаметр).

III. Угол, вершина которого лежит в окружности — это угол между пересекающимися хордами.

Угол между пересекающимися хордами равен полусумме дуг, заключённых между его сторонами и сторонами вертикального ему угла.

IV. Угол с вершиной вне окружности, обе стороны которого пересекают окружность — это угол между секущими, которые пересекаются вне окружности.

Угол между секущими, пересекающимися вне окружности, измеряется полуразностью большей и меньшей дуг, заключенных между его сторонами.

источники:

http://www.resolventa.ru/spr/planimetry/cangle.htm

Углы в окружности

Angle of triangle inside circle

Hi there,

In the above diagram:

Q is the center of the circle,
PAT is a tangent to the circle, PR is parallel to AC, angle CAT = x. Prove that angle ABC = x.

I started off by going 90 — x to find CAB. Then used co-interior angles to find AQR, and then found out BQR.

I’m just curious, in this question, can I assume that QRB and ACB are right angled triangles? Becuase if they were, I would think the question would state that. How would I solve this?

Содержание

  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в треугольник
  4. Радиус описанной окружности около треугольника
  5. Площадь треугольника
  6. Периметр треугольника
  7. Сторона треугольника
  8. Средняя линия треугольника
  9. Высота треугольника
  10. Свойства
  11. Доказательство

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — не диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Треугольник вписанный в окружность

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

    [ r = frac{S}{(a+b+c)/2} ]

  2. Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    [ r = frac{S}{frac{1}{2}P} ]

  3. Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    [ r = sqrt{frac{(p-a)(p-b)(p-c)}{p}} ]

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

    [ R = frac{AC}{2 sin angle B} ]

  2. Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    [ R = frac{abc}{4S} ]

  3. Радиус описанной окружности около треугольника,
    если известны
    все стороны и полупериметр:

    [ R = frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}} ]

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

    [ S = pr ]

  2. Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    [ S = sqrt{p(p-a)(p-b)(p-c)} ]

  3. Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    [ S = frac{1}2 ah ]

  4. Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    [ S = frac{a^2}{2cdot (sin(α)⋅sin(β)) : sin(180 — (α + β))} ]

  5. Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = frac{1}{2}ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1.  Периметр треугольника вписанного в окружность,
    если известны все стороны:

    [ P = a + b + c ]

  2. Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    [ P = frac{2S}{r} ]

  3. Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    [ P = sqrt{ b2 + с2 — 2 * b * с * cosα} + (b + с) ]

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

    [ a = sqrt{b^2+c^2 -2bc cdot cos alpha} ]

  2. Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    [ a = frac{b · sin alpha }{sin β} ]

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

    [ l = frac{AB}{2} ]

  2. Средняя линия треугольника вписанного в окружность,
    если известны две стороны, ни одна из них не является
    основанием, и косинус угла между ними:

    [ l = frac{sqrt{b^2+c^2-2bc cdot cos alpha}}{2} ]

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

    [ h = frac{2S}{a} ]

  2. Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

  3. Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    [ h = frac{bc}{2R} ]

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

около треугольника описана окружность

Дано: окружность и треугольник,
которые изображены на рисунке 2.

Доказать: окружность описана
около треугольника.

Доказательство:

  1.  Проведем серединные
    перпендикуляры — HO, FO, EO.
  2.  O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

Следовательно: окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Геометрия – это раздел математики, который занимается решением вопросов, связанных с размером, формой, относительным положением фигур и свойствами пространства. Человек постоянно сталкивается с ней в повседневной жизни, ведь все, что его окружает – это геометрические фигуры (стены, потолок, техника и прочее). Поэтому необходимо иметь хотя бы минимальное представление о ее ключевых законах и фигурах. Вписанный треугольник в окружность – это треугольник, все вершины которого располагаются на окружности. Его также можно встретить в жизни. Например, по типу этого геометрического элемента создаются детали для машин.

Геометрия как систематическая и точная наука появилась в Древней Греции. Ее первые аксиоматические построения описаны в «Началах» Евклида. В то время эта наука занималась преимущественно изучением простейших фигур в пространстве и на плоскости, определением их площади и объема.

В 1637 году Декарт представил свой координатный метод, который стал фундаментом для дифференциальной и аналитической геометрии. Несколько позже были созданы еще 2 вида – проективная и начертательная. Но существенных изменений или отклонений от аксиоматического подхода Евклида в это время не происходило. Лишь в 1829 году произошли коренные изменения. Ученый Лобачевский отказался от аксиомы параллельности и создал совершенно инновационную неевклидовую геометрию. Именно это послужило толчком к дальнейшему развитию геометрии как науки и созданию новых теорий. Одна из таких касается вписанного треугольника в окружность.

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра. Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной (ВО). Описанной окружностью (ОО) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника.

Вписанная и описанная окружности

Вписанная и описанная окружность треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC. С помощью такого наглядного примера проще разобраться с данными геометрическими фигурами и их основными свойствами. В целом же, геометрия — это более наглядная наука. Это говорит о том, что намного легче воспринимать информацию, формулы, теоремы, если видеть их изображение или даже чертить самому. Все же зрительная память у большей части людей развита лучше, чем, например, слуховая.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую – это точка пересечения, она играет ключевую роль. Перед тем как найти окр-ть, ее центр в многоугольнике, требуется построить для каждого угла биссектрису, после чего выделить точку пересечения прямых. Она в свою очередь будет центром ВО, а ее радиус (R) при любых условиях будет перпендикулярен любой из сторон.

[warning]В любой треугольник можно вписать окр-ть, притом только одну. Потому что существует только одна точка пересечения всех биссектрис и перпендикуляров, исходящих из середин сторон.[/warning]

Свойство окружности, которой принадлежат вершины треугольника

Описанная окр-ть, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

  1. Центр ОО для прямоугольного треугольника находится на середине гипотенузы, у острого – внутри самого треугольника, а для тупоугольного – за ее пределами.
  2. Диаметр любой ОО равен половине отношения стороны и синуса угла, который принадлежит ей, в виде формулы можно представить следующим образом:
    Свойства треугольника вписанного в окружность
  3. Зная радиус ОО и значения углов, можно найти площадь, не прибегая к использованию длин сторон:
    Свойства треугольника вписанного в окружность

Для того чтобы более наглядно понять принцип ОО, решим простое задание. Допустим, что дан Δ ABC, стороны которого 10, 15, 8,5 см. Радиус ОО около треугольника (FB) составляет 7,9 см. Найти градусные меры каждого угла и через них площадь (S) фигуры.

Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем синус каждого угла. По условию известно, что сторона АВ равна 10 см. Определяем значение С:

Свойства треугольника вписанного в окружность

Используя таблицу Брадиса, узнаем, что градусная мера С равна 39°. Таким же методом найдем и остальные меры:

Свойства треугольника вписанного в окружность

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и R, найдем S:

Свойства треугольника вписанного в окружность

Ответ: S фигуры равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

[stop]Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в месте пересечения первых двух. Этот совет можно взять на вооружение школьникам и студентам.[/stop]

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка называют радиусом (R). В зависимости от того, какую окружность мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле, имеет прямое отношение к вычислению таких параметров, как:

  • площадь (S);
  • градусная мера каждого угла;
  • длины сторон, периметр.

Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, высоты, боковые стороны, углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. К тому же, формулу запомнить легко. Порядок вычисления имеет следующий вид:

Свойства треугольника вписанного в окружность

Если дан «правильный»

У равностороннего треугольника есть одна интересная особенность – у него совпадают медианы, высоты и биссектрисы. То есть, именно те отрезки, которые выступают также серединными перпендикулярами. Это означает, что центры, как вписанной, так и описанной окружности совпадают.  Это удобно при построении фигур и проведении вычислений. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус ВО будет целым натуральным числом, скорее наоборот. Для упрощенного исчисления используется формула R ВО в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса ВО треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра. R вписанной окружности в треугольник с равными «боковыми» вычисляется так:

м

Более наглядное применение указанных формул продемонстрируем на следующем задании. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина HJ = 16 см, JI = 9,5 см и HI равна 19 см (рисунок ниже). Определить R вписанной окр-ти, зная стороны.

Свойства треугольника вписанного в окружность

Поиск значения радиуса вписанной окружности

Решение: для нахождения R найдем полупериметр:

Свойства треугольника вписанного в окружность

Отсюда, зная механизм вычисления, узнаем следующий показатель. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Свойства треугольника вписанного в окружность

Отсюда следует, что искомый R равен 3,63 см. Согласно условию, все стороны равны, тогда искомый R будет:

Свойства треугольника вписанного в окружность

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет:

Свойства треугольника вписанного в окружность

В условии задачи может даваться треугольник с углом 90°, в таком случае гипотенуза фигуры будет равна диаметру. Более наглядно это выглядит так:

Свойства треугольника вписанного в окружность

[stop] Если задано задание на поиск внутреннего R, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% заданий полученное значение будет трансцендентным (т. е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула R описанной окружности многоугольника в зависимости от предложенных данных.[/stop]

Радиус внутренней окружности и площадь

Для того чтобы вычислить S треугольника, вписанного в окружность, используют лишь R и длины сторон многоугольника:

Свойства треугольника вписанного в окружность

Если в условии напрямую не дана величина радиуса, а только S, то указанная формула трансформируется в следующую:

Свойства треугольника вписанного в окружность

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь вписанной окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим S заданного многоугольника при помощи полупериметра.

Используя вышеуказанный алгоритм, определим S через R вписанной окр-ти:

Свойства треугольника вписанного в окружность

В силу того, что в любой многоугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск его S, включает в себя обязательное знание длины каждой стороны, а также величину радиуса.

Треугольник, вписанный в окружность геометрия 7 класс:

Прямоугольные треугольники, вписанные в окружность:



Из указанных примеров можно убедиться, что сложность любого задания с использованием ВО и ОО заключается только в дополнительных действиях по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения.

Итак, мы смогли доказать, что в любой треугольник можно вписать окружность, центр которой будет совпадать с точкой пересечения биссектрис этого самого треугольника. Также доказали, что около любого многоугольника также можно описать окружность и ее центр совпадет с точкой пересечения серединных перпендикуляров. В изучении такой точной науки, как геометрия, важно не просто следовать предоставленным формулам и заучивать теоремы. Безусловно, формулы важны и без них проводить правильные расчеты просто не будет никакой возможности. Но все же необходимо вникнуть и понять, как располагаются фигуры на плоскости и в пространстве, как к ним применима та или иная формула.

Окружность. Центральный и вписанный угол

Центральный угол — это угол, вершина которого находится в центре окружности.

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают ее.

Отрезок, соединяющий две точки окружности, называется хорда.

Самая большая хорда проходит через центр окружности и называется диаметр.

На рисунках — центральные и вписанные углы, а также их важнейшие свойства.

Угол, вершина которого лежит в центре окружности, называется центральным. Величина центрального угла равна угловой величине дуги, на которую он опирается. Угол beta тоже можно назвать центральным. Только он опирается на дугу, которая больше 180^circ .

Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. Величина вписанного угла равна половине центрального угла, опирающегося на ту же дугу.

Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, — прямой.

Величина центрального угла равна угловой величине дуги, на которую он опирается. Значит, центральный угол величиной в 90 градусов будет опираться на дугу, равную 90^circ, то есть displaystyle frac{1}{4} круга. Центральный угол, равный 60^circ, опирается на дугу в 60 градусов, то есть на шестую часть круга.

Докажем, что величина вписанного угла в два раза меньше центрального, опирающегося на ту же дугу.

Пусть угол AOC — центральный и опирается на дугу АС, тогда ОА и ОС — радиусы окружности.

Пусть angleABC — вписанный угол, опирающийся на дугу АС,

АВ и ВС — хорды окружности.

Первый случай: Точка O лежит на BC, то есть ВС — диаметр окружности.

Треугольник AOB — равнобедренный, АО = ОВ как радиусы. Значит, angle A=angle B.

angle AOC — внешний угол triangle AOB, а внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

Получили, что angle AOC=angle A+angle B=2cdot angle B=2angle ABC.

Второй случай: Центр окружности точка О не лежит на ВС. Построим диаметр BК:

Если точка О лежит внутри вписанного угла АВС, как на рисунке слева, то

angle AOC=angle AOK+angle KOC=2angle ABK+2angle KBC=2angle ABC.

Если О лежит вне вписанного угла АВС, как на рисунке справа, то

angle AOC=angle AOK-angle COK=2angle ABK-2angle CBK=2angle ABC.

Мы получили, что в каждом из этих случаев величина центрального угла в два раза больше, чем величина вписанного угла, опирающегося на ту же дугу.

Теорема доказана.

При решении задач по геометрии также применяются следующие теоремы:

1. Равные центральные углы опираются на равные хорды.

2. Равные вписанные углы опираются на равные хорды.

3. Равные хорды стягивают равные дуги.

Докажем теорему 3.

Пусть хорды AB и CD равны. Докажем, что AMB дуги CND имеют одинаковую градусную меру, то есть равны.

Доказательство:

По условию, AB = CD. Соединим концы хорд с центром окружности. Получим: AO = BO = CO = DO = r.

triangle AOB=triangle CPD по трем сторонам, отсюда следует, что центральные углы равны, т.е. angle AOB=angle COD. Значит, и дуги, на которые они опираются, также равны, т.е. дуги AMB и CND имеют одинаковую градусную меру.

Теорема доказана.

Верна и обратная теорема:

Если две дуги окружности равны, то равны и хорды, их стягивающие.

Пусть дуги AMB и CND равны. Тогда angle AOB=angle COD как центральные углы, опирающиеся на эти дуги. Значит, треугольники triangle AOB и triangle CPD равны по двум сторонам и углу между ними, и тогда AB=CD, что и требовалось доказать.

Эти две теоремы можно объединить в одну, которая формулируется так:

Хорды окружности равны тогда и только тогда, когда равны дуги, которые они стягивают.

Разберем задачи ЕГЭ и ОГЭ по теме: Окружность, центральный угол, вписанный угол.

Задача 1, ЕГЭ. Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, — прямой.

Ответ: 90.

Задача 2, ЕГЭ. Центральный угол на 36 ^circ больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.

Рисунок к задаче 1

Решение:

Пусть центральный угол равен x, а вписанный угол, опирающийся на ту же дугу, равен y.

Мы знаем, что x=2y.

Отсюда 2y=36+y,

y=36.

Ответ: 36.

Задача 3, ЕГЭ. Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную sqrt{2}. Ответ дайте в градусах.

Решение:

Пусть хорда AB равна sqrt{2}. Тупой вписанный угол, опирающийся на эту хорду, обозначим alpha. В треугольнике AOB стороны AO и OB равны 1, сторона AB равна sqrt{2}. Нам уже встречались такие треугольники. Очевидно, что треугольник AOB — прямоугольный и равнобедренный, то есть угол AOB равен 90{}^circ . Тогда дуга ACB равна 90{}^circ , а дуга AKB равна 360{}^circ - 90{}^circ = 270 {}^circ . Вписанный угол alpha опирается на дугу AKB и равен половине угловой величины этой дуги, то есть 135.

Ответ: 135.

Задача 4, ЕГЭ. Хорда AB делит окружность на две части, градусные величины которых относятся как 5 : 7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.

Рисунок к задаче 3

Решение:

Главное в этой задаче — правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки С?»

Представьте, что вы сидите в точке С и вам необходимо видеть всё, что происходит на хорде AB. Так, как будто хорда AB — это экран в кинотеатре :-)
Очевидно, что найти нужно угол ACB.
Сумма двух дуг, на которые хорда AB делит окружность, равна 360^circ , то есть 5x+7x=360^ circ

Отсюда x=30^ circ , и тогда вписанный угол ACB опирается на дугу, равную 210^ circ . Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол ACB равен 105^ circ .

Ответ: 105.

Задача 5, ЕГЭ.

Треугольник ABC вписан в окружность с центром O. Найдите угол BOC, если угол BAC равен 32{}^circ .

Решение:

Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

angle BAC=displaystyle frac{1}{2}angle BOC.

Значит, angle BOC=2cdot angle BAC=2cdot 32{}^circ =64{}^circ.

Ответ: 64.

Задача 6, ЕГЭ. Найдите центральный угол AOB, если он на 15{}^circ больше вписанного угла ACB, опирающегося на ту же дугу. Ответ дайте в градусах.

Решение:

Пусть величина угла АОВ равна x градусов. Величина вписанного угла АСВ равна половине центрального угла, опирающегося на ту же дугу, то есть displaystyle frac{x}{2} градусов.

Получим уравнение: displaystyle x-frac{1}{2} x = 15{}^circ, откуда x ={30}^circ.

Ответ: 30.

Задача 7, ЕГЭ. Чему равен острый вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.

Решение.

Рассмотрим треугольник AOB. Он равносторонний, так как AO = OB = AB = R.

Поэтому угол AOB = 60. Вписанный угол ACB равен половине дуги, на которую он опирается, то есть 30{}^circ.

Ответ: 30.

Задача 8, ЕГЭ.

Дуга окружности AC, не содержащая точки B, составляет 200{}^circ. А дуга окружности BC, не содержащая точки A, составляет 80{}^circ. Найдите вписанный угол ACB. Ответ дайте в градусах.

Решение:

Вписанный угол равен половине угловой величины дуги, на которую он опирается. Дуга АВ равна 360{}^circ -200{}^circ -80{}^circ -80{}^circ . Тогда angle ACB=40{}^circ.

Ответ: 40.

Задачи ОГЭ по теме: Центральный и вписанный угол, градусная мера дуги.

Задача 9, ОГЭ. Центральный угол AOB опирается на хорду AB длиной 6. При этом угол OAB равен {60}^circ. Найдите радиус окружности.

Решение.

Рассмотрим треугольник AOB: он равнобедренный, его боковые стороны равны радиусу окружности.

Углы при основании равнобедренного треугольника равны. Пусть AOB равен x, тогда x + 60{}^circ + 60{}^circ = 180{}^circ, где x = 60{}^circ. Треугольник, у которого все углы равны, — равносторонний треугольник; значит, радиус равен 6.

Ответ: 6.

Задача 10, ОГЭ. В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен {30}^circ. Найдите величину угла OAB.

Решение.

Вписанные углы ВСD и ВАD опираются на одну и ту же дугу окружности, поэтому они равны, угол OAB ={30}^circ.

Ответ: 30.

Задача 11, ОГЭ. Найдите градусную меру центрального angle MON, если известно, что NP — диаметр, а градусная мера angle MNP равна 18{}^circ.

Решение:

Треугольник MON — равнобедренный. Тогда angle MON = 180{}^circ2cdot 18{}^circ = 144{}^circ.

Ответ: 144.

Задача 12, ОГЭ.

Найдите angle DEF, если градусные меры дуг DE и EF равны {150}^circ и {68}^circ соответственно.

Решение.

Дуга FD, не содержащая точку Е, равна {360}^circ - {150}^circ - 68{}^circ = 142{}^circ. Вписанный угол DEF, опирающийся на эту дугу, равен половине ее угловой величины, angle DEF = 71{}^circ.

Ответ: 71.

Задача 13, ОГЭ. В окружности с центром O AC и BD — диаметры. Угол ACB равен {26}^circ. Найдите угол AOD. Ответ дайте в градусах.

Решение.

Угол ACB — вписанный, он равен половине центрального угла, опирающегося на ту же дугу, то есть AОВ = 52{}^circ. Угол ВОD — развернутый, поэтому угол AOD равен {180}^circ - 52{}^circ = 128{}^circ.

Ответ: 128.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Окружность. Центральный и вписанный угол» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Магия как найти свой путь
  • Как найти топор в новосе
  • Как найти фейка по своей фотографии
  • Как составить бизнес планирование для компании
  • Как найти папку общий доступ